Оглавление:

  1. Роль атмосферы в жизни Земли
  2. Слои атмосферы по порядку от поверхности Земли
  3. Из чего состоит атмосфера Земли?
  4. Как сформировалась атмосфера Земли?

Земная атмосфера представляет собой газовую оболочку вокруг планеты. Гидросфера и частично земная кора покрыты внутренней поверхностью атмосферы, а околоземная часть космического пространства граничит с внешней. Атмосфера формирует погодные условия на поверхности планеты.

Нетренированный человек уже на высоте пять километров над уровнем моря будет страдать кислородным голоданием и снижением работоспособности. На высоте 9 км человек не может дышать, несмотря на то, что приблизительно до 115 км в атмосфере содержится кислород.

Роль атмосферы в жизни Земли

Атмосфера является источником кислорода, которым дышат люди. Однако при подъеме на высоту общее атмосферное давление падает, что приводит к снижению парциального кислородного давления.

 


роль атмосферы

Лёгкие человека содержат приблизительно три литра альвеолярного воздуха. Если атмосферное давление в норме, то парциальное кислородное давление в альвеолярном воздухе будет составлять 11 мм рт. ст., давление углекислых газов — 40 мм рт. ст., а водяных паров — 47 мм рт. ст. При увеличении высоты кислородное давление понижается, а давление паров воды и углекислоты в лёгких в сумме будет оставаться постоянным — приблизительно 87 мм рт. ст. Когда давление воздуха сравняется с этой величиной, кислород прекратит поступать в лёгкие.

 

В связи со снижением атмосферного давления на высоте 20 км, здесь будет кипеть вода и межтканевая жидкость организма в человеческом теле. Если не использовать герметическую кабину, на такой высоте человек погибнет практически мгновенно. Поэтому с точки зрения физиологических особенностей человеческого организма, «космос» берёт начало с высоты 20 км над уровнем моря.

Роль атмосферы в жизни Земли очень велика. Так, например, благодаря плотным воздушным слоям — тропосфере и стратосфере, люди защищены от радиационного воздействия. В космосе, в разреженном воздухе, на высоте свыше 36 км, действует ионизирующая радиация. На высоте свыше 40 км — ультрафиолетовая.

состав атмосферы

При подъёме над поверхностью Земли на высоту свыше 90-100 км будет наблюдаться постепенное ослабление, а затем и полное исчезновение привычных для человека явлений, наблюдаемых в нижнем атмосферном слое:

  • Не распространяется звук.
  • Отсутствует аэродинамическая сила и сопротивление.
  • Тепло не передаётся конвекцией и т. д.

Атмосферный слой защищает Землю и все живые организмы от космической радиации, от метеоритов, отвечает за регулирование сезонных температурных колебаний, уравновешивание и выравнивание суточных. При отсутствии атмосферы на Земле суточная температура колебалась бы в пределах +/-200С˚. Атмосферный слой — это животворный «буфер» между земной поверхностью и космосом, носитель влаги и тепла, в атмосфере происходят процессы фотосинтеза и обмена энергии — важнейших биосферных процессов.

Слои атмосферы по порядку от поверхности Земли

Атмосфера — это слоистая структура, представляющая собой следующие слои атмосферы по порядку от поверхности Земли:

  • Тропосфера.
  • Стратосфера.
  • Мезосфера.
  • Термосфера.
  • Экзосфера.

Каждый слой не имеет между собой резких границ, а на их высоту влияет широта и времена года. Такая слоистая структура образовалась в результате температурных изменений на различных высотах. Именно благодаря атмосфере мы видим мерцающие звезды.

Строение атмосферы Земли по слоям:

 


слои атмосферы

 

Из чего состоит атмосфера Земли?

Каждый атмосферный слой отличается температурой, плотностью и составом. Общая толщина атмосферы составляет 1,5-2,0 тыс. км. Из чего состоит атмосфера Земли? В настоящее время — это смесь газов с различными примесями.

Тропосфера

Строение атмосферы Земли начинается с тропосферы, которая представляет собой нижнюю часть атмосферы высотой примерно 10-15 км. Здесь сосредоточена основная часть атмосферного воздуха. Характерная черта тропосферы — падение температуры на 0,6 ˚C по мере поднятия вверх на каждые 100 метров. Тропосфера сосредоточила в себе практически все атмосферные водяные пары, и здесь же происходит формирование облаков.

что такое тропосфера

Высота тропосферы ежедневно изменяется. Кроме того, её средняя величина меняется в зависимости от широты и сезона года. Средняя высота тропосферы над полюсами — 9 км, над экватором — около 17 км. Показатели средней годовой температуры воздуха над экватором приближены к +26 ˚C, а над Северным полюсом -23 ˚C. Верхняя линия границы тропосферы над экватором составляет среднегодовую температуру около -70 ˚C, а над северным полюсом в летнее время -45 ˚Cи в зимнее -65 ˚C. Таким образом, чем больше высота, тем ниже температура. Лучи солнца беспрепятственно проходят сквозь тропосферу, нагревая поверхность Земли. Тепло, излучаемое солнцем, удерживаются благодаря углекислому газу, метану и водяным парам.


Стратосфера

Над слоем тропосферы расположена стратосфера, составляющая 50-55 км в высоту. Особенность этого слоя заключается в росте температуры с высотой. Между тропосферой и стратосферой пролегает переходная прослойка, называющаяся тропопаузой.

Приблизительно с высоты 25 километров температура стратосферного слоя начинает возрастать и, при достижении максимальной высоты 50 км приобретает значения от +10 до +30 ˚C.

стратосфера

Паров воды в стратосфере очень мало. Иногда на высоте около 25 км можно обнаружить довольно тонкие облака, которые называют «перламутровыми». В дневное время они не заметны, а в ночное — светятся из-за освещения солнцем, которое находится под горизонтом. Состав перламутровых облаков представляет собой переохлаждённые водяные капельки. Стратосфера состоит в основном из озона.

Мезосфера

Высота слоя мезосферы — приблизительно 80 км. Здесь, с поднятием кверху, температура понижается и на самой верхней границе достигает значений в несколько десятков С˚ ниже нуля. В мезосфере также можно наблюдать облака, которые, предположительно, образуются из кристаллов льда. Эти облака называются «серебристыми». Мезосфера характеризуется самой холодной температурой в атмосфере: от -2 до -138 ˚C.

мезосфера

Термосфера

Своё название этот атмосферный слой приобрёл благодаря высоким температурам. Термосфера состоит из:

  • Ионосферы.
  • Экзосферы.

Ионосфера характеризуется разреженным воздухом, каждый сантиметр которого на высоте 300 км состоит из 1 млрд атомов и молекул, а на высоте 600 км — более, чем из 100 млн.

термосфера

Также ионосфере характерна высокая ионизация воздуха. Эти ионы состоят из заряженных кислородных атомов, заряженных молекул атомов азота и свободных электронов.

Экзосфера

С высоты 800-1000 км начинается экзосферный слой. Частицы газа, особенно лёгкие, движутся здесь с огромной скоростью, преодолевая силу тяжести. Такие частицы, вследствие своего быстрого движения, вылетают из атмосферы в космическое пространство и рассеиваются. Поэтому экзосфера имеет название сферы рассеивания. Вылетают в космос преимущественно водородные атомы, из которых состоят наиболее высокие слои экзосферы. Благодаря частицам в верхних слоях атмосферы и частицам солнечного ветра мы можем наблюдать северное сияние.


экзосфера

Спутники и геофизические ракеты позволили установить наличие в верхних слоях атмосферы радиационного пояса планеты, состоящего из электрических заряженных частиц — электронов и протонов.

Видео о том, из чего состоит атмосфера Земли

Как сформировалась атмосфера Земли?

Ученые на протяжении многих лет пытались выяснить, как сформировалась атмосфера Земли и каков её состав. Наиболее распространённая теория — изначально атмосфера Земли имела три различных состава. 

  • Сначала, 4 млрд. лет назад, её составляли лёгкие газы, которые захватывались из космического пространства.
  • На втором этапе в результате активной вулканической деятельности,атмосфера насытилась и другими газами — аммиаком, углекислым газом и парами воды. Предположительно это происходило 3 млрд. лет назад.
  • Последующее формирование атмосферы определилось благодаря утечке лёгких газов (гелия и водорода) и химическим реакциям, происходящим в атмосфере в результате ультрафиолетового излучения, разрядов молний и прочих факторов.

Когда на планете начали появляться живые организмы, состав первичной атмосферы Земли радикально изменился в результате выделения кислорода и поглощения углекислого газа, то есть, фотосинтеза. Количество кислорода в атмосфере увеличилось, что и привело к образованию современной атмосферы, обладающей окислительными свойствами. В результате резко изменились процессы, протекающие в атмосфере, биосфере и литосфере. В науке этот период получил название «кислородной катастрофы».

Сегодня земную атмосферу составляют газы и всевозможные примеси. Количество атмосферных газов практически постоянно. Исключение составляют вода и углекислый газ.

Состав атмосферы Земли в процентах:

 


формирование атмосферы

Воздух преимущественно состоит из азота. Это объясняется окислением водородно-аммиачной атмосферы молекулами кислорода, поступающего с поверхности Земного шара в результате фотосинтеза. Какова доля азота в атмосфере Земли? В процентном соотношении его концентрация составляет приблизительно 78%. Второе место по содержанию газов занимает кислород — почти 21%, а наиболее редкий газ Земной атмосферы — радон.

 

Как Вы думаете, какой была бы Земля, если бы не было атмосферы? Поделитесь своим мнением в комментариях.

Смотрите видео : Вселенная Граница космоса Земля тропосфера, стратосфера, мезосфера, термосфера, экзосфера

Источник: www.rutvet.ru

Как появилась атмосфера?

Атмосфера земли защищает всех нас от угроз необъятного космоса. Именно она не пропускает опасные излучения, падающие метеориты и нормализует температуру на планете. Ведь благодаря парниковому эффекту, возникающему из-за отражения лучей Солнца от облаков, Земля стала теплее примерно на 30 градусов. Да и само появление жизни было бы невозможно, без разнообразия состава атмосферы. Ведь, если посмотреть на другие планеты, то они и близко непохожи на Землю. Но почему существует атмосфера земли?


Примерная толщина атмосферы составляет более 120 километров, а масса воздуха в ней просто огромна – 5.3*1018 кг. Такой объем возник из-за разнообразия газов в ее составе. Почти вся таблица Менделеева. Но атмосфера земли стала такой, как она есть сейчас, не сразу. Раньше вся поверхность планеты была испещрена кратерами от метеоритов, которым не стоило особо труда пробиться сквозь тонкую пелену, окружающую Землю. Изначально, в составе атмосферы был лишь водород и гелий, а потом, благодаря наличию извергающихся вулканов, добавились аммиак, метан, углекислый газ, сера и азот. Теперь именно они составляют 78 процентов от общей массы атмосферы.

Проходили миллионы и миллионы лет и появился кислород, именно с его приходом все изменилось. Как это случилось? Мантия планеты была раскалена и буквально трещала по швам, выпуская наружу различные газы. А вулканы рождали водяные пары, на них воздействовал ультрафиолет, получая водород и кислород. Но, увы, он не мог надолго задержаться в атмосфере, виной тому были чрезвычайно высокие температуры и излучение солнца, заставляющие его распадаться на исходные части. Все изменилось с приходом первых живых организмов.

Живые организмы


Атмосфера Земли сформировалась именно благодаря совместным усилиям планеты и живых организмов. Если первая позаботилась о наличии всевозможных газов, то вторые стали активно выделить кислород, который уже просто не успевал распадаться. В результате этого, за несколько миллиардов лет, он стал занимать 21 процент от массы атмосферы.

Но на этом участие живых организмов не закончилось, и они стали использовать углерод для того чтобы строить собственные скелеты. Кора Земли буквально наполнилась пластами из органики и останков ископаемых. Вместе с этим, количество углекислого газа серьезно уменьшилось, а кислорода становилось все больше и больше, в результате появился озоновый слой земли, взявший на себя роль защитника всех живых организмов от смертельно опасного влияния ультрафиолетовых лучей. Жизнь на Земле стала разнообразней и стали появляется более развитые существа.

Влияние атмосферы на внешний облик Земли

Любой человек, хотя бы раз глядевший на синее небо над головой, задумывался о том, почему же именно синий цвет? Ответ, опять же, кроется в атмосфере. Кислород способен рассеивать волны коротких диапазонов и в результате давать синий цвет. Конечно, другие газы также могут делать это, но в гораздо меньшей степени. Такой же эффект можно наблюдать и из космоса, откуда Земля виднеется будто окутанная синей дымкой.

Также, литосферные плиты и вулканы, отвечающие на вопрос, почему существует атмосфера земли, являются главными источники благородного газа Аргона, который занимает лишь 1 процент от общей массы атмосферы по причине своей летучести. Он поднимается в верхние слои и после отправляется в космос. Практически то же самое происходит и с гелием.


Атмосфера менялась сотни раз и каждый являлся сильнейшим толчком для развития всего живого. Но некоторые изменения настолько устойчивы, что их существование продолжится практически при любых условиях. Например, защитники экологии очень часто говорят про то, что озоновый слой земли может погибнуть, если человечество не прекратит свою пагубную деятельность. Даже в случае чрезвычайного сокращения количества кислорода в атмосфере, например, в 100 раз, слой продолжит свое существование. Это означает, что человек оставил лишь малый след в истории планеты, но в определенных точках мира, подобная проблема может серьезно сказаться на уровне жизни людей. Например, из-за смога, нависшего над Пекином, люди вынуждены дышать загрязненным воздухом. А тем временем, озоновый слой защищает землю от ультрафиолета и продолжит это делать в любом случае.

Из чего состоит атмосфера?

Выше уже говорилось, что атмосфера является скоплением различных газов, образующих защитную оболочку. Однако, атмосфера земли слои имеет различные, каждый из которых обладает уникальным набором характеристик.

Тропосфера

Первый слой атмосферы, находящийся на промежутке от 0 до 20 километров. Высота зависит от времени года и типа широты. В этом слое содержится примерно 80 процентов всего воздуха и 90 процентов водяного пара. Турбулентность, конвекция, возникновение облаков и циклонов, все это происходит именно здесь. Температура меняется в зависимости от высоты. Как говорит школьный курс – чем выше, тем холоднее. А дальнейшее развитие показало, что каждый 100 метров температура понижается на 0,65 градусов Цельсия.
Какой из атмосферных слоев ближе к земле? Как уже говорилось выше, тропосфера. И именно эта близость повлияла на создание воздушного дна. Места, где происходит контакт с литосферов. Роль дна крайне высока для всего живого на Земле, именно тут поверхность создает ветры, возникают перепады давления, разделяющиеся неровностями и выпуклостями. Также, здесь происходит круговорот воды в природе, вся вода, испаряющаяся с площади океанов, возвращается обратно в них, а слой становится похож на самый обычный водяной фильтр, огромных размеров.

Тропопауза

В этом слое, понижение температуры с повышением высоты прекращается и на этом его роль заканчивается;

Стратосфера

На отрезке между 8 и 50 километрами вверх, находится стратосфера. В ней практически нет водяного пара, и из-за этого атмосферное давление земли серьезно отличается от здешних показателей. Здесь же происходит нагрев воздуха до 0-1 градуса по Цельсию. В нижних слоях стратосферы постоянно летают самолеты.

Нахождение на этой высоте гарантирует отсутствие зон турбулентности и делает движение более простым, благодаря разреженности воздуха.
Но в какой-то момент разреженность становится столь высока, что нахождение в этом слое атмосферы более невозможно из-за нехватки притока воздуха для двигателей. Поэтому стратосфера излюбленное место боевых самолетов и метеорологических зондов, которые собирают данные об изменениях тропосферы.

Что удивительно, на такой высоте все еще могут выживать живые организмы. Наиболее часто встречается аэропланктон, но были случаи, когда в турбины самолета попадали разновидности грифов, а некоторые утки могут летать над Эверестом.

Стратопауза

Очередной промежуточный слой, в котором окружающая температура застывает на отметке в 0 градусов по Цельсию.

Озоновый слой

Атмосферные слои земли содержат в себе и «защитника» всего живого, о котором уже говорилось выше. Находится он именно между страто- и мезосферой.

Мезосфера

Самая опасная и малоизученная часть атмосферы. А всему виной чрезвычайно малое давление и разреженность воздуха. Воздушные шары перестают двигаться, оставаясь висеть на месте, реактивные самолеты становятся бесполезными из-за отсутствия аэродинамики. Полеты остаются возможными лишь для ракет и раекетопланов. Даже спутники не могут надолго задерживаться в этом слое атмосферы, часто они просто сгорают здесь.
Именно поэтому, о мезосфере практически ничего не известно, кроме того, что в этом слое сгорает большинство падающих на землю метеоритов.

Мезопауза

Переходный слой атмосферы с температурой воздуха порядка -90 градусов.

Линия Кармана

Условная граница между космосом и атмосферой, находящаяся на высоте 100 км над уровнем моря.

Термосфера

Слой, начинающийся на отметке линии Кармана и заканчивающийся на 800 км. Отличается чрезвычайно высокими температурами, порядка 1600 градусов по Цельсию. Подобная температура не испепеляет космические шаттлы лишь по двум причинам: 1) чрезвычайно малая концентрация воздуха, создающая эффект вакуума; 2) радиаторы, которыми оснащены все летающие аппараты. Они помогают избавляться от избытка энергии.

Термопауза

Граница термосферы, в которой практически отсутствует поглощение солнечного излучения, и температура перестает меняться в зависимости от изменения высоты.

Экзосфера

На этом слои атмосферы заканчиваются, а происходит это на высоте 800 километров, где атмосфера состоит из атомов водорода, ионизированных под воздействием солнечного излучения. Как результат, чрезвычайная разреженность и низкое давление. Огромные размеры этого слоя перетекают в корону Земли, растянутую на 100 тысяч километров от планеты.

Свойства атмосферы земли и их влияние на человека

Какой из атмосферных слоев ближе к земле, мы уже разобрались, а вот с влиянием атмосферы на человека, все еще не до конца понятно. Если человек поднимется на высоту более 5 километров, то произойдет кислородное голодание, особенно заметно оно будет у человека, поднявшегося на такую высоту без предварительных тренировок. Как итог – работоспособность и общее самочувствие серьезно ухудшатся. А дыхание станет невозможным уже после 9 км, несмотря на то, что кислород содержится вплоть до 115 км.

Если же преодолеть границу высоты в 20 км, то вода и межтканевые жидкости в теле человека станут закипать, что практически мгновенно приведет к смерти. Определение «космос», где человек не может находиться без специальных приспособлений, начинается уже с 15 км.
Тропосфера и стратосфера носят защитные функции и предотвращают попадание радиации на Землю. Если бы их не было, то ультрафиолетовый спектр, находящийся на высоте 40 км, воздействовал бы на человека и на поверхности Земли, что неизбежно привело бы к смерти всех разумных существ.

Если подняться выше отметки в 60 км, то все привычные явления, например, распространение звука, аэродинамика, теплообмен и так далее, прекратятся, из-за того, что они могут происходить лишь в нижних слоях атмосферы.

А поднявшись выше 100 километров, становится невозможно передать тепло любым способом, кроме теплового излучения. Так как различные аппараты космических кораблей, самолетов и так далее, более не охлаждаются изнутри, что ведет к бесполезности воздушных радиаторов.

А что с облаками?

Главная составляющая нашей Земли и причина появления всего живого – атмосфера, но в то же время, ее появление было бы невозможно, без влияния водной поверхности планеты. Вода находится, как в морях, океанах и реках, так и в воздухе. Примерно 5.2 * 10^15 кг воды размещено в атмосфере. Это и водяной пар, и газ, и ледяные кристаллы. Наибольшая концентрация содержится в облаках. Из-за своего огромного размера, облака могут содержать сотни тонн воды.

Подобные образования видны из космоса даже невооруженным взглядом. А все из-за того, что более половины поверхности Земли покрыто облаками. Между прочим, они влияют на теплообмен планеты. В зимнее время происходит поглощение солнечных лучей и за счет парникового эффекта, температура планеты повышается. А летом, огромная энергия Солнца блокируется лишь благодаря наличию облаков.

Стоит сказать, что именно из-за того, что в пустынях они отсутствуют, все накопленное за день тепло, так быстро улетучивается с поверхности планеты. В других же регионах, именно облака способствуют нормализации температуры в ночное время суток.

Большинство видов облаков формируется в тропосфере, но далее происходит бурное развитие, породившее целую классификацию этих загадочных образований. Метеорологи предсказывают по ним погоду, а также определяют количество примесей того или иного газа в воздухе.

Проблема загрязнения атмосферы

Хоть человек и оказывает минимальное влияние на планету в целом, но нельзя не отметить, чрезвычайно увеличение количества углекислого газа в последнее время, которое происходит из-за активного сжигания запасов углеводородного топлива, копившегося веками в результате отмирания других живых организмов.

Углекислый газ поглощается океанами и участвует в процессе фотосинтеза, но все равно лишь за последний век, его количество увеличилось на 10 процентов и если темпы не будут снижены, то это может привести к серьезным изменениям мирового климата.

К тому же, происходит аэрозольное загрязнение, возникающие в результате извержения вулканов, пылевых бурь и уноса пыльцы растений, но есть и искусственные причины, созданные человеком. Сжигание топлива, использование цемента, добыча полезных ископаемых. Возможно, именно вынос твердых частиц в атмосферу Земли и окажет решающее влияние на изменение планетарного климата.

Источник: CosmosPlanet.ru

Физические свойства

Толщина атмосферы — примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере — (5,1—5,3)·1018 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.

Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура — −140,7 °C (~132,4 К); критическое давление — 3,7 МПа; Cp при 0 °C — 1,0048·103 Дж/(кг·К), Cv — 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C — 0,0036 %, при 25 °C — 0,0023 %.

За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.

Химический состав

Атмосфера Земли возникла в результате выделения газов при вулканических извержениях. С появлением океанов и биосферы она формировалась и за счёт газообмена с водой, растениями, животными и продуктами их разложения в почвах и болотах.

В настоящее время атмосфера Земли состоит в основном из газов и различных примесей (пыль, капли воды, кристаллы льда, морские соли, продукты горения).

Концентрация газов, составляющих атмосферу, практически постоянна, за исключением воды (H2O) и углекислого газа (CO2).

Состав сухого воздуха

Газ

Содержание по объёму, %

Содержание по массе, %

Азот

78,084

75,50

Кислород

20,946

23,10

Аргон

0,932

1,286

Вода

0,5-4

Углекислый газ

0,0387

0,059

Неон

1,818·10−3

1,3·10−3

Гелий

4,6·10−4

7,2·10−5

Метан

1,7·10−4

Криптон

1,14·10−4

2,9·10−4

Водород

5·10−5

7,6·10−5

Ксенон

8,7·10−6

Закись азота

5·10−5

7,7·10−5

Кроме указанных в таблице газов, в атмосфере содержатся SO2, NH3, СО, озон, углеводороды, HCl, HF, пары Hg, I2, а также NO и многие другие газы в незначительных количествах. В тропосфере постоянно находится большое количество взвешенных твёрдых и жидких частиц (аэрозоль).

Строение атмосферы

Тропосфера

Её верхняя граница находится на высоте 8—10 км в полярных, 10—12 км в умеренных и 16—18 км в тропических широтах; зимой ниже, чем летом. Нижний, основной слой атмосферы содержит более 80 % всей массы атмосферного воздуха и около 90 % всего имеющегося в атмосфере водяного пара. В тропосфере сильно развиты турбулентность и конвекция, возникают облака, развиваются циклоны и антициклоны. Температура убывает с ростом высоты со средним вертикальным градиентом 0,65°/100 м

Тропопауза

Переходный слой от тропосферы к стратосфере, слой атмосферы, в котором прекращается снижение температуры с высотой.

Стратосфера

Слой атмосферы, располагающийся на высоте от 11 до 50 км. Характерно незначительное изменение температуры в слое 11—25 км (нижний слой стратосферы) и повышение её в слое 25—40 км от −56,5 до 0,8 °С (верхний слой стратосферы или область инверсии). Достигнув на высоте около 40 км значения около 273 К (почти 0 °C), температура остаётся постоянной до высоты около 55 км. Эта область постоянной температуры называется стратопаузой и является границей между стратосферой и мезосферой.

Стратопауза

Пограничный слой атмосферы между стратосферой и мезосферой. В вертикальном распределении температуры имеет место максимум (около 0 °C).

Мезосфера

Мезосфера начинается на высоте 50 км и простирается до 80—90 км. Температура с высотой понижается со средним вертикальным градиентом (0,25—0,3)°/100 м. Основным энергетическим процессом является лучистый теплообмен. Сложные фотохимические процессы с участием свободных радикалов, колебательно возбуждённых молекул и т. д. обусловливают свечение атмосферы.

Мезопауза

Переходный слой между мезосферой и термосферой. В вертикальном распределении температуры имеет место минимум (около —90 °C).

Линия Кармана

Высота над уровнем моря, которая условно принимается в качестве границы между атмосферой Земли и космосом. В соответствии с определением ФАИ, линия Кармана находится на высоте 100 км над уровнем моря.

Граница атмосферы Земли

Принято считать, что граница атмосферы Земли и ионосферы находится на высоте 118 километров. Это показывает анализ параметров движения высокоэнергетических частиц, перемещающихся в атмосфере и ионосфере.

Термосфера

Верхний предел — около 800 км. Температура растёт до высот 200—300 км, где достигает значений порядка 1500 К, после чего остаётся почти постоянной до больших высот. Под действием ультрафиолетовой и рентгеновской солнечной радиации и космического излучения происходит ионизация воздуха («полярные сияния») — основные области ионосферы лежат внутри термосферы. На высотах свыше 300 км преобладает атомарный кислород. Верхний предел термосферы в значительной степени определяется текущей активностью Солнца. В периоды низкой активности — например, в 2008—2009 гг — происходит заметное уменьшение размеров этого слоя.

Термопауза

Область атмосферы прилегающая сверху к термосфере. В этой области поглощение солнечного излучения незначительно и температура фактически не меняется с высотой.

Экзосфера (сфера рассеяния)

Экзосфера — зона рассеяния, внешняя часть термосферы, расположенная выше 700 км. Газ в экзосфере сильно разрежён, и отсюда идёт утечка его частиц в межпланетное пространство (диссипация).

До высоты 100 км атмосфера представляет собой гомогенную хорошо перемешанную смесь газов. В более высоких слоях распределение газов по высоте зависит от их молекулярных масс, концентрация более тяжёлых газов убывает быстрее по мере удаления от поверхности Земли. Вследствие уменьшения плотности газов температура понижается от 0 °C в стратосфере до −110 °C в мезосфере. Однако кинетическая энергия отдельных частиц на высотах 200—250 км соответствует температуре ~150 °C. Выше 200 км наблюдаются значительные флуктуации температуры и плотности газов во времени и пространстве.

На высоте около 2000—3500 км экзосфера постепенно переходит в так называемый ближнекосмический вакуум, который заполнен сильно разрежёнными частицами межпланетного газа, главным образом атомами водорода. Но этот газ представляет собой лишь часть межпланетного вещества. Другую часть составляют пылевидные частицы кометного и метеорного происхождения. Кроме чрезвычайно разрежённых пылевидных частиц, в это пространство проникает электромагнитная и корпускулярная радиация солнечного и галактического происхождения.

На долю тропосферы приходится около 80 % массы атмосферы, на долю стратосферы — около 20 %; масса мезосферы — не более 0,3 %, термосферы — менее 0,05 % от общей массы атмосферы. На основании электрических свойств в атмосфере выделяют нейтросферу и ионосферу. В настоящее время считают, что атмосфера простирается до высоты 2000—3000 км.

В зависимости от состава газа в атмосфере выделяют гомосферу и гетеросферу. Гетеросфера — это область, где гравитация оказывает влияние на разделение газов, так как их перемешивание на такой высоте незначительно. Отсюда следует переменный состав гетеросферы. Ниже её лежит хорошо перемешанная, однородная по составу часть атмосферы, называемая гомосфера. Граница между этими слоями называется турбопаузой, она лежит на высоте около 120 км.

Другие свойства атмосферы и воздействие на человеческий организм

Уже на высоте 5 км над уровнем моря у нетренированного человека появляется кислородное голодание и без адаптации работоспособность человека значительно снижается. Здесь кончается физиологическая зона атмосферы. Дыхание человека становится невозможным на высоте 9 км, хотя примерно до 115 км атмосфера содержит кислород.

Атмосфера снабжает нас необходимым для дыхания кислородом. Однако вследствие падения общего давления атмосферы по мере подъёма на высоту соответственно снижается и парциальное давление кислорода.

В лёгких человека постоянно содержится около 3 л альвеолярного воздуха. Парциальное давление кислорода в альвеолярном воздухе при нормальном атмосферном давлении составляет 110 мм рт. ст., давление углекислого газа — 40 мм рт. ст., а паров воды — 47 мм рт. ст. С увеличением высоты давление кислорода падает, а суммарное давление паров воды и углекислоты в лёгких остаётся почти постоянным — около 87 мм рт. ст. Поступление кислорода в лёгкие полностью прекратится, когда давление окружающего воздуха станет равным этой величине.

На высоте около 19—20 км давление атмосферы снижается до 47 мм рт. ст. Поэтому на данной высоте начинается кипение воды и межтканевой жидкости в организме человека. Вне герметической кабины на этих высотах смерть наступает почти мгновенно. Таким образом, с точки зрения физиологии человека, «космос» начинается уже на высоте 15—19 км.

Плотные слои воздуха — тропосфера и стратосфера — защищают нас от поражающего действия радиации. При достаточном разрежении воздуха, на высотах более 36 км, интенсивное действие на организм оказывает ионизирующая радиация — первичные космические лучи; на высотах более 40 км действует опасная для человека ультрафиолетовая часть солнечного спектра.

По мере подъёма на всё большую высоту над поверхностью Земли постепенно ослабляются, а затем и полностью исчезают такие привычные для нас явления, наблюдаемые в нижних слоях атмосферы, как распространение звука, возникновение аэродинамической подъёмной силы и сопротивления, передача тепла конвекцией и др.

В разреженных слоях воздуха распространение звука оказывается невозможным. До высот 60—90 км ещё возможно использование сопротивления и подъёмной силы воздуха для управляемого аэродинамического полёта. Но начиная с высот 100—130 км знакомые каждому лётчику понятия числа М и звукового барьера теряют свой смысл: там проходит условная линия Кармана, за которой начинается область чисто баллистического полёта, управлять которым можно, лишь используя реактивные силы.

На высотах выше 100 км атмосфера лишена и другого замечательного свойства — способности поглощать, проводить и передавать тепловую энергию путём конвекции (т. е. с помощью перемешивания воздуха). Это значит, что различные элементы оборудования, аппаратуры орбитальной космической станции не смогут охлаждаться снаружи так, как это делается обычно на самолёте, — с помощью воздушных струй и воздушных радиаторов. На такой высоте, как и вообще в космосе, единственным способом передачи тепла является тепловое излучение.

История образования атмосферы

Согласно наиболее распространённой теории, атмосфера Земли во времени пребывала в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера (около четырех миллиардов лет назад). На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера (около трех миллиардов лет до наших дней). Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:

  • утечка легких газов (водорода и гелия) в межпланетное пространство;
  • химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.

Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).

Азот

Образование большого количества азота N2 обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом О2, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2 выделяется в атмосферу в результате денитрификации нитратов и других азотсодержащих соединений. Азот окисляется озоном до NO в верхних слоях атмосферы.

Азот N2 вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, т. н. сидератами.

Кислород

Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и др. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.

В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.

Углекислый газ

Содержание в атмосфере СО2 зависит от вулканической деятельности и химических процессов в земных оболочках, но более всего — от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4·1012 тонн) образуется за счет углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.

Благородные газы

Источник инертных газов — аргона, гелия и криптона — вулканические извержения и распад радиоактивных элементов. Земля в целом и атмосфера в частности обеднены инертными газами по сравнению с космосом. Считается, что причина этого заключена в непрерывной утечке газов в межпланетное пространство.

Загрязнение атмосферы

В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом его деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи. Громадные количества СО2 потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание СО2 в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200—300 лет количество СО2 в атмосфере удвоится и может привести к глобальным изменениям климата.

Сжигание топлива — основной источник и загрязняющих газов (СО, NO, SO2). Диоксид серы окисляется кислородом воздуха до SO3, а оксид азота до NO2 в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота Н2SO4 и азотная кислота НNO3 выпадают на поверхность Земли в виде т. н. кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец) Pb(CH3CH2)4.

Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и др.), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и т. п.). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.

Источник: xn—-7sbiajdngd3akr1a1d5j.xn--p1ai

Состав атмосферы

Атмосфера Земли состоит в основном из двух газов — азота (78%) и кислорода (21%). Кроме того, она содержит примеси углекислого и других газов. Вода в атмосфере существует в виде пара, капель влаги в облаках и кристалликов льда.

Слои атмосферы

Атмосфера состоит из многих слоев, между которыми нет четких границ. Температуры разных слоев заметно отличаются друг от друга.

Безвоздушная магнитосфера. Здесь летает большинство спутников Земли за пределами земной атмосферы. Экзосфера (450-500 км от поверхности). Почти не содержит газов. Некоторые спутники погоды совершают полеты в экзосфере. Термосфера (80-450 км) характеризуется высокими температурами, достигающими в верхнем слое 1700°С. Мезосфера (50—80 км). В этой сфере температура падает по мере увеличения высоты. Именно здесь сгорает большинство метеоритов (осколков космических пород), попадающих в атмосферу. Стратосфера (15—50 км). Содержит озоновый спой, т. е. слой озона, поглощающего ультрафиолетовое излучение Солнца. Это приводит к повышению температуры около поверхности Земли. Здесь обычно летают реактивные самолеты, так как видимость в этом слое очень хорошая и почти нет помех, вызванных погодными условиями. Тропосфера. Высота варьируется от 8 до 15 км от земной поверхности. Именно здесь формируется погода планеты, так как в этом слое содержится больше всего водяных паров, пыли и возникают ветры. Температура понижается по мере удаления от земной поверхности.

Атмосферное давление

Хотя мы и не ощущаем этого, слои атмосферы оказывают давление на поверхность Земли. Наиболее высокое атмосферное давление около поверхности, а при удалении от неё оно постепенно снижается. Оно зависит от перепада температур суши и океана, и поэтому в районах, находящихся на одинаковой высоте над уровнем моря нередко бывает разное давление. Низкое давление приносит сырую погоду, а при высоком обычно устанавливаете ясная погода.

Движение воздушных масс в атмосфере

Изменения температуры и давления заставляют воздушные массы в нижних слоях атмосферы перемешаться. Так возникают ветры, дующие из областей высокого давления в области низкого. Во многих регионах возникают и местные ветры, вызванные перепадами температур суши и моря. Горы также оказывают существенное влияние на направление ветров.

Парниковый эффект

Парниковый эффект в атмосфере вид с землиУглекислый газ и другие газы, входящие в состав земной атмосферы, задерживают солнечное тепло. Этот процесс принято называть парниковым эффектом, так как он во многом напоминает циркуляцию тепла в парниках. Парниковый эффект влечет за собой глобальное потепление на планете. В областях высокого давления — антициклонах — устанавливается ясная солнечная погода. В областях низкого давления — циклонах — обычно стоит неустойчивая погода. Тепло и световая энергия, поступающие в атмосферу. Газы задерживают тепло, отражающееся от земной поверхности, вызывая тем самым повышение температуры на Земле.

Озон в атмосфере

В стратосфере существует особый озоновый слой. Озон задерживает большую часть ультрафиолетового излучения Солнца, защищая от него Землю и все живое на ней. Ученые установили, что причиной разрушения озонового слоя являются особые хлорофторуглекислые газы, содержащиеся в некоторых аэрозолях и холодильном оборудовании. Озоновая дыра в атмосфере над АнтарктидойНад Арктикой и Антарктидой в озоновом слое были обнаружены огромные дыры, способствующие увеличению количества ультрафиолетового излучения, воздействующего на поверхность Земли.

Озон образуется в нижних слоях атмосферы в результате химической реакции между солнечным излучением и различными выхлопными дымами и газами. Обычно он рассеивается по атмосфере, но, если под слоем теплого воздуха образуется замкнутый слой холодного, озон концентрируется и возникает смог. К сожалению, это не может восполнять потери озона в озоновых дырах.

На фотоснимке со спутника хорошо видна дыра в озоновом слое над Антарктикой. Размеры дыры меняются, но ученые считают, что она постоянно увеличивается. Предпринимаются попытки снизить уровень выхлопных газов в атмосфере. Следует уменьшать загрязнение воздуха и применять в городах бездымные виды топлива. Смог вызывает раздражение глаз и удушье у многих людей.

Возникновение и эволюция атмосферы Земли

Современная атмосфера Земли представляет собой результат длительного эволюционного развития. Она возникла в результате совместных действий геологических факторов и жизнедеятельности организмов. В течение всей геологической истории земная атмосфера пережила несколько глубоких перестроек. На основе геологических данных и теоретических (предпосылок первозданная атмосфера молодой Земли, существовавшая около 4 млрд. лет тому назад, могла состоять из смеси инертных и благородных газов с небольшим добавлением пассивного азота (Н. А. Ясаманов, 1985; А. С. Монин, 1987; О. Г. Сорохтин, С. А. Ушаков, 1991, 1993). В настоящее время взгляд на состав и строение ранней атмосферы несколько видоизменился. Первичная атмосфера (протоатмосфера) на самой ранней протопланетной стадии., т.е. старше чем 4,2 млрд. лет, могла состоять из смеси метана, аммиака и углекислого газа. В результате дегазации мантии и протекающих на земной поверхности активных процессов выветривания в атмосферу стали поступать пары воды, соединения углерода в виде СO2 и СО, серы и ее соединений, а также сильных галогенных кислот — НСI, НF, НI и борной кислоты, которые дополнялись находившимися в атмосфере метаном, аммиаком, водородом, аргоном и некоторыми другими благородными газами. Эта первичная атмосфера была чрезвычайно тонкой. Поэтому температура у земной поверхности была близкой к температуре лучистого равновесия (А. С. Монин, 1977).

С течением времени газовый состав первичной атмосферы под влиянием процессов выветривания горных пород, выступавших на земной поверхности, жизнедеятельности цианобактерий и сине-зеленых водорослей, вулканических процессов и действия солнечных лучей стал трансформироваться. Привело это к разложению метана на водород и углекислоту, аммиака — на азот и водород; во вторичной атмосфере стали накапливаться углекислый газ, который медленно опускался к земной поверхности, и азот. Благодаря жизнедеятельности сине-зеленых водорослей в процессе фотосинтеза стал вырабатываться кислород, который, однако, в начале в основном расходовался на «окисление атмосферных газов, а затем и горных пород. При этом аммиак, окислившийся до молекулярного азота, стал интенсивно накапливаться в атмосфере. Как предполагается, значительная чаешь азота современной атмосферы является реликтовой. Метан и оксид углерода окислялись до углекислоты. Сера и сероводород окислялись до SO2 и SO3, которые вследствие своей высокой подвижности и легкости быстро удалились из атмосферы. Таким образом, атмосфера из восстановительной, какой она была в архее и раннем протерозое, постепенно превращалась в окислительную.

Углекислый газ поступал в атмосферу как вследствие окисления метана, так и в результате дегазации мантии и выветривания горных пород. В том случае, если бы весь углекислый газ, выделившийся за всю историю Земли, сохранился в атмосфере, его парциальное давление в настоящее время могло стать таким же, как на Венере (О. Сорохтин, С. А. Ушаков, 1991). Но на Земле действовал обратный процесс. Значительная часть углекислого газа из атмосферы растворялась в гидросфере, в которой он использовался гидробионтами для построения своей раковины и биогенным путем превращался в карбонаты. В дальнейшем из них были сформированы мощнейшие толщи хемогенных и органогенных карбонатов.

Кислород в атмосферу поступал из трех источников. В течение длительного времени, начиная с момента возникновения Земли, он выделялся в процессе дегазации мантии и в основном расходовался на окислительные процессы, Другим источником кислорода была фотодиссоциация паров воды жестким ультрафиолетовым солнечным излучением. Появлений; свободного кислорода в атмосфере привело к гибели большинства прокариот, которые обитали в восстановительных условиях. Прокариотные организмы сменили места своего обитания. Они ушли с поверхности Земли в ее глубины и области, где еще сохранялись восстановительные условия. Им на смену пришли эукариоты, которые стали энергично перерабатывать углекислоту в кислород.

В течение архея и значительной части протерозоя практически весь кислород, возникающий как: абиогенным, так и биогенным путем, в основном расходовался на окисление железа и серы. Уже к концу протерозоя все металлическое двухвалентное железо, находившееся на земной поверхностей или окислилось, или переместилось в земное ядро. Это привело к тому, что парциальное давление кислорода в раннепротерозойской атмосфере изменилось.

В середине протерозоя концентрация кислорода в атмосфере достигала точки Юри и составляла 0,01% современного уровня. Начиная с этого времени кислород стал накапливаться в атмосфере и, вероятно, уже в конце рифея его содержание достигло точки Пастера (0,1% современного уровня). Возможно, в вендском периоде возник озоновый слой и Ь этого времени уже никогда не исчезал.

Появление свободного кислорода в земной атмосфере стимулировало эволюцию жизни и привело к возникновению новых форм с более совершенным метаболизмом. Если ранее эукариотные одноклеточные водоросли и цианеи, появившиеся в начале протерозоя, требовали содержания кислорода в воде всего 10-3 его современной концентрации, то с возникновением бесскелетных Metazoa в конце раннего венда, т. е. около 650 млн. лет тому назад, концентрация кислорода в атмосфере должна была бы быть значительно выше. Ведь Metazoa использовали кислородное дыхание и для этого требовалось, чтобы парциальное давление кислорода достигло критического уровня — точки Пастера. В этом случае анаэробный процесс брожения сменился энергетически более перспективным и прогрессивным кислородным метаболизмом.

После этого дальнейшее накопление кислорода в земной атмосфере происходило довольно быстро. Прогрессивное увеличение объема сине-зеленых водорослей способствовало достижению в атмосфере необходимого для жизнеобеспечения животного мира уровня кислорода. Определенная стабилизация содержания кислорода в атмосфере произошла с того момента, когда растения вышли на сушу, — примерно 450 млн. лет назад. Выход растений на сушу, происшедший в силурийском периоде, привел к окончательной стабилизации уровня кислорода в атмосфере. Начиная с этого времени его концентрация стала колебаться в довольно узких пределах, никогда не всходивших за рамки существования жизни. Полностью концентрация кислорода в атмосфере стабилизировалась со времени появления цветковых растений. Это событие произошло в середине мелового периода, т.е. около 100 млн. лет тому назад.

Основная масса азота сформировалась на ранних стадиях развития Земли, главным образом за счет разложения аммиака. С появлением организмов начался процесс связывания атмосферного азота в органическое вещество и захоронения его в морских осадках. После выхода организмов на сушу азот стал захоронятся и в континентальных осадках. Особенно усилились процессы переработки свободного азота с появлением наземных растений.

На рубеже криптозоя и фанерозоя, т. е. около 650 млн. лет тому назад, содержание углекислого газа в атмосфере снизилось до десятых долей процентов, а содержания, близкого к современному уровню, он достиг лишь совсем недавно, примерно 10—20 млн. лет тому назад.

Таким образом, газовый состав атмосферы не только предоставлял организмам жизненное пространство, но и определял особенности их жизнедеятельности, способствовал расселению и эволюции. Возникающие сбои в распределении благоприятного для организмов газового состава атмосферы как из-за космических, так и планетарных причин приводили к массовым вымираниям органического мира, которые неоднократно происходили в течение криптозоя и на определенных рубежах фанерозойской истории.

Этносферные функции атмосферы

Атмосфера Земли обеспечивает живые организмы необходимым веществом, энергией и определяет направленность и скорость метаболических процессов. Газовый состав современной атмосферы является оптимальным для существования и развития жизни. Будучи областью формирования погоды и климата, атмосфера должна создавать комфортные условия для жизнедеятельности людей, животных и растительности. Отклонения в ту или другую сторону в качестве атмосферного воздуха и погодных условиях создают экстремальные условия для жизнедеятельности животного и растительного мира, в том числе и для человека.

Атмосфера Земли не только обеспечивает условия существования человечества, являясь основным фактором эволюции этносферы. Она в то же время оказывается энергетическим и сырьевым ресурсом производства. В целом атмосфера — это фактор, сохраняющий здоровье человека, а некоторые области в силу физико-географических условий и качества атмосферного воздуха служат рекреационными территориями и являются областями, предназначенными для санаторно-курортного лечения и отдыха людей. Таким образом, атмосфера является фактором эстетического и эмоционального воздействия.

Этносферные и техносферные функции атмосферы, определенные совсем недавно (Е. Д. Никитин, Н. А. Ясаманов, 2001), нуждаются в самостоятельном и углубленном исследовании. Так, весьма актуальным является изучение энергетических атмосферных функций как с точки зрения возникновения и действия процессов, наносящих ущерб окружающей среде, так и с точки зрения воздействия на здоровье и благосостояние людей. В данном случае речь идет об энергии циклонов и антициклонов, атмосферных вихрей, атмосферном давлении и других экстремальных атмосферных явлениях, эффективное использование которых будет способствовать успешному решению проблемы получения не загрязняющих окружающую среду альтернативных источников энергии. Ведь воздушная среда, особенно та ее часть, которая располагается над Мировым океаном, является областью выделения колоссального объема свободной энергии.

Например, установлено, что тропические циклоны средней силы только за сутки выделяют энергию, эквивалентную энергии 500 тыс. атомных бомб, сброшенных на Хиросиму и Нагасаки. За 10 дней существования такого циклона высвобождается энергия, достаточная для удовлетворения всех энергетических потребностей такой страны, как США, в течение 600 лет.

В последние годы было опубликовано большое количество работ ученых естественнонаучного профиля, в той или иной мере касающихся разных сторон деятельности и влияния атмосферы на земные процессы, что свидетельствует об активизации междисциплинарных взаимодействий в современном естествознании. При этом проявляется интегрирующая роль определенных его направлений, среди которых надо отметить функционально-экологическое направление в геоэкологии.

Данное направление стимулирует анализ и теоретическое обобщение информации по экологическим функциям и планетарной роли различных геосфер, а это, в свою очередь, является важной предпосылкой для разработки методологии и научных основ целостного изучения нашей планеты, рационального использования и охраны ее природных ресурсов.

Атмосфера Земли состоит из нескольких слоев: тропосферы, стратосферы, мезосферы, термосферы, ионосферы и экзосферы. В верхней части тропосферы и нижней части стратосферы располагается слой, обогащенный озоном, именуемый озоновым экраном. Установлены определенные (суточные, сезонные, годовые и т. д.) закономерности в распределении озона. Со времени своего возникновения атмосфера влияет на течение планетарных процессов. Первичный состав атмосферы был совершенно иным, чем в настоящее время, но с течением времени неуклонно росли доля и роль молекулярного азота, около 650 млн. лет назад появился свободный кислород, количество которого непрерывно повышалось, но соответственно снижалась концентрация углекислого газа. Высокая подвижность атмосферы, ее газовый состав и наличие аэрозолей обусловливают ее выдающуюся роль и активное участие в разнообразных геологических и биосферных процессах. Велика роль атмосферы в перераспределении солнечной энергии и развитии катастрофических стихийных явлений и бедствий. Негативное воздействие на органический мир и природные системы оказывают атмосферные вихри — смерчи (торнадо), ураганы, тайфуны, циклоны и другие явления. Основными источниками загрязнений наряду с природными факторами выступают различные формы хозяйственной деятельности человека. Антропогенные воздействия на атмосферу выражаются не только в появлении различных аэрозолей и парниковых газов, но ив увеличении количества водяных паров, и проявляются в виде смогов и кислотных дождей. Парниковые газы меняют температурный режим земной поверхности, выбросы некоторых газов уменьшают объем озонового экрана и способствуют возникновению озоновых дыр. Велика этносферная роль атмосферы Земли.

Роль атмосферы в природных процессах

Приземная атмосфера в силу своего промежуточного состояния между литосферой и космическим пространством и своего газового состава создает условия для жизнедеятельности организмов. Вместе с тем от количества, характера и периодичности атмосферных осадков, от частот и силы ветров и особенно от температуры воздуха зависят выветривание и интенсивность разрушения горных пород, перенос и аккумуляция обломочного материала. Атмосфера выступает центральным компонентом климатической системы. Температура и влажность воздуха, облачность и осадки, ветер — все это характеризует погоду, т. е. непрерывно меняющееся состояние атмосферы. Одновременно эти же компоненты характеризуют и климат, т. е. усредненный многолетний режим погоды.

Состав газов, наличие облачности и различных примесей, которые называются аэрозольными частицами (пепел, пыль, частички водяного пара), определяют особенности прохождения солнечной радиации сквозь атмосферу и препятствуют уходу теплового излучения Земли в космическое пространство.

Атмосфера Земли очень подвижна. Возникающие в ней процессы и изменения ее газового состава, толщины, облачности, прозрачности и наличие в ней тех или иных аэрозольных частиц воздействуют как на погоду, так и на климат.

Действие и направленность природных, процессов, а также жизнь и деятельность на Земле определяются солнечной радиацией. Она дает 99,98% теплоты, поступающей на земную поверхность. Ежегодно это составляет 134*1019 ккал. Такое количество теплоты можно получить при сжигании 200 млрд. т. каменного угля. Запасов водорода, создающего этот поток термоядерной энергии в массе Солнца, хватит, по крайней мере, еще на 10 млрд. лет, т. е. на период в два раза больший, чем существуют само Солнце и наша планета.

Около 1/3 общего количества солнечной энергии, поступающей на верхнюю границу атмосферы, отражается обратно в мировое пространство, 13% поглощается озоновым слоем (в том числе почти вся ультрафиолетовая радиация),. 7% — остальной атмосферой и лишь 44% достигает земной поверхности.  Суммарная солнечная радиация, достигающая Земли за сутки, равна энергии, которую человечество получило в результате сжигания всех видов топлива за последнее тысячелетие.

Количество и характер распределения солнечной радиации на земной поверхности находятся в тесной зависимости от облачности и прозрачности атмосферы. На величину рассеянной радиации влияют высота Солнца над горизонтом, прозрачность атмосферы, содержание в ней водяных паров, пыли, общее количество углекислоты и т. д.

Максимальное количество рассеянной радиации попадает в полярные районы. Чем ниже Солнце над горизонтом, тем меньше теплоты поступает на данный участок местности.

Большое значение имеют прозрачность атмосферы и облачность. В пасмурный летний день обычно холоднее, чем в ясный, так как дневная облачность препятствует нагреванию земной поверхности.

Большую роль в распределении теплоты играет запыленность атмосферы. Находящиеся в ней тонкодисперсные твердые частицы пыли и пепла, влияющие на ее прозрачность, отрицательно сказываются на распределении солнечной радиации, большая часть которой отражается. Тонкодисперсные частицы попадают в атмосферу двумя путями: это или пепел, выбрасываемый во время вулканических извержений, или пыль пустынь, переносимая ветрами из аридных тропических и субтропических областей. Особенно много такой пыли образуется в период засух, когда потоками теплого воздуха она выносится в верхние слои атмосферы и способна находиться там продолжительное время. После извержения вулкана Кракатау в 1883 г. пыль, выброшенная на десятки километров в атмосферу, находилась в стратосфере около 3 лет. В результате извержения в 1985 г. вулкана Эль-Чичон (Мексика) пыль достигла Европы, и поэтому произошло некоторое понижение приземных температур.

Атмосфера Земли содержит переменное количество водяного пара. В абсолютном исчислении по массе или объему его количество составляет от 2 до 5%.

Водяной пар, как и углекислота, усиливает парниковый эффект. В возникающих в атмосфере облаках и туманах протекают своеобразные физико-химические процессы.

Первоисточником водяного пара в атмосферу является поверхность Мирового океана. С него ежегодно испаряется слой воды толщиной от 95 до 110 см. Часть влаги возвращается в океан после конденсации, а другая воздушными потоками направляется в сторону материков. В областях переменно-влажного климата осадки увлажняют почву, а во влажных создают запасы грунтовых вод. Таким образом, атмосфера является аккумулятором влажности и резервуаром осадков. Облака и туманы, формирующиеся в атмосфере, обеспечивают влагой почвенный покров и тем самым играют определяющую роль в развитии животного и растительного мира.

Атмосферная влага распределяется по земной поверхности благодаря подвижности атмосферы. Ей присуща весьма сложная система ветров и распределения давления. В связи с тем что атмосфера находится в непрерывном движении, характер и масштабы распределения ветровых потоков и давления все время меняются. Масштабы циркуляции изменяются от микрометеорологических, размером всего в несколько сотен метров, до глобального — в несколько десятков тысяч километров. Огромные атмосферные вихри участвуют в создании систем крупномасштабных воздушных течений и определяют общую циркуляцию атмосферы. Кроме того, они являются источниками катастрофических атмосферных явлений.

От атмосферного давления зависит распределение погодных и климатических условий и функционирование живого вещества. В том случае, если атмосферное давление колеблется в небольших пределах, оно не играет решающей роли в самочувствии людей и поведении животных и не отражается на физиологических функциях растений. С изменением давления, как правило, связаны фронтальные явления и изменения погоды.

Фундаментальное значение имеет атмосферное давление для формирования ветра, который, являясь рельефообразующим фактором, сильнейшим образом воздействует на животный и растительный мир.

Ветер способен подавить рост растений и в то же время способствует переносу семян. Велика роль ветра в формировании погодных и климатических условий. Выступает он и в качестве регулятора морских течений. Ветер как один из экзогенных факторов способствует эрозии и дефляции выветрелого материала на большие расстояния.

Эколого-геологическая роль атмосферных процессов

Уменьшение прозрачности атмосферы за счет появления в ней аэрозольных частиц и твердой пыли влияет на распределение солнечной радиации, увеличивая альбедо или отражательную способность. К такому же результату приводят и разнообразные химические реакции, вызывающие разложение озона и генерацию «перламутровых» облаков, состоящих из водяного пара. Глобальное изменение отражательной способности, так же как изменения газового состава атмосферы, главным образом парниковых газов, являются причиной климатических изменений.

Неравномерное нагревание, вызывающее различия в атмосферном давлении над разными участками земной поверхности, приводит к атмосферной циркуляции, которая является отличительной чертой тропосферы. При возникновении разности в давлении воздух устремляется из областей повышенного давления в область пониженных давлений. Эти перемещения воздушных масс вместе с влажностью и температурой определяют основные эколого-геологические особенности атмосферных процессов.

В зависимости от скорости ветер производит на земной поверхности различную геологическую работу. При скорости 10 м/с он качает толстые ветви деревьев, поднимает и переносит пыль и мелкий песок; со скоростью 20 м/с ломает ветви деревьев, переносит песок и гравий; со скоростью 30 м/с (буря) срывает крыши домов, вырывает с корнем деревья, ломает столбы, передвигает гальку и переносит мелкий щебень, а ураганный ветер со скоростью 40 м/с разрушает дома, ломает и сносит столбы линий электропередач, вырывает с корнем крупные деревья.

Большое негативное экологическое воздействие с катастрофическими последствиями оказывают шквальные бури и смерчи (торнадо) — атмосферные вихри, возникающие в теплое время года на мощных атмосферных фронтах, имеющие скорость до 100 м/с. Шквалы — это горизонтальные вихри с ураганной скоростью ветра (до 60—80 м/с). Они часто сопровождаются мощными ливнями и грозами продолжительностью от нескольких минут до получаса. Шквалы охватывают территории шириной до 50 км и проходят расстояние в 200—250 км. Шквальная буря в Москве и Подмосковье в 1998 г. повредила крыши многих домов и повалила деревья.

Смерчи, называемые в Северной Америке торнадо, представляют собой мощные воронкообразные атмосферные вихри, часто связанные с грозовыми облаками. Это суживающиеся в середине столбы воздуха диаметром от нескольких десятков до сотен метров. Смерч имеет вид воронки, очень похожей на хобот слона, спускающейся с облаков или поднимающейся с поверхности земли. Обладая сильной разреженностью и высокой скоростью вращения, смерч проходит путь до нескольких сотен километров, втягивая в себя пыль, воду из водоемов и различные предметы. Мощные смерчи сопровождаются грозой, дождем и обладают большой разрушительной силой.

Смерчи редко возникают в приполярных или экваториальных областях, где постоянно холодно или жарко. Мало смерчей в открытом океане. Смерчи происходят в Европе, Японии, Австралии, США, а в России особенно часты в Центрально-Черноземном районе, в Московской, Ярославской, Нижегородской и Ивановской областях.

Смерчи поднимают и перемещают автомобили, дома, вагоны, мосты. Особенно разрушительные смерчи (торнадо) наблюдаются в США. Ежегодно отмечается от 450 до 1500 торнадо с числом жертв в среднем около 100 человек. Смерчи относятся к быстродействующим катастрофическим атмосферным процессам. Они формируются всего за 20—30 мин, а время их существования 30 мин. Поэтому предсказать время и место возникновения смерчей практически невозможно.

Другими разрушительными, но действующими продолжительное время атмосферными вихрями являются циклоны. Они образуются из-за перепада давления, которое в определенных условиях способствует возникновению кругового движения воздушных потоков. Атмосферные вихри зарождаются вокруг мощных восходящих потоков влажного теплого воздуха и с большой скоростью вращаются по часовой стрелке в южном полушарии и против часовой — в северном. Циклоны в отличие от смерчей зарождаются над океанами и производят свои разрушительные действия над материками. Основными разрушительными факторами являются сильные ветры, интенсивные осадки в виде снегопада, ливней, града и нагонные наводнения. Ветры со скоростями 19 — 30 м/с образуют бурю, 30 — 35 м/с — шторм, а более 35 м/с — ураган.

Тропические циклоны — ураганы и тайфуны — имеют среднюю ширину в несколько сот километров. Скорость ветра внутри циклона достигает ураганной силы. Длятся тропические циклоны от нескольких дней до нескольких недель, перемещаясь со скоростью от 50 до 200 км/ч. Циклоны средних широт имеют больший диаметр. Поперечные размеры их составляют от тысячи до нескольких тысяч километров, скорость ветра штормовая. Движутся в северном полушарии с запада и сопровождаются градом и снегопадом, имеющими катастрофический характер. По числу жертв и наносимому ущербу циклоны и связанные с ними ураганы и тайфуны являются самыми крупными после наводнений атмосферными стихийными явлениями. В густонаселенных районах Азии число жертв во время ураганов измеряется тысячами. В 1991 г. в Бангладеш во время урагана, который вызвал образование морских волн высотой 6 м, погибло 125 тыс. человек. Большой ущерб наносят тайфуны территории США. При этом гибнут десятки и сотни людей. В Западной Европе ураганы приносят меньший ущерб.

Катастрофическим атмосферным явлением считаются грозы. Они возникают при очень быстром поднятии теплого влажного воздуха. На границе тропического и субтропического поясов грозы происходят по 90—100 дней в году, в умеренном поясе по 10—30 дней. В нашей стране наибольшее количество гроз случается на Северном Кавказе.

Грозы обычно продолжаются менее часа. Особую опасность представляют интенсивные ливни, градобития, удары молнии, порывы ветра, вертикальные потоки воздуха. Опасность градобития определяется размерами градин. На Северном Кавказе масса градин однажды достигала 0,5 кг, а в Индии отмечены градины массой 7 кг. Наиболее градоопасные районы у нас в стране находятся на Северном Кавказе. В июле 1992 г. град повредил в аэропорту «Минеральные Воды» 18 самолетов.

К опасным атмосферным явлениям относятся молнии. Они убивают людей, скот, вызывают пожары, повреждают электросеть. От гроз и их последствий ежегодно в мире гибнет около 10 000 человек. Причем в некоторых районах Африки, во Франции и США число жертв от молний больше, чем от других стихийных явлений. Ежегодный экономический ущерб от гроз в США составляет не менее 700 млн. долларов.

Засухи характерны для пустынных, степных и лесостепных регионов. Недостаток атмосферных осадков вызывает иссушение почвы, понижение уровня подземных вод и в водоемах до полного их высыхания. Дефицит влаги приводит к гибели растительности и посевов. Особенно сильными бывают засухи в Африке, на Ближнем и Среднем Востоке, в Центральной Азии и на юге Северной Америки.

Засухи изменяют условия жизнедеятельности человека, оказывают неблагоприятное воздействие на природную среду через такие процессы, как осолонение почвы, суховеи, пыльные бури, эрозия почвы и лесные пожары. Особенно сильными пожары бывают во время засухи в таежных районах, тропических и субтропических лесах и саваннах.

Засухи относятся к кратковременным процессам, которые продолжаются в течение одного сезона. В том случае, когда засухи длятся более двух сезонов, возникает угроза голода и массовой смертности. Обычно действие засухи распространяется на территорию одной или нескольких стран. Особенно часто продолжительные засухи с трагическими последствиями возникают в Сахельской области Африки.

Большой ущерб приносят такие атмосферные явления, как снегопады, кратковременные ливневые дожди и продолжительные затяжные дожди. Снегопады вызывают массовые сходы лавин в горах, а быстрое таяние выпавшего снега и ливневые продолжительные дожди приводят к наводнениям. Огромная масса воды, падающая на земную поверхность, особенно в безлесных районах, вызывает сильную эрозию почвенного покрова. Происходит интенсивный рост овражно-балочных систем. Наводнения возникают в результате крупных паводков в период обильного выпадения атмосферных осадков или половодья после внезапно наступившего потепления или весеннего таяния снега и, следовательно, по происхождению относятся к атмосферным явлениям (они рассматриваются в главе, посвященной экологической роли гидросферы).

Источник: www.polnaja-jenciklopedija.ru