Содержание:

  • 1. Общая характеристика клеток
  • 2. Структурная организация эукариотической клетки
  • 3. Биологические (элементарные) мембраны
  • 4. Плазматическая мембрана (плазмалемма)
  • 5. Клеточная стенка (оболочка)
  • 6. Органеллы клетки
  • 7. Включения
  • 8. Ядро и хромосомы
  • 9. Сравнительная характеристика клеток эукариот
  • 10. Особенности строения прокариотической и эукариотической клеток
  • 11. Транспорт веществ

Общая характеристика клеток

Клетка является наименьшей и основной структурной единицей живых организмов, способной к самообновлению, саморегуляции и самовоспроизведению.

Характерные размеры клеток: клетки бактерий — от 0,1 до 15 мкм, клетки других организмов — от 1 до 100 мкм, иногда достигают 1-10 мм; яйцеклетки крупных птиц — до 10-20 см, отростки нервных клеток — до 1 м.


Форма клеток весьма разнообразна: существуют шаровидные клетки (кокки), цепочечные (стрептококки), вытянутые (палочки, или бациллы), изогнутые (вибрионы), извитые (спириллы), многогранные, с двигательными жгутиками и др.

Виды клеток: прокариотические (безъядерные) и эукариотические (имеющие оформленное ядро).

Эукариотические клетки, в свою очередь, подразделяются на клетки животных, растений и грибов.

Структурная организация эукариотической клетки

Протопласт — это все живое содержимое клетки. Протопласт всех эукариотических клеток состоит из цитоплазмы (со всеми органоидами) и ядра.

Цитоплазма — это внутреннее содержимое клетки за исключением ядра, состоящее из гиалоплазмы, погруженных в нее орга-иелл и (в некоторых типах клеток) внутриклеточных включений (запасных питательных веществ и/или конечных продуктов обмена).

Гиалоплазма — основная плазма, матрикс цитоплазмы, основное вещество, являющееся внутренней средой клетки и представляющее собой вязкий бесцветный коллоидный раствор (содержание воды до 85%) различных веществ: белков (10%), сахаров, органических и неорганических кислот, аминокислот, полисахаридов, РНК, липидов, минеральных солей и т.п.


■ Гиалоплазма является средой для внутриклеточных реакций обмена и связующим звеном между органеллами клетки; она способна к обратимым переходам из золя в гель, ее состав определяет буферные и осмотические свойства клетки. В цитоплазме находится цитоскелет, состоящий из микротрубочек и способных сокращаться белковых нитей.

■ Цитоскелет определяет форму клетки и участвует во внутриклеточном перемещении органоидов и отдельных веществ. Ядро — самый крупный органоид эукариотической клетки, содержащий хромосомы, в которых хранится вся наследственная информация (подробнее см. ниже).

Структурные компоненты эукариотической клетки:

■ плазмалемма (плазматическая мембрана),
■ клеточная стенка (только у клеток растений и грибов),
■ биологические (элементарные) мембраны,
■ ядро,
■ эндоплазматическая сеть (эндоплазматический ретикулум),
■ митохондрии,
■ комплекс Гольджи,
■ хлоропласты (только у клеток растений),
■ лизосомы, s
■ рибосомы,
■ клеточный центр,
■ вакуоли (только у клеток растений и грибов),
■ микротрубочки,
■ реснички, жгутики.

Схемы строения животной и растительной клеток приведены ниже:

shemyi-stroeniya-zhivotnoy-i-rastitelnoy-kletok

Биологические (элементарные) мембраны


Биологические (элементарные) мембраны — это активные молекулярные комплексы, разделяющие внутриклеточные органоиды и клетки. Все мембраны имеют сходное строение.

Структура и состав мембран: толщина 6-10 нм; состоят в основном из молекул белков и фосфолипидов.

Фосфолипиды образуют двойной (бимолекулярный) слой, в котором их молекулы обращены своими гидрофильными (водорастворимыми) концами наружу, а гидрофобными (водонерастворимыми) концами — внутрь мембраны.

Белковые молекулы располагаются на обеих поверхностях двойного липидного слоя (периферические белки), пронизывают оба слоя молекул липидов (интегральные белки, большая часть которых — ферменты) или только один их слой (полуинтегральные белки).

Свойства мембран: пластичность, асимметрия (состав наружного и внутреннего слоев и липидов, и белков различен), полярность (внешний слой заряжен положительно, внутренний — отрицательно), способность самозамыкаться, избирательная проницаемость (при этом гидрофобные вещества проходят через двойной липидный слой, а гидрофильные — через поры в интегральных белках).

iv>

Функции мембран: барьерная (отделяет содержимое органоида или клетки от окружающей среды), структурная (обеспсчнило определенную форму, размеры и устойчивость органоида или клетки), транспортная (обеспечивает транспорт веществ в органоид или клетку и из нее), каталитическая (обеспечивает примембранные биохимические процессы), регулятивная (участвует в регуляции обмена веществ и энергии между органоидом или клеткой и внешней средой), участвует в преобразовании энергии и поддержании трансмембранного электрического потенциала.

Плазматическая мембрана (плазмалемма)

Плазматическая мембрана, или плазмалемма, — это биологическая мембрана или комплекс плотно прилегающих друг к другу биологических мембран, покрывающих клетку с внешней стороны.

Строение, свойства и функции плазмалеммы в основном такие же, как и у элементарных биологических мембран.

❖ Особенности строения:

plazmennaya-membrana


■ наружная поверхность плазмалеммы содержит гликокаликс — полисахаридный слой молекул гликолипоидов и гликопротеидов, служащих рецепторами для «узнавания» определенных химических веществ; у животных клеток она может быть покрыта слизью или хитином, а у растительных клеток — целлюлозой или пектиновыми веществами;

■ обычно плазмалемма образует выросты, впячивания, складки, микроворсинки и др., увеличивающие поверхность клетки.

Дополнительные функции: рецепторная (участвует в «узнавании» веществ и в восприятии сигналов из окружающей среды и передаче их в клетку), обеспечение связи между клетками в тканях многоклеточного организма, участие в построении специальных структур клетки (жгутиков, ресничек и др.).

Клеточная стенка (оболочка)

Клеточная стенка — это жесткая структура, расположенная снаружи плазмалеммы и представляющая собой внешний покров клетки. Присутствует у прокариотических клеток и клеток грибов и растений.

Состав клеточной стенки: целлюлоза у клеток растений и хитин у клеток грибов (структурные компоненты), белки, пектины (которые участвуют в образовании пластинок, скрепляющих стенки двух соседних клеток), лигнин (скрепляющий целлюлозные волокна в очень прочный каркас), суберин (откладывается на оболочку изнутри и делает ее практически непроницаемой для воды и растворов) и др.

>
ружная поверхность клеточной стенки эпидермальных клеток растений содержит большое количество карбоната кальция и кремнезема (минерализация) и покрыта гидрофобными веществами восками и кутикулой (слоем вещества кутина, пронизанным целлюлозой и пектинами).

Функции клеточной стенки: служит внешним каркасом, поддерживает тургор клеток, выполняет защитную и транспортную функции.

Органеллы клетки

Органеллы (или органоиды) — это постоянные высокоспециализированные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции.

По назначению органеллы подразделяются на:
■ органеллы общего назначения (митохондрии, комплекс Гольджи, эндоплазматическая сеть, рибосомы, центриоли, лизосомы, пластиды) и
■ органеллы специального назначения (миофибриллы, жгутики, реснички, вакуоли).
По наличию мембраны органеллы подразделяются на:
■ двумембранные (митохондрии, пластиды, клеточное ядро),
■ одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, вакуоли) и
■ немембранные (рибосомы, клеточный центр).
Внутреннее содержимое мембранных органелл всегда отличается р.т окружающей их гиалоплазмы.

Митохондрии — двумембранные органеллы эукариотических клеток, осуществляющие окисление органических веществ до конечных продуктов с освобождением энергии, запасаемой в молекулах АТФ.


stroenie-mitohondrii

Строение: палочковидная, шаровидная и нитевидная формы, толщина 0,5-1 мкм, длина 2-7 мкм; двумембранные, наружная мембрана гладкая и имеет высокую проницаемость, внутренняя мембрана образует складки — кристы, на которых находятся тельца сферической формы — АТФ-сомы. В пространстве между мембранами скапливаются ионы водорода 11 , участвующие в кислородном дыхании.

Внутреннее содержимое (матрикс): рибосомы, кольцевые ДНК, РНК, аминокислоты, белки, ферменты цикла Кребса, ферменты тканевого дыхания (находятся на кристах).

Функции: окисление веществ до СO2 и Н2O; синтез АТФ и специфических белков; образование новых митохондрий в результате деления надвое.

Пластиды (имеются только у клеток растений и автотрофных протистов).


stroenie-hloroplasta

Виды пластид: хлоропласты (зеленые), лейкопласты (бесцветные округлой формы), хромопласты (желтые или оранжевые); пластиды могут превращаться из одного вида в другой.

Строение хлоропластов: они двумембранные, имеют округлую или овальную форму, длина 4—12 мкм, толщина 1-4 мкм. Наружная мембрана гладкая, на внутренней имеются тилакоиды — складки, образующие замкнутые дисковидные впячивания, между которыми находится строма (см. ниже). У высших растений тилакоиды собраны в стопки (наподобие столбика монет) граны, которые соединены друг с другом ламеллами (одиночными мембранами).

Состав хлоропластов: в мембранах тилакоидов и гран — зерна хлорофилла и других пигментов; внутреннее содержимое (строма): белки, липиды, рибосомы, кольцевые ДНК, РНК, ферменты, участвующие в фиксации СO2, запасные вещества.

Функции пластид: фотосинтез (хлоропласты, содержащиеся в зеленых органах растений), синтез специфических белков и накопление запасных питательных веществ: крахмала, белков, жиров (лейкопласты), придание окраски тканям растений с целью привлечения насекомых-опылителей и распространителей плодов и семян (хромопласты).


Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум, имеется во всех эукариотических клетках.

Строение: представляет собой систему соединенных между собой канальцев, трубочек, цистерн и полостей различной формы и размеров, стенки которых образованы элементарными (одинарными) биологическими мембранами. Различают два типа ЭПС: гранулярную (или шероховатую), содержащую рибосомы на поверхности каналов и полостей, и агранулярную (или гладкую), не содержащую рибосом.

Функции: разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; шероховатая ЭПС накапливает, изолирует для созревания и транспортирует,белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

Комплекс (или аппарат) Гольджи — мембранная органелла эукариотической клетки, расположенная вблизи клеточного ядра, представляющая собой систему цистерн и пузырьков и участвующая в накоплении, хранении и транспортировке веществ, построении клеточной оболочки и образовании лизосом.


stroenie-kompleksa-goldzhi

Строение: комплекс представляет собой диктиосому — стопку ограниченных мембраной плоских дисковидных мешочков {цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС.

Функции: образование лизосом, вакуолей, плазмалеммы и клеточной стенки растительной клетки (после ее деления), секреция ряда комплексных органических веществ (пектиновых веществ, целлюлозы и др. у растений; гликопротеинов, гликолипидов, коллагена, белков молока, желчи, ряда гормонов и др. у животных); накопление и обезвоживание транспортированных по ЭПС липидов (из гладкой ЭПС), доработка и накопление белков (из гранулярной ЭПС и свободных рибосом цитоплазмы) и углеводов, выведение веществ из клетки.

Зрелые цистерны диктиосомы отшнуровывают пузырьки (вакуоли Гольджи), заполненные секретом, который затем либо используется самой клеткой, либо выводится за ее пределы.

Лизосомы — клеточные органеллы, обеспечивающие расщепление сложных молекул органических веществ; образуются из пузырьков, отделяющихся от комплекса Гольджи или гладкой ЭПС, и присутствуют во всех эукариотических клетках.

Строение и состав: лизосомы — это небольшие одномембранные пузырьки округлой формы диаметром 0,2-2 мкм; заполнены гидролитическими (пищеварительными) ферментами (~40), способными расщеплять белки (до аминокислот), липиды (до глицерина и высших карбоновых кислот), полисахариды (до моносахаридов) и нуклеиновые кислоты (до нуклеотидов).

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (или вторичную лизосому), где и происходит расщепление сложных органических веществ; полученные мономеры через мембрану вторичной лизосомы поступают в цитоплазму клетки, а непереваренные (негидролизуемые) вещества остаются во вторичной лизосоме и затем, как правило, выводятся за пределы клетки.

■ Функции: гетерофагия — расщепление чужеродных веществ, поступивших в клетку путем эндоцитоза, аутофагия — уничтожение ненужных клетке структур; автолиз — саморазрушение клетки, происходящее в результате освобождения содержимого лизосом при гибели или перерождении клетки.

❖ Вакуоли — крупные пузырьки или полости в цитоплазме, образующиеся в клетках растений, грибов и многих протистов и ограниченные элементарной мембраной -тонопластом.

vakuoli-rastitelnyih-kletok

■ Вакуоли протистов подразделяют на пищеварительные и сократительные (имеющие в мембранах пучки эластичных волокон и служащие для осмотической регуляции водного баланса клетки).

■Вакуоли растительных клеток заполнены клеточным соком — водным раствором различных органических и неорганических веществ. В них также могут находиться ядовитые и дубильные вещества и конечные продукты жизнедеятельности клеток.

■Вакуоли растительных клеток могут сливаться в центральную вакуоль, которая занимает до 70-90% объема клетки и может быть пронизана тяжами цитоплазмы.

Функции: накопление и изоляция запасных веществ и веществ, предназначенных для экскреции; поддержание тургор-ного давления; обеспечение роста клетки за счет растяжения; регуляция водного баланса клетки.

♦Рибосомы — органеллы клетки, присутствующие во всех клетках (в количестве нескольких десятков тысяч), расположенные на мембранах гранулярной ЭПС, в митохондриях, хлоропластах, цитоплазме и наружной ядерной мембране и осуществляющие биосинтез белков; субъединицы рибосом образуются в ядрышках.

stroenie-ribosomyi

■ Строение и состав: рибосомы -мельчайшие (15-35 нм) немембранные гранулы округлой и грибовидной формы; имеют два активных центра (аминоацильный и пептидильный); состоят из двух неравных субъединиц — большой (в виде полусферы с тремя выступами и каналом), которая содержит три молекулы РНК и белок, и малой (содержащей одну молекулу РНК и белок); субъединицы соединяются с помощью иона Mg+.

■ Функция: синтез белков из аминокислот.

Клеточный центр — органелла большинства клеток животных, некоторых грибов, водорослей, мхов и папоротников, расположенная (в интерфазе) в центре клетки вблизи ядра и служащая центром инициации сборки микротрубочек.

Строение: клеточный центр состоит из двух центриолей и центросферы. Каждая центриоль (рис. 1.12) имеет вид цилиндра длиной 0,3-0,5 мкм и диаметром 0,15 мкм, стенки которого образованы девятью триплетами микротрубочек, а середина заполнена однородным веществом. Центриоли расположены перпендикулярно друг другу и окружены плотным слоем цитоплазмы с радиально расходящимися микротрубочками, образующими лучистую центросферу. При делении клетки центриоли расходятся к полюсам.

stroenie-tsentrioley

■ Основные функции: образование полюсов деления клеток и ахроматиновых нитей веретена деления (или митотического веретена), обеспечивающего равноценное распределение генетического материала между дочерними клетками; в интерфазе направляет передвижение органелл в цитоплазме.

Цитоскслст клетки — это система микрофиламентов и микротрубочек, пронизывающих цитоплазму клетки, связанных с наружной цитоплазматической мембраной и ядерной оболочкой и поддерживающих форму клетки.

tsitoskelet

Микрофнламенты — тонкие, способные сокращаться нити толщиной 5-10 нм и состоящие из белков (актина, миозина и др.). Находятся в цитоплазме всех клеток и ложноножках подвижных клеток.

Функции: микрофнламенты обеспечивают двигательную активность гиалоплазмы, непосредственно участвуют в изменении формы клетки при распластывании и амебоидном движении клеток протистов, участвуют в образовании перетяжки при делении клеток животных; одни из основных элементов цитоскелета клетки.

Микротрубочки — тонкие полые цилиндры (диаметром 25 нм), состоящие из молекул белка тубулина, расположенные спиральными или прямолинейными рядами в цитоплазме эукариотических клеток.

Функции: микротрубочки образуют нити веретена деления, входят в состав центриолей, ресничек, жгутиков, участвуют во внутриклеточном транспорте; одни из основных элементов цитоскелета клетки.

Органеллы движенияжгутики и реснички, присутствуют во многих клетках, но чаще встречаются у одноклеточных организмов.

Реснички — многочисленные цитоплазматические короткие (длиной 5-20 мкм) выросты на поверхности плазмалеммы. Имеются на поверхности различных видов клеток животных и некоторых растений.

Жгутики — единичные цитоплазматические выросты на поверхности клеток многих протистов, зооспор и сперматозоидов; в ~10 раз длиннее ресничек; служат для передвижения.

Строение: реснички и жгутики (рис. 1.14) состоят их микротрубочек, расположенных по системе 9×2+2 (девять двойных микротрубочек — дублетов образуют стенку, в середине расположены две одиночные микротрубочки). Дублеты способны скользить друг относительно друга, что приводит к изгибанию реснички или жгутика. В основании жгутиков и ресничек имеются базальные тельца, идентичные,, по структуре центриолям.

stroenie-zhgutika

■ Функции: реснички и жгутики обеспечивают передвижение самих клеток или окружающей их жидкости и взвешенных в ней частиц.

Включения

Включения — непостоянные (существующие временно) компоненты цитоплазмы клетки, содержание которых меняется в зависимости от функционального состояния клетки. Различают трофические, секреторные и экскреторные включения.

Трофические включения — это запасы питательных веществ (жир, крахмальные и белковые зерна, гликоген).

Секреторные включения — это продукты жизнедеятельности желез внутренней и внешней секреции (гормоны, ферменты).

Экскреторные включения — это продукты обмена веществ в клетке, подлежащие выведению из клетки.

Ядро и хромосомы

Ядро — самый крупная органелла; является обязательным компонентов всех эукариотических клеток (за исключением клеток ситовидных трубок флоэмы высших растений и зрелых эритроцитов млекопитающих). В большинстве клеток присутствует одно ядро, но существуют двух- и многоядерные клетки. Выделяют два состояния ядра: интерфазное и делящееся

Интерфазное ядро состоит из ядерной оболочки (отделяющей внутреннее содержимое ядра от цитоплазмы), ядерного матрикса (кариоплазмы), хроматина и ядрышек. Форма и размеры ядра зависят от вида организма, типа, возраста и функционального состояния клетки. Отличается высоким содержанием ДНК (15-30%) и РНК (12%).

Функции ядра: хранение и передача наследственной информации в виде неизменной структуры ДНК; регуляция (через систему белкового синтеза) всех процессов жизнедеятельности клетки.

elektronogramma-kletkai

❖ Ядерная оболочка (или кариолемма) состоит из наружной и внутренней биологических мембран, между которыми находится перинуклеарное пространство. На внутренней мембране имеется белковая пластинка, придающая форму ядру. Наружная мембрана соединена с ЭПС и несет на себе рибосомы. Оболочка пронизана ядерными порами, через которые происходит обмен веществ между ядром и цитоплазмой. Число пор непостоянно и зависит от размеров ядра и его функциональной активности.

Функции ядерной оболочки: она отделяет ядро от цитоплазмы клетки, регулирует транспорт веществ из ядра в цитоплазму (РНК, субъединиц рибосом) и из цитоплазмы в ядро (белков, жиров, углеводов, АТФ, воды, ионов).

Хромосома — важнейшая органелла ядра, содержащая одну молекулу ДНК в комплексе со специфическими белками гистонами и некоторыми другими веществами, большая часть которых находится на поверхности хромосомы.

В зависимости от фазы жизненного цикла клетки хромосомы могут быть в двух состоянияхдеспирализованном и спирализованном.

» В деспирализованном состоянии хромосомы находятся в период интерфазы клеточного цикла, образуя невидимые в оптический микроскоп нити, составляющие основу хроматина.

■ Спирализация, сопровожающаяся укорачиванием и уплотнением (в 100-500 раз) нитей ДНК, происходят в процессе деления клетки; при этом хромосомы приобретают компактную форму и становятся видимыми в оптический микроскоп.

Хроматин — один из компонентов ядерного вещества в период интерфазы, основу которого составляют деспирализованные хромосомы в виде сети длинных тонких нитей молекул ДНК в комплексе с гистонами и другими веществами (РНК, ДНК полимеразой, липидами, минеральными веществами и др.); хорошо окрашивается красителями, применяемыми в гистологической практике.

■ В хроматине участки молекулы ДНК навиваются на гистоны, образуя нуклеосомы (по виду напоминают бусы).

Хроматида — это структурный элемент хромосомы, представляющий собой нить молекулы ДНК в комплексе с белками гистонами и другими веществами, многократно сложенную как суперспираль и упакованную в виде палочковидного тельца.

■ При спирализации и упаковке отдельные участки ДНК укладываются закономерным образом так, что на хроматидах образуются чередующиеся поперечные полосы.

❖ Строение хромосомы (рис. 1.16). В спирализованном состоянии хромосома представляет собой палочковидную структуру размерами около 0,2-20 мкм, состоящую из двух хроматид и разделенную на два плеча первичной перетяжкой, называемой центромерой. Хромосомы могут иметь вторичную перетяжку, отделяющую участок, называемый спутником. У некоторых хромосом имеется участок (ядрышковый организатор), на котором закодирована структура рибосомных РНК (р-РНК).

stroenie-hromosomyi

Типы хромосом в зависимости от их формы: равноплечие, неравноплечие (центромера смещена от середины хромосомы), палочковидные (центромера находится близко к концу хромосомы).

После анафазы митоза и анафазы мейоза II хромосомы состоят из одной хромитиды, а после репликации (удвоения) ДНК на синтетической (S) стадии интерфазы — из двух сестринских хромитид, соединенных друг с другом в области центромеры. Во время деления клетки к центромере прикрепляются микротрубочки веретена деления.

❖ Функции хромосом:
■ содержат генетический материал — молекулы ДНК;
■ осуществляют синтез ДНК (при удвоении хромосом в S-иериод клеточного цикла) и и-РНК;
■ регулируют синтез белков;
■ контролируют жизнедеятельность клетки.

Гомологичные хромосомы — хромосомы, относящиеся к одной паре, одинаковые по форме, размерам, расположению центромер, несущие одинаковые гены и определяющие развитие одних и тех же признаков. Гомологичные хромосомы могут различаться аллелями содержащихся в них генов и обмениваться участками в ходе мейоза (кроссинговер).

Аутосомы хромосомы в клетках раздельнополых организмов, одинаковые у самцов и самок одного вида (это все хромосомы клетки за исключением половых).

Половые хромосомы (или гетерохромосомы) — это хромосомы, несущие гены, определяющие пол живого организма.

Диплоидный набор (обозначается 2п) — хромосомный набор соматической клетки, в котором каждая хромосома имеет парную ей гомологичную хромосому. Одну из хромосом диплоидного набора организм получает от отца, другую — от матери.

■ Диплоидный набор человека составляет 46 хромосом (из них 22 пары гомологичных хромосом и две половые хромосомы: у женщин две Х- хромосомы, у мужчин — по одной X- и Y- хромосоме).

Гаплоидный набор (обозначается 1л) — одинарный хромосомный набор половой клетки (гаметы), в котором хромосомы не имеют парных гомологичных хромосом. Гаплоидный набор образуется при формировании гамет в результате мейоза, когда из каждой нары гомологичных хромосом в гамету попадает только одна.

Кариотип — это совокупность постоянных количественных и качественных морфологических признаков, характерных для хромосом соматических клеток организмов данного вида (их количество, размер и форма), по которым можно однозначно идентифицировать диплоидный набор хромосом.

Ядрышко — округлое, сильно уплотненное, не ограниченное

мембраной тельце размером 1-2 мкм. В ядре имеется одно или несколько ядрышек. Ядрышко образуется вокруг притягивающихся друг к другу ядрышковых организаторов нескольких хромосом. Во время деления ядра ядрышки разрушаются и вновь формируются в конце деления.

■ Состав: белок 70-80%, РНК 10-15%, ДНК 2-10%.
■ Функции: синтез р-РНК и т-РНК; сборка субъединиц рибосом.

Кариоплазма (или нуклеоплазма, кариолимфа, ядерный сок) — это бесструктурная масса, заполняющая пространство между структурами ядра, в которую погружены хроматин, ядрышки, а также различные внутриядерные гранулы. Содержит воду, нуклеотиды, аминокислоты, АТФ, РНК и белки-ферменты.

Функции: обеспечивает взаимосвязи ядерных структур; участвует в транспорте веществ из ядра в цитоплазму и из цитоплазмы в ядро; регулирует синтез ДНК при репликации, синтез и-РНК при транскрипции.

Сравнительная характеристика клеток эукариот

sravneniya-harakteristik-kletok-eukariot

Особенности строения прокариотической и эукариотической клеток

osobenosti-stroeniya-prokarioticheskoy

Источник: esculappro.ru

Цитоплазма

Цитоплазма — обязательная часть клетки, заключенная между плазматической мембраной и ядром; подразделяется на гиалоплазму (основное вещество цитоплазмы), органоиды (постоянные компоненты цитоплазмы) и включения (временные компоненты цитоплазмы). Химический состав цитоплазмы: основу составляет вода (60–90% всей массы цитоплазмы), различные органические и неорганические соединения. Цитоплазма имеет щелочную реакцию. Характерная особенность цитоплазмы эукариотической клетки — постоянное движение (циклоз). Оно обнаруживается, прежде всего, по перемещению органоидов клетки, например хлоропластов. Если движение цитоплазмы прекращается, клетка погибает, так как, только находясь в постоянном движении, она может выполнять свои функции.

Гиалоплазма (цитозоль) представляет собой бесцветный, слизистый, густой и прозрачный коллоидный раствор. Именно в ней протекают все процессы обмена веществ, она обеспечивает взаимосвязь ядра и всех органоидов. В зависимости от преобладания в гиалоплазме жидкой части или крупных молекул, различают две формы гиалоплазмы: золь — более жидкая гиалоплазма и гель — более густая гиалоплазма. Между ними возможны взаимопереходы: гель превращается в золь и наоборот.

Функции цитоплазмы:

  1. объединение всех компонентов клетки в единую систему,
  2. среда для прохождения многих биохимических и физиологических процессов,
  3. среда для существования и функционирования органоидов.

Клеточные оболочки

Клеточные оболочки ограничивают эукариотические клетки. В каждой клеточной оболочке можно выделить как минимум два слоя. Внутренний слой прилегает к цитоплазме и представлен плазматической мембраной (синонимы — плазмалемма, клеточная мембрана, цитоплазматическая мембрана), над которой формируется наружный слой. В животной клетке он тонкий и называется гликокаликсом (образован гликопротеинами, гликолипидами, липопротеинами), в растительной клетке — толстый, называется клеточной стенкой (образован целлюлозой).

Строение мембран

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты; участок молекулы, в котором находится остаток фосфорной кислоты, называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Они определяют большинство специфических функций мембраны (транспорт определенных молекул, катализ реакций, получение и преобразование сигналов из окружающей среды и др.). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2) полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки). Интегральные белки в ряде случаев называют каналообразующими, или канальными, так как их можно рассматривать как гидрофильные каналы, по которым в клетку проходят полярные молекулы (липидный компонент мембраны их бы не пропустил).

Строение мембраны: А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1 — гидрофобные участки белков Е и F; 2 — гидрофильные участки белка F; 3 — разветвленная олигосахаридная цепь, присоединенная к липиду в молекуле гликолипида (гликолипиды встречаются реже, чем гликопротеины); 4 — разветвленная олигосахаридная цепь, присоединенная к белку в молекуле гликопротеина; 5 — гидрофильный канал (функционирует как пора, через которую могут проходить ионы и некоторые полярные молекулы).

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны. В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток.

Молекулы белков, углеводов и липидов подвижны, способны перемещаться в плоскости мембраны. Толщина плазматической мембраны — примерно 7,5 нм.

Функции мембран

Мембраны выполняют такие функции:

  1. отделение клеточного содержимого от внешней среды,
  2. регуляция обмена веществ между клеткой и средой,
  3. деление клетки на компартаменты («отсеки»),
  4. место локализации «ферментативных конвейеров»,
  5. обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6. распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

При пассивном транспорте вещества перемещаются из области с более высокой концентрацией в область с более низкой, т.е. по градиенту концентрации. В любом растворе имеются молекулы растворителя и растворенного вещества. Процесс перемещения молекул растворенного вещества называют диффузией, перемещения молекул растворителя — осмосом. Если молекула заряжена, то на ее транспорт влияет и электрический градиент. Поэтому часто говорят об электрохимическом градиенте, объединяя оба градиента вместе. Скорость транспорта зависит от величины градиента.

Можно выделить следующие виды пассивного транспорта: 1) простая диффузия — транспорт веществ непосредственно через липидный бислой (кислород, углекислый газ); 2) диффузия через мембранные каналы — транспорт через каналообразующие белки (Na+, K+, Ca2+, Cl); 3) облегченная диффузия — транспорт веществ с помощью специальных транспортных белков, каждый из которых отвечает за перемещение определенных молекул или групп родственных молекул (глюкоза, аминокислоты, нуклеотиды); 4) осмос — транспорт молекул воды (во всех биологических системах растворителем является именно вода).

Необходимость активного транспорта возникает тогда, когда нужно обеспечить перенос через мембрану молекул против электрохимического градиента. Этот транспорт осуществляется особыми белками-переносчиками, деятельность которых требует затрат энергии. Источником энергии служат молекулы АТФ. К активному транспорту относят: 1) Na++-насос (натрий-калиевый насос), 2) эндоцитоз, 3) экзоцитоз.

Работа Na++-насоса. Для нормального функционирования клетка должна поддерживать определенное соотношение ионов К+ и Na+ в цитоплазме и во внешней среде. Концентрация К+ внутри клетки должна быть значительно выше, чем за ее пределами, а Na+ — наоборот. Следует отметить, что Na+ и К+ могут свободно диффундировать через мембранные поры. Na++-насос противодействует выравниванию концентраций этих ионов и активно перекачивает Na+ из клетки, а K+ в клетку. Na++-насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как K+, так и Na+. Цикл работы Na++-насоса можно разделить на следующие фазы: 1) присоединение Na+ с внутренней стороны мембраны, 2) фосфорилирование белка-насоса, 3) высвобождение Na+ во внеклеточном пространстве, 4) присоединение K+ с внешней стороны мембраны, 5) дефосфорилирование белка-насоса, 6) высвобождение K+ во внутриклеточном пространстве. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки. За один цикл работы насос выкачивает из клетки 3Na+ и закачивает 2К+.

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Явление фагоцитоза открыто И.И. Мечниковым в 1882 г. При эндоцитозе плазматическая мембрана образует впячивание, края ее сливаются, и происходит отшнуровывание в цитоплазму структур, отграниченных от цитоплазмы одиночной мембраной. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки. При экзоцитозе мембрана пузырька сливается с наружной цитоплазматической мембраной, содержимое везикулы выводится за пределы клетки, а ее мембрана включается в состав наружной цитоплазматической мембраны. Таким способом из клеток желез внутренней секреции выводятся гормоны, у простейших — непереваренные остатки пищи.

 

Источник: licey.net

Что такое цитоплазма

Наряду с мембранной именно цитоплазма является одной из главных частей клетки, этого строительного материала всякой органической материи. Цитоплазма играет в жизни клетки очень важную роль, она объединяет собой все клеточные структуры, способствует их взаимодействию друг с другом. Также в цитоплазме располагается ядро клетки и все органоиды. Если говорить простыми словами, то цитоплазма представляет собой такое вещество, в котором находятся все другие составные части клетки.

Строение цитоплазмы

В состав цитоплазмы входят различные химические соединения, которые представляют собой не однородное химическое вещество, а сложную физико-химическую систему, она к тому же постоянно меняется и развивается и имеет в себе большое содержание воды. Важным компонентом цитоплазмы является белковая смесь в коллоидном состоянии в сочетании с нуклеиновыми кислотами, жирами и углеводами.

Также цитоплазма разделяется на две составные части:

  • эндоплазму,
  • экзоплазму.

Эндоплазма располагается в центре клетки и имеет более текучую структуру. Именно в ней находятся все самые важные органоиды клетки. Экзоплазма располагается по периметру клетки, где граничит с ее мембраной, она более вязкая и плотная по консистенции. Она играет связующую роль клетки с окружающей средой.

цитоплазма

Рисунок цитоплазмы.

Функции цитоплазмы

Какую функцию выполняет цитоплазма? Очень важную – в цитоплазме проходят все процессы клеточного метаболизма, за исключением синтеза нуклеиновых кислот (он осуществляется в ядре клетки). Помимо этой, самой важной функции, цитоплазма играет такие полезные роли:

  • заполняет клеточную полость,
  • является связующим звеном для клеточных компонентов,
  • определяет положение органоидов,
  • является проводником для физических и химических процессов на внутриклеточном и межклеточном уровнях,
  • поддерживает внутреннее давление клетки, ее объем, упругость и т. д.

Движение цитоплазмы

Способность цитоплазмы к движению является важным ее свойством, благодаря этому обеспечивается связь органоидов клетки. В биологии движение цитоплазмы называется циклозом, оно является постоянным процессом. Движение цитоплазмы в клетке может иметь струйчатый, колебательный или круговой характер.

Деление цитоплазмы

Еще одним свойством цитоплазмы является ее деление, без которого было бы попросту невозможно само деление клетки. Деление цитоплазмы осуществляется посредством митоза и мейоза, о чем вы можете почитать больше в статье по ссылке.

Источник: www.poznavayka.org

Строение ограноидов эукариотов.
Название органоида

Строение органоида

Функции органоида

Цитоплазма

Внутренняя среда клетки, в которой находится ядро и другие органоиды. Имеет полужидкую, мелкозернистую структуру.

Выполняет транспортную функцию.
Регулирует скорость протекания обменных биохимических процессов.
Обеспечивает взаимодействие органоидов.
Рибосомы

Мелкие органоиды сферической или эллипсоидной формы диаметром от 15 до 30 нанометров.

Обеспечивают процесс синтеза молекул белка, их сборку из аминокислот.

Митохондрии

Органоиды, имеющие самую разнообразную форму – от сферической до нитевидной. Внутри митохондрий имеются складки от 0,2 до 0,7 мкм. Внешняя оболочка митохондрий имеет двухмембранную структуру. Наружная мембрана гладкая, а на внутренней имеются выросты крестообразной формы с дыхательными ферментами.

Ферменты на мембранах обеспечивают синтез АТФ (аденозинтрифосфорной кислоты).
Энергетическая функция. Митохондрии обеспечивают поставки энергии в клетку за счет высвобождения ее при распаде АТФ.
Эндоплазматическая сеть (ЭПС)

Система оболочек в цитоплазме, которая образует каналы и полости. Бывает двух типов: гранулированная, на которой имеются рибосомы и гладкая.

Обеспечивает процессы по синтезу питательных веществ (белков, жиров, углеводов).
На гранулированной ЭПС синтезируются белки, на гладкой – жиры и углеводы.
Обеспечивает циркуляцию и доставку питательных веществ внутри клетки.
Пластиды (органоиды, свойственные только растительным клеткам) бывают трех видов:

Двухмембранные органоиды

Лейкопласты

Бесцветные пластиды, которые содержатся в клубнях, корнях и луковицах растений.

Являются дополнительным резервуаром для хранения питательных веществ.

Хлоропласты

Органоиды овальной формы, имеющие зеленый цвет. От цитоплазмы отделяются двумя трехслойными мембранами. Внутри хлоропластов находится хлорофилл.

Преобразуют органические вещества из неорганических, используя энергию солнца.

Хромопласты

Органоиды, от желтого до бурого цвета, в которых накапливается каротин.

Способствуют появлению у растений частей с желтой, оранжевой и красной окраской.

Лизосомы

Органоиды округлой формы диаметром около 1 мкм, имеющие на поверхности мембрану, а внутри – комплекс ферментов.

Пищеварительная функция. Переваривают питательные частицы и ликвидируют отмершие части клетки.

Комплекс Гольджи

Может быть разной формы. Состоит из полостей, разграниченных мембранами. Из полостей отходят трубчатые образования с пузырьками на концах.

Образует лизосомы.
Собирает и выводит синтезируемые в ЭПС органические вещества.
Клеточный центр

Состоит из центросферы (уплотненного участка цитоплазмы) и центриолей – двух маленьких телец.

Выполняет важную функцию для деления клетки.

Клеточные включения

Углеводы, жиры и белки, которые являются непостоянными компонентами клетки.

Запасные питательные вещества, которые используются для жизнедеятельности клетки.

Органоиды движения

Жгутики и реснички (выросты и клетки), миофибриллы (нитевидные образования) и псевдоподии (или ложноножки).

Выполняют двигательную функцию, а также обеспечивают процесс сокращения мышц.

Источник: otvet.mail.ru