Фотосинтез

Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света:

6СО2 + 6Н2О + Qсвета → С6Н12О6 + 6О2.

У высших растений органом фотосинтеза является лист, органоидами фотосинтеза — хлоропласты (строение хлоропластов — лекция №7). В мембраны тилакоидов хлоропластов встроены фотосинтетические пигменты: хлорофиллы и каротиноиды. Существует несколько разных типов хлорофилла (a, b, c, d), главным является хлорофилл a. В молекуле хлорофилла можно выделить порфириновую «головку» с атомом магния в центре и фитольный «хвост». Порфириновая «головка» представляет собой плоскую структуру, является гидрофильной и поэтому лежит на той поверхности мембраны, которая обращена к водной среде стромы. Фитольный «хвост» — гидрофобный и за счет этого удерживает молекулу хлорофилла в мембране.


Фотосинтез

Хлорофиллы поглощают красный и сине-фиолетовый свет, отражают зеленый и поэтому придают растениям характерную зеленую окраску. Молекулы хлорофилла в мембранах тилакоидов организованы в фотосистемы. У растений и синезеленых водорослей имеются фотосистема-1 и фотосистема-2, у фотосинтезирующих бактерий — фотосистема-1. Только фотосистема-2 может разлагать воду с выделением кислорода и отбирать электроны у водорода воды.

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы.

Световая фаза

Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Под действием кванта света электроны хлорофилла возбуждаются, покидают молекулу и попадают на внешнюю сторону мембраны тилакоида, которая в итоге заряжается отрицательно. Окисленные молекулы хлорофилла восстанавливаются, отбирая электроны у воды, находящейся во внутритилакоидном пространстве. Это приводит к распаду или фотолизу воды:

Н2О + Qсвета → Н+ + ОН.


Ионы гидроксила отдают свои электроны, превращаясь в реакционноспособные радикалы •ОН:

ОН → •ОН + е.

Радикалы •ОН объединяются, образуя воду и свободный кислород:

4НО• → 2Н2О + О2.

Кислород при этом удаляется во внешнюю среду, а протоны накапливаются внутри тилакоида в «протонном резервуаре». В результате мембрана тилакоида с одной стороны за счет Н+ заряжается положительно, с другой за счет электронов — отрицательно. Когда разность потенциалов между наружной и внутренней сторонами мембраны тилакоида достигает 200 мВ, протоны проталкиваются через каналы АТФ-синтетазы и происходит фосфорилирование АДФ до АТФ; атомарный водород идет на восстановление специфического переносчика НАДФ+ (никотинамидадениндинуклеотидфосфат) до НАДФ·Н2:

+ + 2е + НАДФ → НАДФ·Н2.

Таким образом, в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы.

1 — строма хлоропласта; 2 — тилакоид граны.

Темновая фаза


Эта фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Первая реакция в этой цепочке — фиксация углекислого газа; акцептором углекислого газа является пятиуглеродный сахар рибулозобифосфат (РиБФ); катализирует реакцию фермент рибулозобифосфат-карбоксилаза (РиБФ-карбоксилаза). В результате карбоксилирования рибулозобисфосфата образуется неустойчивое шестиуглеродное соединение, которое сразу же распадается на две молекулы фосфоглицериновой кислоты (ФГК). Затем происходит цикл реакций, в которых через ряд промежуточных продуктов фосфоглицериновая кислота преобразуется в глюкозу. В этих реакциях используются энергии АТФ и НАДФ·Н2, образованных в световую фазу; цикл этих реакций получил название «цикл Кальвина»:

6СО2 + 24Н+ + АТФ → С6Н12О6 + 6Н2О.

Кроме глюкозы, в процессе фотосинтеза образуются другие мономеры сложных органических соединений — аминокислоты, глицерин и жирные кислоты, нуклеотиды. В настоящее время различают два типа фотосинтеза: С3— и С4-фотосинтез.

С3-фотосинтез

iv>

С3-фотосинтез

Это тип фотосинтеза, при котором первым продуктом являются трехуглеродные (С3) соединения. С3-фотосинтез был открыт раньше С4-фотосинтеза (М. Кальвин). Именно С3-фотосинтез описан выше, в рубрике «Темновая фаза». Характерные особенности С3-фотосинтеза: 1) акцептором углекислого газа является РиБФ, 2) реакцию карбоксилирования РиБФ катализирует РиБФ-карбоксилаза, 3) в результате карбоксилирования РиБФ образуется шестиуглеродное соединение, которое распадается на две ФГК. ФГК восстанавливается до триозофосфатов (ТФ). Часть ТФ идет на регенерацию РиБФ, часть превращается в глюкозу.

Фотодыхание

Это светозависимое поглощение кислорода и выделение углекислого газа. Еще в начале прошлого века было установлено, что кислород подавляет фотосинтез. Как оказалось, для РиБФ-карбоксилазы субстратом может быть не только углекислый газ, но и кислород:

О2 + РиБФ → фосфогликолат (2С) + ФГК (3С).

Фермент при этом называется РиБФ-оксигеназой. Кислород является конкурентным ингибитором фиксации углекислого газа. Фосфатная группа отщепляется, и фосфогликолат становится гликолатом, который растение должно утилизировать.


поступает в пероксисомы, где окисляется до глицина. Глицин поступает в митохондрии, где окисляется до серина, при этом происходит потеря уже фиксированного углерода в виде СО2. В итоге две молекулы гликолата (2С + 2С) превращаются в одну ФГК (3С) и СО2. Фотодыхание приводит к понижению урожайности С3-растений на 30–40% (С3-растения — растения, для которых характерен С3-фотосинтез).

С4-фотосинтез

С4-фотосинтез — фотосинтез, при котором первым продуктом являются четырехуглеродные (С4) соединения. В 1965 году было установлено, что у некоторых растений (сахарный тростник, кукуруза, сорго, просо) первыми продуктами фотосинтеза являются четырехуглеродные кислоты. Такие растения назвали С4-растениями. В 1966 году австралийские ученые Хэтч и Слэк показали, что у С4-растений практически отсутствует фотодыхание и они гораздо эффективнее поглощают углекислый газ. Путь превращений углерода в С4-растениях стали называть путем Хэтча-Слэка.

Для С4-растений характерно особое анатомическое строение листа. Все проводящие пучки окружены двойным слоем клеток: наружный — клетки мезофилла, внутренний — клетки обкладки. Углекислый газ фиксируется в цитоплазме клеток мезофилла, акцептор — фосфоенолпируват (ФЕП, 3С), в результате карбоксилирования ФЕП образуется оксалоацетат (4С). Процесс катализируется ФЕП-карбоксилазой. В отличие от РиБФ-карбоксилазы ФЕП-карбоксилаза обладает большим сродством к СО2 и, самое главное, не взаимодействует с О2. В хлоропластах мезофилла много гран, где активно идут реакции световой фазы. В хлоропластах клеток обкладки идут реакции темновой фазы.

>

Оксалоацетат (4С) превращается в малат, который через плазмодесмы транспортируется в клетки обкладки. Здесь он декарбоксилируется и дегидрируется с образованием пирувата, СО2 и НАДФ·Н2.

Пируват возвращается в клетки мезофилла и регенерирует за счет энергии АТФ в ФЕП. СО2 вновь фиксируется РиБФ-карбоксилазой с образованием ФГК. Регенерация ФЕП требует энергии АТФ, поэтому нужно почти вдвое больше энергии, чем при С3-фотосинтезе.

С4-фотосинтез   Строение С4-растений

Строение С4-растений:
1 — наружный слой — клетки мезофилла; 2 — внут­ренний слой — клетки обкладки; 3 — «Кранц-анатомия»; 4, 5 — хлоро­пласты; 4 — много­числен­ные граны, крахмала мало; 5 — немного­числен­ные граны, крахмала много.

С4-фотосинтез:
1 — клетка мезофилла; 2 — клетка обкладки проводящего пучка.

   

Значение фотосинтеза

Благодаря фотосинтезу, ежегодно из атмосферы поглощаются миллиарды тонн углекислого газа, выделяются миллиарды тонн кислорода; фотосинтез является основным источником образования органических веществ. Из кислорода образуется озоновый слой, защищающий живые организмы от коротковолновой ультрафиолетовой радиации.

При фотосинтезе зеленый лист использует лишь около 1% падающей на него солнечной энергии, продуктивность составляет около 1 г органического вещества на 1 м2 поверхности в час.

Хемосинтез

Синтез органических соединений из углекислого газа и воды, осуществляемый не за счет энергии света, а за счет энергии окисления неорганических веществ, называется хемосинтезом. К хемосинтезирующим организмам относятся некоторые виды бактерий.

Нитрифицирующие бактерии окисляют аммиак до азотистой, а затем до азотной кислоты (NH3 → HNO2 → HNO3).

Железобактерии превращают закисное железо в окисное (Fe2+ → Fe3+).


Серобактерии окисляют сероводород до серы или серной кислоты (H2S + ½O2 → S + H2O, H2S + 2O2 → H2SO4).

В результате реакций окисления неорганических веществ выделяется энергия, которая запасается бактериями в форме макроэргических связей АТФ. АТФ используется для синтеза органических веществ, который проходит аналогично реакциям темновой фазы фотосинтеза.

Хемосинтезирующие бактерии способствуют накоплению в почве минеральных веществ, улучшают плодородие почвы, способствуют очистке сточных вод и др.

 

Источник: licey.net

  1. Фотосинтез. Общая характеристика основных этапов фотосинтеза: фотофизического, фотохимического, фотоэнзиматического и энзиматического. Разнообразие биосинтетических процессов темновой стадии фотосинтеза: цикл Кальвина, циклы Карпилова-Хэтча-Слэка, цикл гликолевой кислоты

Фотосинтез — совокупность физико-химических процессов, в ходе которых углекислый газ восстанавливается до углеводов, а энергия света трансформируется в энергию химических связей органических молекул. Суммарное уравнение фото-за: 6CO2+ 6H2O=(hню, т.е. на свету в хлоропласте) C6H12O6 + 6O2.Фотосинтез делят на 2 фазы: световую и темновую. Световая – сов-ть процессов ФС, требующие для их протекания свет, темновая не требует свет. Световая фаза протекает на тилакоидах, темновая – в строме хлоропласта.

Этапы ФС:


  1. Фотофизический этап, самый быстрый, идет в пигментах. В ходе него Е света превращается в Е электронного возбуждения молекулы пигмента. Основные пигменты сосредоточены в системе ССК – свето-собирающего комплекса. Электрон получает доп. Энергию и переходит в возбужденное состояние.

  2. Фотохимический этап протекает в реакционных центрах фотосистемы (ФС). В ходе этого этапа Е электронного возбуждения трансформируется в электрическую (кулоновскую) Е. Каждая ФС (их всего две) содержит 3 компонента: первичный донор (D), первичный акцептор (А) и пигмент-ловушку (Р). ФС1:D– пластоцианин( синий белок с Сu),A– Хлорофилл «а» 695, не требующий света, Р – димер Хлорофилла «а» Р700. ФС2:D–Mn-кластер, А –Pheo(феофетин) и Р – Р680.В результате фотохимических реакций в хлоропластах создается необходимый уровень АТР и NADPH, которые необходимы для функционирования темновой стадии фотосинтеза, где СО2восстанавливается до углевода.

  3. Фотоэнзимотический этап — это совокупность биохимических реакций, в результате которых происходит усвоение растениями углекислого газа атмосферы (С02) и образование углеводов, протекает в строме. При нециклическом потоке электронов НАДФ восстан-ся до НАДФН и происходит Образование АТФ. Суммарное уравнение нециклич-го фосфор-ия: АДФ + Фн + НАДФ+ 2Н2О= АТФ+НАДФН+Н, накапливаются световые прод-ты АТФ и НАДФН. АДФ+Фн=АТФ+Н2О.


Нециклический и циклический транспорт электронив (z-схема):В ФС11 димер П680, поглотив энергию 2 квантов переходит в возбужденное сосотояние и отдает 2 электрона Фф. От Фф электроны передаются на пластохиноны QA, QB , затем на пул липидорастворимых молекул PQ, которые переносят электроны и протоны через липидную фазу мембраны на железосерный белок Риске FeSR и цитохром f (гемопротеин) цитохромного комплекса b6-f, восстанавливая Сu-содержащий белок пластоцианин (Пц). Вакантные места («дырки») в П680 заполняются двумя электронами из содержащего марганец переносчика электронов Z, который в свою очередь восстанавливается с участием системы S. Окисленный белковый комплекс S связывает воду (фотолиз) и восстанавливается за счет электронов воды. Для осуществления этих реакций в белковом комплексе S необходимы Mn и Cl. При возбуждении П700 в реакционном центре ФС1 2 электрона захватываются мономерной формой хлорофилла а (А1) и передаются последовательно на А2, Ав и Фд, с которого электроны с помощью NADP-оксидоредуктазы с FAD в качестве кофактора идут на восстановление NADP+.

На вакантные места в П700 переходят электроны с Пц и нециклическая цепь переноса электронов таким образом замыкается.

Наряду с нециклическим в мембранах хлоропластов функционирует циклический транспорт электронов, включающий в себя только ФС1 и комплекс цитохромов b6-f. В этом случае NADP+ не восстанавливается и освобождающаяся энергия используется для фосфорилирования АDP.

  1. Энзиматический этап идет в строме, переводит трансформирование световых продуктов в энергию хим. связей темновых продуктов.

Цикл Кальвина – основной биохимический процесс фотосинтеза. 3 этапа цикла:

Первая фаза — карбоксилирование. Эта реакция катализируется специфическим для процесса фотосинтеза ферментом рибулозобисфосфат-карбоксилазой/ оксигеназой (сокращенно Rubisco). Особенностью фермента является то, что катализируемая им реакция является самой медленной стадией в цикле фиксации углекислоты При взаимодействии РБФ с С02 образуется сначала промежуточное нестойкое шестиуглеродное соединение, которое затем распадается на две молекулы ФГК. Образовавшаяся ФГК — это органическая кислота, и ее энергетический уровень ниже уровня Сахаров. Поэтому это соединение не может непосредственно превращаться в углеводы. Необходимо превращение его в трехуглеродный сахар — фосфоглицериновый альдегид (ФГА).

Вторая фаза — восстановление.Дальнейшие превращения ФГК требуют участия продуктов световой фазы фотосинтеза: АТФ и НАДФН + Н+. Реакция идет в два этапа. Прежде всего, происходит реакция фосфорилирования 3-ФГК. Донором фосфатной группы является АТФ. АТФ требуется здесь в качестве дополнительного источника энергии. Образуется 1,3-дифосфоглицериновая кислота. Образовавшийся ФГА является по уровню восстановленным углеводом. Это соединение вступает в две последние фазы. Пять молекул ФГА используется на регенерацию акцептора РБФ для того, чтобы фиксация С02 могла снова осуществляться. Оставшаяся шестая молекула вступает в фазу «синтеза продуктов», где превращается в более сложные соединения (углеводы, аминокислоты и др.).

Третья фаза — регенерация.В процессе регенерации акцептора используется пять молекул ФГА, в результате чего образуются три молекулы рибулезо-5-фос-фата. Этот процесс идет через образование 4-, 5-, 6-, 7-углеродных соединений. Образовавшийся триозофосфат (ФГА) вступает в четвертую стадию темновых реакций — стадию образования продуктов фотосинтеза.

 С4-путь фотосинтеза (Цикл Хетча и Слэка).

К группе растений с С4-путем фотосинтеза относятся сахарный тростник, кукуруза, сорго и др.Листья этих растений содержат два разных типа хлоропластов: хлоропласты обычного вида – в клетках мезофилла и большое количество крупных хлоропластов в клетка, окружающих проводящие пучки (обкладка).

СО2 попадает в цитоплазму клеток мезофилла, где при участии ФЕП-карбоксилазы вступает в реакцию с фосфоенолпируватом (ФЕП), образуя щавелевоуксусную кислоту (оксалоацетат). Затем уже в хлоропластах оксалоацетат восстанавливается до яблочной кислоты (малата) за счет NADPH, образующегося в ходе световой стадии фотосинтеза. Затем малат переносится в хлоропласты клетки обкладки сосудистого пучка, где он декарбоксилируется малаьдегидрогеназой декарбоксилирующей до пирувата и СО2. СО2вступает в цикл Кальвина, а пируват возвращается в хлоропласты клеток мезофилла. Такая компартментализация процесс фиксации и использования СО2 позволяет растениям с С4-путем осуществлять фотосинтез даже при закрытых устьицах (в засушливы или засоленных местах обитания), так как хлоропласты клеток обкладки используют малат, образовавшийся ранее, как донор СО2.С4-растения могут также использовать СО2, возникающий при фотодыхании.

САМ-метаболизм (по типу толстянковых)

У суккулентов наблюдается суточный цикл метаболизма С4-кислот с образованием яблочной кислоты ночью. Этот тип фотосинтеза называют САМ-метаболизм.Устьица этих растений днем обычно закрыты, что предотвращает потерю воды, и открываются ночью. СО2 поступает в листья, где взаимодействует с ФЕП, образуя ЩУК (оксалоацетат), который восстанавливается до яблочной кислоты. Она накапливается в вакуолях клеток листа, что приводит к закислению клеточного сока в ночное время.

Днем в условиях высокой температуры, когда устьица закыты, малат транспортируется из вакуолей в цитоплазму и там декарбоксилируется при участии малатдегидрогеназы декарбоксилирующей (малик-энзима) с образованием СО2 и пирувата. СО2 поступает в хлоропласты и включается в них в цикл Кальвина, участвуя в синтезе сахаров.

Фотодыхание –это активируемый светом процесс высвобождения СО2 и поглощения О2, т.е. процесс обратный фотосинтезу. Этот процесс усиливается при низком содержании СО2 и высоких концентрациях О2 или при повышении температуры. В этих условиях РДФ-карбоксилаза в хлоропластах может функционировать как оксигеназа, катализируя окислительное расщепление Рибулозо-1,5-дифосфата на 3-ФГК и 2-фосфогликолевую кислоту, которая дефосфорилируется в гликолевую кислоту.

Гликолат из хлоропластов поступает в пероксисому и там окисляется до глиоксилата. Возникающая перекись водорода устраняется каталазой. Глиоксилат аминируется, превращаясь в глицин и транспортируется в митохондрию.

В митохондрии из двух молекул глицина образуется серин и освобождается СО2. Серин может снова поступать в пероксисому, где трансаминируется с пируватом. Образовавшийся гидроксипируват восстанавливается до глицерата, который может вновь поступать в хлоропласты и включаться в цикл Кальвина. У С4-растений высвобождающийся при фотодыхании СО2 перехватывается в клетках мезофилла, где из него образуются оксалоацетат и малат. 

Значение цикла гликолевой кислоты: фотосинтез неуглеводных продуктов; защита хлоропластов от высокой концентрации кислорода, что особенно актуально при избытке света. При блокировании фотодыхания С3-растения «выгорают» на свету.

Источник: StudFiles.net

(циклическое и нециклическое фосфорилирование)

Фотохимические реакции фотосинтеза — это реакции, в которых энергия света преобразуется в энергию химических связей АТФ и НАДФН2.

Энергия поглощенных квантов света стекается от сотен молекул-антенн к реакционному центру. Хлорофилл реакционного центра, отдает электрон, который поступает в электронно-транспортную цепь. Перенос электрона по цепи переносчиков включает ряд окислительно-восстановительных реакций, в ходе которых выделяется энергия. Эта энергия может быть использована для синтеза АТФ. Процесс преобразования энергии квантов света в АТФ получил название фотосинтетического фосфорилирования (Д.Арнон).

Различают два основных типа фотосинтетического фосфорилирования: нециклическое и циклическое (Рис. 21). При циклическом потоке электроны, переданные от молекулы хлорофилла первичному акцептору, возвращаются к ней обратно. При нециклическом потоке происходит фотоокисление воды и передача электрона от воды к НАДФ.

Фотофизический этап фотосинтеза кратко

Рисунок 21. – Схема циклического фосфорилирования

 

В этом процессе принимает участие только фотосистема I. В результате поглощения кванта света молекула П700 отдает возбужденный электрон сначала неидентифицированному переносчику Z, а затем от ферредоксина через ряд переносчиков возвращается к П700. На участке электронно-транспортной цепи между цитохромом b6 и цитохромом f энергия электрона аккумулируется в энергию АТФ. Таким образом, в этом случае П700 является и донором и акцептором электрона. Суммарное уравнение циклического фотосинтетического фосфорилирования:

АДФ + Н3РО4 + hv → АТФ + Н2О

Нециклическое фосфорилирование

При нециклическом потоке электронов принимают участие две фотосистемы. Энергия квантов света стекается к молекуле пигмента П700, которая переходит в возбужденное состоянии и легко отдает электрон (фотохимическая реакция). При этом молекула П700 окисляется и остается в виде положительно заряженной молекулы (Рис. 22).

 

 

Фотофизический этап фотосинтеза кратко

Рисунок 22. – Схема нециклического фосфорилирования

 

Электрон передвигается по направлению к НАДФ через ряд переносчиков, расположенных в порядке возрастания О/В потенциала. Электроны передвигаются в сторону более высоких окислительно-восстановительных потенциалов. Переносчик, воспринимающий электрон от П700 — неидентифицированный акцептор Z имеет Е0 — -0,55. Следующим переносчиком является железосодержащий белок ферредоксин (Е0 — -0,43). От ферредоксина электрон переносится на НАДФ 0— —0,32). Этот перенос осуществляется с помощью специфического фермента (ферредоксин-НАДФ-редуктазы), коферментом которого является флавинадениндинуклеотид (ФАД).

Отдав электрон, П700 остается в виде ионизированной молекулы, благодаря чему она является хоршим акцептором электронов. Источником электрона, заполняющего электронную «дырку» П700, является фотосистема II. Под влиянием поглощенного кванта света возбужденный электрон молекулы П680 воспринимается акцептором и передается дальше по цепи переносчиков. Чтобы фотосистема II все время находилась в рабочем состоянии, «электронная дырка» в П680 должна непрерывно пополняться новыми электронами. Их источником являются молекулы воды, находящиеся во внутритилакоидном пространстве. Окислителем ее служит хлорофилл, действующий вместе с ионами Мn2+ и С1_. Данный процесс называется фотоокислением, так как он индуцируется хлорофиллом, окисленным под влиянием света. Т.о. донорами электронов являются две молекулы воды, которые окисляются хлорофиллом последовательно:

Фотофизический этап фотосинтеза кратко

Полученный от П680 неизвестным акцептором Z электрон передается далее на пластохинон (Е0 + 0,11). Считается, что в переносе электронов участвует 65 молекул пластохинона. От пластохинонов электрон воспринимается молекулой цитохрома f (Е0 + 0,36), при этом происходит выброс энергии, которая идет на синтез АТФ. Следующий переносчик — пластоцианин 0 + 0,37) — это медьсодержащий белок, в котором на каждую молекулу белка приходится два атома меди. От пластоцианина электрон заполняет электронную «дырку» в П700.

Суммарное уравнение нециклического фотосинтетического фосфорилирования:

2НАДФ +2Н2О + 2 АДФ + 2 Н3РО 4 + 8hv → 2 НАДФН2 + 2 АТФ +2 Н2О + О2

 

Синтез АТФ в ЭТЦ

Механизм фотофосфорилирования АДФ объясняет хемиосмотическая теория, разработанная английским биохимиком П. Митчеллом (1961-1966).

Цепь переносчиков электронов и протонов, действующая в соответствии с окислительно-восстановительным градиентом, перешнуровывает мембрану таким образом, что трансмембранный перенос ē и Н+ в одну сторону чередуется с переносом в обратную сторону только ē. В результате функционирования такого механизма (Н+-помпы) по одну сторону мембраны накапливается избыток Н+ и возникает электрохимический потенциал ионов Н+, который служит формой запасания энергии. Обратный пассивный ток ионов Н+ через протонный канал Н+-АТРазы, получивший название фактора сопряжения сопровождается образованием макроэргической фосфатной связи АТР. Этот фермент выглядит как грибовидная частица на поверхности мембраны тилакоидов. Его молекула состоит из двух частей: головки, выступающей с наружной стороны мембраны и содержащей активный центр фермента, и ножки, погруженной в мембрану и представляющей канал, через который передвигаются протоны.

 

 

Темновая фаза фотосинтеза

В темновой фазе фотосинтеза в строме хлоропластов при помощи АТФ и НАДФН2 световой стадии восстанавливается поглощенный СО2 с образованием углеводов и других органических соединений.

Этот путь ассимиляции СО2 обнаружен у всех фотосинтезирующих растений. Он был назван циклом Кальвина в честь американского биохимика М. Кальвина, который с сотрудниками открыл и изучил его в 1946-1956 годах с помощью метода меченых атомов и хроматографии. За это в 1961г. он был удостоен Нобелевской премии.

Цикл состоит из трех этапов: карбоксилирования, восстановления, регенерации первичного акцептора СО2 и синтеза конечного продукта фотосинтеза.

1. Карбоксилирование.

Происходит в результате присоединения молекулы углекислого газа к органическому акцептору — пятиуглеродному фосфорилированному сахару — рибулезодифосфату (РДФ). Реакция идет с участием ключевого фермента фотосинтеза — рибулезодифосфаткарбоксилазы (РДФ-карбоксилаза). В итоге образуется нестойкое шестиуглеродное соединение, которое легко гидролизуется на две молекулы фосфоглицериновой кислоты (ФГК) (Рис. 23).

Фотофизический этап фотосинтеза кратко

Рисунок 23. – Схема темновой стадии фотосинтеза

 

2. Восстановление.

При этом каждая молекула ФГК фосфорилируется еще раз с участием АТФ и фермента фосфоглицерокиназы и превращается в более реакционноспособное соединение — диФГК. Последняя с помощью фермента триозофосфат-дегидрогеназы восстанавливается водородом НАДФН2 до фосфоглицеринового альдегида (ФГА).

Часть молекул ФГА идет на регенерацию РДФ, а остальные выводятся из цикла Кальвина и используются в синтезе гексоз.

3. Регенерация и синтез конечного продукта фотосинтеза.

Регенерация рибулезодифосфата происходит из ФГА вследствие семи последовательных ферментативных реакций. Продуктом их служит рибулозо-5-фосфат. Он повторно фосфорилируется и превращается в РДФ. На этом цикл Кальвина замыкается.

Молекулы ФГА, выведенные из цикла, используются в синтезе гексоз. Для этого необходимо, чтобы одна из двух молекул ФГА изомеризовалась в диоксиацетонфосфат (ДОАФ), что осуществляется с помощью фермента триозофосфатизомеразы. После этого ДОАФ вступает в реакцию конденсации с ФГА. В результате синтезируется молекула фруктозодифосфата (ФдиФ). При отщеплении от нее остатка фосфорной кислоты образуется фруктозомонофосфат (ФМФ), который затем изомеризуется в глюкозомонофосфат (ГМФ). Последний, отдав остаток фосфорной кислоты, превращается в глюкозу.

Т.о., для синтеза одной молекулы глюкозы в цикле Кальвина необходимо 18 АТФ и 12 НАДФН2, которые образуются в световой фазе при воздействии 8 квантов света.

Реакции темновой стадии фотосинтеза протекают в строме хлоропластов, вблизи поверхности тилакоидов, поставляющих продукты световых реакций. В промежутках между тилакоидами откладываются зерна ассимиляционного крахмала.

Среди продуктов фотосинтеза обнаружены аминокислоты. При недостатке НАДФН2 ФГК превращается не в ФГА, а в пировиноградную кислоту. Она, присоединяя аммиак, образует аланин. Из пировиноградной кислоты в цикле Кребса образуются органические кислоты, которые в ходе реакций аминирования и переаминирования дают аминокислоты.

 

Отклонения от С3-пути фотосинтеза

С4-путь фотосинтеза (цикл Хетча-Слэка-Карпилова)

Советским ученым Карпиловым Ю.С. (1960), а затем австралийскими учеными М. Хетчем и К. Слэком (1966) был описан путь фотосинтеза, характерный для тропических и субтропических растений (сахарный тростник, кукуруза, сорго, амарант и др.). При этом пути фотосинтеза первым продуктом карбоксилирования является соединение, содержащее 4 атома углерода. Поэтому этот путь получил название С4-пути.

Листья этих растений содержат хлоропласты двух типов:

1) мелкие гранальные в клетках мезофилла листа;

2) крупные, лишенные гран и фотосистемы II, в клетках обкладки, окружающих сосудистые пучки. Клетки обкладки имеют утолщенные клеточные стенки, расположены вокруг сосудистых пучков в 1 или 2 слоя.

Хлоропласты разных типов клеток характеризуются не только особенностями строения, но и разным типам фосфорилирования. В клетках мезофилла по преимуществу происходит нециклическое фосфорилирование и образуется АТФ и НАДФН2, необходимые для цикла Кальвина, идущего в клетках обкладки. В хло-ропластах клеток обкладки идет только циклическое фосфорилирование. Такое разделение типов фосфорилирования, возможно, связано с тем, что к хлоро-пластам клеток обкладки, расположенным в глубине листа, проникает по преимуществу более длинноволновый свет, который не поглощается фотосистемой II.

На первом этапе С4-пути углекислый газ, диффундирующий в лист через устьица, попадает в цитоплазму клеток мезофилла с мелкими хлоропластами, где при помощи фосфоэнолпируваткарбоксилазы присоединяется к фосфоэнолпировиноградной (ФЭП) кислоте, образуя щавелевоуксусную кислоту (оксалоацетат). Она транспортируется в хлоропласты, где восстанавливается до яблочной кислоты (малат) при участии НАДФН2. В присутствии ионов аммония щавелевоуксусная кислота может превращатся в аспарагиновую кислоту (аспартат). Яблочная или аспарагиновая кислоты переходят в хлоропласты клеток обкладки, декарбоксилируются и окисляются до пировиноградной кислоты. Образующийся при этом СО2 включается в цикл Кальвина, а пировиноградная кислота переносится в клетки мезофилла, где превращается в фосфоэнолпировиноградную кислоту. Такой механизм позволяет растениям фотосинтезировать при закрытых из-за высокой температуры устьицах. Кроме того, продукты цикла Кальвина образуются в хлоропластах клеток обкладки, окружающих проводящие пучки, что способствует быстрому оттоку фотоассимилятов и тем самым повышает интенсивность фотосинтеза.

    Таким образом, при С4-пути реакция карбоксилирования происходит дважды. Это позволяет растению создавать запасы углерода в клетках. Акцепторы С02 (ФЕП и РДФ) регенерируют, что и создает возможность непрерывного функционирования циклов. Фиксация С02 с участием ФЕП и образованием малата или аспартата служит своеобразным насосом для поставки СО2 в хлоропласты обкладки, функционирующих по С3-пути. Поскольку при таком механизме фотосинтеза принимают участие два типа клеток и два типа хлоропластов, этот путь называют еще кооперативным.

 

CAM-путь фотосинтеза

У суккулентов (кактусов и растений сем. толстянковых (Crassulaceae) тип фотосинтеза получил название CAM (Crassulaceae acid metabolism)-путь. Химизм фиксации С02 при САМ-пути сходен с С4-путем, однако если у С4— растений фотосинтез разделен в пространстве, то при САМ-пути — во времени. Устьица у суккулентов днем обычно закрыты, что предотвращает потерю воды в ходе транспирации, а ночью открыты. В темноте СО2 поступает в листья, где фосфоэнолпируваткарбоксилаза присоединяет его к фосфоэнолпировиноградной кислоте, образуя щавелевоуксусную кислоту. Она восстанавливается НАДФН2-зависимой малатдегидрогеназой до яблочной кислоты, которая накапливается в вакуолях. Днем яблочная кислота переходит из вакуоли в цитоплазму, где декарбоксилируется и окисляется до пировиноградной кислоты. СО2 диффундирует в хлоропласты и включается в цикл Кальвина.

Осуществление фотосинтеза по такому пути позволяет растениям максимально экономить воду и поддерживать процесс фотосинтеза в условиях острого водного дефицита. Однако САМ-путь не может обеспечить высокой продуктивности растений, поэтому данные растения медленно растут и не могут конкурировать с С3— и С4-растениями при менее экстремальных условиях. Возможна смена путей фиксации С02. При достаточном количестве воды растения с САМ-метаболизмом могут переходить на С3-путь.

 

 

Фотодыхание

Фотодыхание – это активируемый светом процесс выделения СО2 и поглощения О2. Так как первичным продуктом фотодыхания является гликолевая кислота, оно еще называется гликолатным путем. Фотодыхание усиливается при низком содержании СО2 и высокой концентрации О2 в воздухе. Протекает только на свету. Осуществляется при взаимодействии трех органелл – хлоропластов, пероксисом и митохондрий.

В этих условиях рибулозодисфаткарбоксилаза хлоропластов катализирует не карбоксилирование рибулозодифосфата, а его расщепление на 3-фосфоглицериновую и 2-фосфогликолевую кислоты. Последняя дефосфорилируется с образованием гликолевой кислоты (Рис. 24).

Фотофизический этап фотосинтеза кратко

Рис. 24. – Схема фотодыхания.

 

Гликолевая кислота из хлоропласта переходит в пероксисому, где окисляется гликолатоксидазой до глиоксиловой кислоты. Образующаяся при этом перекись водорода разлагается каталазой, присутствующей в пероксисоме. Глиоксиловая кислота аминируется, превращаясь в глицин. Глицин транспортируется в митохондрию, где из двух молекул глицина синтезируется серин и освобождается СО2.

Серин может поступать в пероксисому и под действием аминотрансферазы передает аминогруппу на пировиноградную кислоту с образованием аланина, а сам превращается в гидроксипировиноградную кислоту. Последняя при участии НАДФН2 восстанавливается в глицериновую кислоту. Она переходит в хлоропласты, где включается в цикл Кальвина.

Таким образом, термин фотодыхание имеет лишь формальный смысл: О2 потребляется, СО2 выделяется, однако в функциональном плане к дыханию этот процесс прямого отношения не имеет.

 

Экология фотосинтеза

Влияние внутренних и внешних факторов на фотосинтез

Фотосинтез осуществляется в полуавтономных органеллах – хлоропластах. Однако на него в значительной мере оказывают влияние факторы внутренней и внешней среды.

Влияние внутренних факторов на фотосинтез.

1. Содержание хлорофилла. С увеличением содержания в клетке хлорофилла увеличивается интенсивность фотосинтеза. Однако прямой зависимости между этими показателями нет. Так, за время позеленения этиолированных листьев количество хлорофилла может увеличиться в 20 раз, а интенсивность фотосинтеза — только в 2 раза.

2. Степень открытости устьиц. В том случае, если содержание воды поддерживается в листе на достаточно высоком уровне, увеличение ширины устьичных щелей, как правило, сопровождается увеличением интенсивности фотосинтеза. При полном закрытии устьиц фотосинтез протекает, но в очень слабой степени.

3. Отток ассимилятов. Накопление фотоассимилятов в хлоропластах и в околопластидном пространстве приводит к ингибированию ферментов, участвующих в фотосинтезе.

4. Возраст листа и растения.В ходе роста листа интенсивность фотосинтеза увеличивается. Наибольшая интенсивность характерна для сформировавшихся листьев. По мере дальнейшего увеличения возраста листьев (процесс старения) интенсивность фотосинтеза падает. На интенсивность фотосинтеза оказывает влияние возраст всего растения. У большинства однолетних растений интенсивность фотосинтеза возрастает в процессе онтогенеза и достигает максимума в фазу бутонизации, цветения. После цветения интенсивность фотосинтеза в листьях снижается и возрастает снова при созревании плодов.

Влияние внешних факторов на фотосинтез.

1 Свет. Имеется нижний порог освещенности, при котором растения начинают фотосинтезировать. Затем зависимость интенсивности фотосинтеза от освещенности имеет логарифмический характер с последующим выходом на плато. Уровень освещения, при котором поглощение СО2 в ходе фотосинтеза равно выделению СО2 в процессе дыхания, называется световым компенсационным пунктом. Значение светового компенсационного пункта неодинаково не только у теневыносливых (составляет примерно 1 % от полного света) и светолюбивых растений (около 3 — 5 % от полного солнечного света), но и у листьев разных ярусов одного и того же растения, оно зависит также от концентрации СО2 в воздухе. Важен и спектральный состав света. При освещении красным светом образуются преимущественно углеводы, синим – амино- и органические кислоты.

При очень высокой интенсивности света может наблюдаться депрессия фотосинтеза. На начальных этапах депрессии хлоропласты передвигаются к боковым стенкам клетки (фототаксис) и поворачиваются ребром к свету. При этом интенсивность фотосинтеза может резко сокращаться. Причиной депрессии фотосинтеза являются также перегрев и нарушение водного баланса. На ярком свету возможно необратимое фотоокисление хлорофилла.

2. Температура. При низкой освещенности фотосинтез идет с одинаковой скоростью при 15 и 25оС. Это объясняется тем, что при низкой освещенности интенсивность фотосинтеза зависит от скорости световых реакций. При высокой освещенности интенсивность фотосинтеза лимитируется скоростью темновых реакций и Q10 примерно равен 2. Для большинства растения С3-типа оптимальная температура 20-25оС, для растений С4-типа она равна 25-40оС. При температуре выше оптимальной интенсивность фотосинтеза снижается из-за инактивации ферментов и закрытия устьиц. Нижняя температурная граница фотосинтеза у растений северных широт находится в пределах —15 °С (сосна, ель) —0,5 °С, а у тропических растений — в зоне низких положительных температур 4 — 8 °С.

3. Содержание СО2 в воздухе. Повышение содержания СО2 с 0,03% до 0,3% вызывает увеличение интенсивности фотосинтеза. Дальнейшее возрастание концентрации СО2 до 1% не сказывается на фотосинтезе, но более высокий уровень СО2 в воздухе приводит к депрессии фотосинтеза. Высокие концентрации СО2 особенно неблагоприятны при высокой освещенности, так как происходит ингибирование темновых реакций.

4. Снабжение водой. При полном насыщении листа водой устьица закрываются, что снижает интенсивность фотосинтеза. В условиях засухи чрезмерная потеря воды листом также вызывает закрывание устьиц под влиянием увеличения содержания в листьях абсцизовой кислоты, что уменьшает поступление СО2, снижает транспирацию и приводит к повышению температуры листа. Обезвоживание также снижает активность ферментов. Максимальный интенсивность фотосинтеза наблюдается при небольшом водном дефиците листа (порядка 5 — 20% от полного насыщения) при открытых устьицах.

5. Содержание О2 в воздухе. Процесс фотосинтеза обычно осуществляется в аэробных условиях при концентрации кислорода 21%. Увеличение содержания или отсутствие кислорода для фотосинтеза неблагоприятны.

Высокие концентрации О2 (25 — 30%) снижают фотосинтез («эффект Варбурга»). Повышение парциального давления О2 и уменьшение концентрации СО2 активируют фотодыхание. Кислород непосредственно снижает активность РДФ-карбоксилазы, а также может окислять первичные восстановленные продукты фотосинтеза.

6. Минеральное питание. Исключение любого элемента минерального питания отрицательно сказывается на фотосинтезе. Особенно важны такие элементы как фосфор, магний, железо, марганец, хлор, медь, калий и азот.

В условиях недостатка фосфора нарушаются фотохимические и темновые реакции фотосинтеза. Особенно резко дефицит фосфора проявляется при высокой интенсивности света, при этом более чувствительными оказываются темновые реакции.

Магний входит в состав хлорофиллов, участвует в деятельности сопрягающих белков при синтезе АТФ, влияет на активность реакций карбоксилирования и восстановления НАДФ.

Железо в восстановленной форме необходимо для процессов биосинтеза хлорофилла и железосодержащих соединений хлоропластов (цитохромов, ферредоксина).

Необходимость марганца и хлора для зеленых растений связана с их участием в фотоокислении воды.

Медь входит в состав пластоцианина, поэтому у растений дефицит меди вызывает снижение интенсивности фотосинтеза.

Уменьшение содержания калия сопровождается разрушаением структуры гран в хлоропластах, устьица слабо открываются на свету и недостаточно закрываются в темноте, ухудшается водный режим листа, нарушаются все процессы фотосинтеза.

Недостаток азота сильно сказывается на формировании пигментных систем, структур хлоропласта и его общей активности. Концентрация азота определяет количество и активность РДФ-карбоксилазы.

7. Загрязнение окружающей среды. Фотосинтетический аппарат растений, очень чувствителен к вредным газам: окись углерода, окислы азота, хлор, фтор и др. Особенно часто встречаются повреждения, связанные с действием сернистого газа (SО2), который ингибирует транспорт электронов в хлоропластах и фотолиз воды, нарушает цикл Кальвина, замедляет транспорт ассимилятов. Больше всего газа проникает, когда устьица открыты полностью. Концентрация сернистого газа, равная 0,00004 %, является токсичной для многих видов хвойных растений. Наряду со снижением интенсивности фотосинтеза сернистый газ изменяет и качественный состав продуктов фотосинтеза. Пыль, сажа, плотным слоем покрывают листья растений, почти полностью закупоривают устьица, резко снижают (до двух раз) доступ света к мезофиллу листа.

8. Заболевания растений (ржавчина, мучнистая роса и др). Ингибирование процесса фотосинтеза под влиянием патогена может происходить вследствие действия выделяемых грибом токсинов, вызывающих деструктивные изменения фотосистем, ультраструктуры хлоропластов и отмиранием отдельных участков листа, снижения содержания хлорофилла и каротиноидов, затемнения листа мицелием гриба и т. д.

 

Суточная и сезонная динамика фотосинтеза

Исследования фотосинтеза растений естественных наземных экосистем были начаты в первой четверти XX в. работами В. Н. Любименко, С. П. Костычева и др. Факторы внешней среды, рассмотренные ранее, действуют совместно и в различных сочетаниях. Однако ведущую роль играют свет, температура и водный режим.

Суточная динамика фотосинтеза

С восходом солнца интенсивность фотосинтеза возрастает вместе с освещенностью, достигая максимальных значений в 9 — 12 ч. Дальнейший характер процесса определяется степенью обводненности листьев, температурой воздуха и интенсивностью солнечного света.

В умеренную погоду при достаточной влажности почвы и воздуха фотосинтез возрастает постепенно, достигая максимальных значений в полдень. Дневной ход фотосинтезаописывается одновершинной кривой, следуя за изменениями освещенности и температуры.

Переменная погода ведет к полной зависимости этого хода от освещенности с образованием многовершинной кривой.

В большинстве же случаев по мере повышения освещенности и температуры интенсивность фотосинтеза достигает максимальных значений перед полуднем, затем наблюдается ее спад с последующим вторым максимумом к 16—17 ч, образуя двухвершинную кривую.

При очень жаркой и сухой погоде кривая становится одновершинной с максимумом в утренние часы.

Наблюдающийся спад фотосинтеза получил название полуденной депрессии. Среди условий, вызывающих эту депрессию, следует назвать водный дефицит листьев, закрывание устьиц, перегрев листьев, слабый отток ассимилятов из хлоропластов, фотоокисление хлорофилла и инактивацию ферментов, в том числе карбоксилаз, на сильном свету, резкое повышение дыхания, понижение содержания СО2 около листьев в связи с ее усиленным потреблением зелеными листьями.

Сезонная динамика фотосинтеза

Для листопадных древесных растений умеренной зоны характерно постепенное увеличение скорости ассимиляции от ранней весны до конца лета. При недостатке воды в почве снижение интенсивности фотосинтеза происходит быстрее. У длительно вегетирующих деревьев и кустарников сезонный максимум регистрируется в самом начале жаркого и сухого периода. К осени интенсивность фотосинтеза постепенно снижается. Неопадающая листва хвойных, за исключением лиственниц, позволяет им фотосинтезировать в течение более длительного времени, включая раннюю весну и позднюю осень. Этим можно отчасти объяснить примерно одинаковую продуктивность лиственных и хвойных лесов в одних и тех же условиях.

У травянистых растений интенсивность фотосинтеза также возрастает до фазы бутонизации и цветения, а затем снижается. Резкий подъем фотосинтетической активности в период заложения репродуктивных органов связан с усиленным потреблением ассимилятов на формирование цветков и плодов.

Скороспелые сорта сельскохозяйственных растений раньше снижают и прекращают фотосинтез, чем позднеспелые с более продолжительным вегетационным периодом. Первые поэтому рекомендуют для северных, а вторые — для более южных районов.

ЛАБОРАТОРНЫЙ ПРАКТИКУМ

 

Источник: studopedia.net

Презентация к уроку

Загрузить презентацию (1,3 МБ)

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.


Задачи: Сформировать знания о реакциях пластического и энергетического обменов и их взаимосвязи; вспомнить особенности строения хлоропластов. Дать характеристику световой и темновой фазы фотосинтеза. Показать значение фотосинтеза как процесса, обеспечивающего синтез органических веществ, поглощение углекислого газа и выделение кислорода в атмосферу.

Тип урока: лекция.

Оборудование:

  1. Средства наглядности: таблицы по общей биологии;
  2. ТСО: компьютер; мультимедиапроектор.

План лекции:

  1. История изучения процесса.
  2. Эксперименты по фотосинтезу.
  3. Фотосинтез, как анаболический процесс.
  4. Хлорофилл и его свойства.
  5. Фотосистемы.
  6. Световая фаза фотосинтеза.
  7. Темновая фаза фотосинтеза.
  8. Лимитирующие факторы фотосинтеза.

Ход лекции

История изучения фотосинтеза

1630 год начало изучения фотосинтеза. Ван Гельмонт доказал, что растения образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей и ивой, и отдельно само дерево, он показал, что через 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Он решил, что пищу дерево получает из воды. В настоящее время мы знаем, что используется углекислый газ.

В 1804 году Соссюр установил, что в процессе фотосинтеза велико значение воды.

В 1887 году открыты хемосинтезирующие бактерии.

В 1905 году Блэкман установил, что фотосинтез состоит из двух фаз: быстрой – световой и ряда последовательных медленных реакций темновой фазы.

Эксперименты по фотосинтезу

1 опыт доказывает значение солнечного света (рис. 1.) 2 опыт доказывает значение углекислого газа для фотосинтеза (рис. 2.)
Марина 1 Марина11

3 опыт доказывает значение фотосинтеза (рис.3.)

прст3 прст2

Фотосинтез, как анаболический процесс

  1. Ежегодно в результате фотосинтеза образуется 150 млрд. тонн органического вещества и 200 млрд. тонн свободного кислорода.
  2. Круговорот кислорода, углерода и других элементов, вовлекаемых в фотосинтез. Поддерживает современный состав атмосферы, необходимый для существования современных форм жизни.
  3. Фотосинтез препятствует увеличению концентрации углекислого газа, предотвращая перегрев Земли вследствие парникового эффекта.
  4. Фотосинтез – основа всех цепей питания на Земле.
  5. Запасенная в продуктах энергия – основной источник энергии для человечества.

Сущность фотосинтеза заключается в превращении световой энергии солнечного луча в химическую энергию в виде АТФ и НАДФ·Н2.

Суммарное уравнение фотосинтеза:

6СО2 + 6Н2О С6Н12О6 + 6О2

Существует два главных типа фотосинтеза:

анаэробный аэробный
Характерен для фотосинтезирующих бактерий (подцарство Настоящие бактерии). Фотосинтезирующим пигментом у них является бактериохлорофилл. Кислород не выделяется. Характерен для всех оксифотобактерий и зеленых растений. Фотосинтез в растениях осуществляется в хлоропластах содержащих хлорофилл. Кислород выделяется.

Хлорофилл и его свойства

Фотофизический этап фотосинтеза кратко
Рис.4. Структурная формула хлорофилла а
Молекула хлорофилла имеет эмпирическую формулу: С55Н72О5N4Мg. Атомы С, Н, О, N соединены в сложное порфириновое кольцо. Хлорофилл близок по строению к гемоглобину крови, только в гемме в центре молекулы атом Fe, а в хлорофилле атом Мg, связанный с одним или четырьмя атомами азота. Молекула хлорофилла имеет длинный «хвост» — остаток спирта фитола, который содержит цепь из 20 углеродных атомов.

Виды хлорофилла

Хлорофилл имеет модификации а, в, с, d. Отличаются они структурным строением и спектром поглощения света. Например: хлорофилл в содержит на один атом кислорода больше и на два атома водорода меньше, чем хлорофилл а.

Все растения и оксифотобактерии имеют как основной пигмент желто-зеленый хлорофилл а, а как дополнительный хлорофилл в.

Другие пигменты растений

Некоторые другие пигменты способны поглощать солнечную энергию и передавать ее в хлорофилл, вовлекая ее тем самым в фотосинтез.

У большинства растений есть темно оранжевый пигмент – каротин, который в животном организме превращается в витамин А и желтый пигмент – ксантофилл.

Фикоцианин и фикоэритрин – содержат красные и сине-зеленые водоросли. У красных водорослей эти пигменты принимают более активное участие в процессе фотосинтеза, чем хлорофилл.

Хлорофилл минимально поглощает свет в сине-зеленой части спектра. Хлорофилл а, в- в фиолетовой области спектра, где длина волны 440 нм. Уникальная функция хлорофилла состоит в том, что он интенсивно поглощает солнечную энергию и передает ее другим молекулам.

Пигменты поглощают определенную длину волны, не поглощенные участки солнечного спектра отражаются, что обеспечивает окраску пигмента. Зеленый свет не поглощается, поэтому хлорофилл зеленый.

Пигменты – это химические соединения, которые поглощают видимый свет, что приводит электроны в возбужденное состояние. Чем меньше длина волны, тем больше энергия света и больше его способность переводить электроны в возбужденное состояние. Это состояние неустойчиво и вскоре вся молекула возвращается в свое обычное низкоэнергетическое состояние теряя при этом энергию возбуждения. Эта энергия может быть использована на флуоресценцию.

Фотосистемы

Пигменты растений участвующие в фотосинтезе «упакованы» в тилакоиды хлоропластов в виде функциональных фотосинтетических единиц – фотосинтетических систем: фотосистемы I и фотосистемы II.

Каждая система состоит из набора вспомогательных пигментов (от 250 до 400 молекул), передающих энергию на одну молекулу главного пигмента и она называется реакционным центром. В нем энергия Солнца используется для фотохимических реакций.

Фотофизический этап фотосинтеза кратко
Рис.5. Фотосистемы
Фотосистема I имеет более мелкие частицы, чем фотосистема II. Частицы фотосистемы II связаны с гранами.
Энергия захватывается как бы в ловушку со вспомогательных (антенных) пигментов на главный. Это может быть хлорофилл а – Р690 или Р700 (Р – пигмент, а 690-700 – максимально поглощенная длина волны в нм). Р690 и Р700 – энергетические ловушки

Фотофизический этап фотосинтеза кратко Фотофизический этап фотосинтеза кратко

Фотосинтез
Световая фаза
Фотофизический этап
Световая фаза
Фотохимический этап
Темновая фаза или
цикл Кальвина
Поглощение квантов света пигментами, идет возбуждение электронов в этих молекулах и передача возбуждения от одной молекулы к другой. Преобразование энергии света в энергию химических связей АТФ и НАДФ.Н2. Идет в фотосинтетических мембранах. Идет за счет энергии, которая образовалась в световой фазе. Суть процесса: включение углекислого газа в образование органических веществ.

Световая фаза идет обязательно с участием света, темновая фаза и на свету и в темноте. Световой процесс происходит в тилакоидах хлоропластов, темновой – в строме, т.е. эти процессы пространственно разобщены.

Световая фаза фотосинтеза

В 1958 году Арнон и его сотрудники изучили световую фазу фотосинтеза. Они установили, что источником энергии при фотосинтезе является свет, а так как на свету в хлорофилле происходит синтез из АДФ+Ф.к. → АТФ, то этот процесс называется фосфорилированием. Оно сопряжено с переносом электронов в мембранах.

Роль световых реакций: 1. Синтез АТФ – фосфорилирование. 2. Синтез НАДФ.Н2.

Путь переноса электронов называется Z-схемой.

Z-схема. Нециклическое и циклическое фотофосфорилирование (рис. 6.)

Фотофизический этап фотосинтеза кратко

  1. Начало процесса. Поглощение квантов света. Квант света попадает на ФС II, находящуюся в мембранах тилакоидов гран и приводит к возбуждению пигментов – это возбуждение передается от одной молекулы антенного пигмента к другой вплоть до реакционного центра. Все электроны собираются вокруг ловушки и отдают энергию виде электронов в электроннотранспортную цепь. Электрон, поглотив фотон, отрывается от молекулы хлорофилла и переходит на более высокий энергетический уровень присоединяясь к молекулам-переносчикам. Затем он двигается по электроннотранспортной цепи переходя от одного переносчика к другому (от пластохинона к пластоцианину) постепенно растрачивая энергию. Часть этой энергии растрачивается на синтез АТФ.

  2. Нециклическое фотофосфорилирование. Растратив энергию электрон достигает ФСI, где он опять поглощает фотон и снова поднимается еще на более высокий энергетический уровень, и пройдя через несколько переносчиков (ферредоксин) передается конечному акцептору цепи НАДФ+, который расположен на внешней стороне мембраны тилакоида.

  3. Фоторазложение или фотолиз воды. Поглотив фотон электроны отрываются от молекул хлорофилла реакционного центра ФС II и через ФС I переходят к НАДФ+. Пока на место ушедшего электрона в ФС II не встанет другой, она не сможет функционировать. Место ушедших электронов занимают электроны воды, которая находится во внутреннем пространстве тилакоида. При этом происходит светозависимое разложение воды или фотолиз («фото» — свет): Н2О →2 Н+ 2е + ½ О2. При фотолизе вода распадается на протоны, электроны и кислород. Процесс происходит с участием ферментов локализованных на внутренней мембране тилакоидов. Образовавшийся кислород выделяется в окружающую среду. Протоны накапливаются во внутреннем пространстве тилакоидов, образуя резервуар протонов. Таки образом при нециклическом потоке электронов от ФС II к НАДФ+ в конечном счете транспортируются электроны воды.

  4. Процесс химио-осмоса.

    Фотофизический этап фотосинтеза кратко
    Рис.7. Процесс фотосинтеза

    • Свет, попадая на молекулы хлорофилла, которые находятся в мембранах тилакоидов гран, приводит их в возбужденное состояние. В результате этого электроны сходят со своих орбит и переносятся с помощью переносчиков за пределы мембраны тилакоида, где накапливаются, создавая отрицательно заряженное электрическое поле.
    • Протоны, образовавшиеся при фотолизе, не проникают через мембрану тилакоида и накапливаются внутри, образуя положительно заряженное электрическое поле, что приводит к увеличению разности потенциалов по обе стороны мембраны.
    • При достижении критической разности потенциалов, протоны могут выходить в строму по протонному каналу. С каналами связаны ферменты АТФ-синтетазы, которые используют энергию протонов на синтез АТФ. На каждые три протона, которые проходят через канал, синтезируется одна молекула АТФ. Большая часть АТФ при фотосинтезе образуется этим путем.
    • Протоны, вышедшие на поверхность мембраны тилакоида, соединяются с электронами, образуя атомарный водород, который идет на восстановление переносчика НАДФ+.
  5. Циклический поток электронов. ФС I может работать независимо от ФСII. Под действием света, электрон выбивается из молекулы хлорофилла реакционного центра ФС I, передается к тому же акцептору, что и при нециклическом потоке, но далее идет не к НАДФ+, а по обходному пути возвращается на тоже место в ФС I. Поглощенная электроном энергия используется на синтез АТФ. Таким образом электрон двигается по кольцу. Это циклический поток.

В ходе циклического транспорта электронов не происходит образования НАДФ.Н2 и фоторазложения Н2О, следовательно и выделение О2. Этот путь используется тогда, когда в клетке избыток НАДФ.Н2, но требуется дополнительная АТФ.

Все эти процессы относятся к световой фазе фотосинтеза. В дальнейшем энергия АТФ и НАДФ.Н2 используется для синтеза глюкозы. Для этого процесса свет не нужен. Это реакции темновой фазы фотосинтеза.

Темновая фаза фотосинтеза или цикл Кальвина

Синтез глюкозы происходит в ходе циклического процесса, который получил название по имени ученого Мельвина Кальвина, открывшего его, и награжденного Нобелевской премией.

Фотофизический этап фотосинтеза кратко
Рис. 8. Цикл Кальвина

Каждая реакция цикла Кальвина осуществляется своим ферментом. Для образования глюкозы используются: СО2, протоны и электроны от НАДФ.Н2, энергия АТФ и НАДФ.Н2. Происходит процесс в строме хлоропласта. Исходным и конечным соединением цикла Кальвина, к которому с помощью фермента рибулозодифосфаткарбоксилазы присоединяется СО2, является пятиуглеродный сахар – рибулозобифосфат, содержащий две фосфатные группы. В результате образуется шестиуглеродное соединение, сразу же распадающееся на две трехуглеродные молекулы фосфоглицериновой кислоты, которые затем восстанавливаются до фосфоглицеринового альдегида. При этом, часть образовавшегося фосфоглицеринового альдегида используется для регенерации рибулозобифосфата, и, таким образом, цикл возобновляется снова (5С3 → 3С5), а часть используется для синтеза глюкозы и других органических соединений (2С3 → С6 → С6Н12О6).

Для образования одной молекулы глюкозы необходимо 6 оборотов цикла и требуется 12НАДФ.Н2 и 18 АТФ. Из суммарного уравнения реакции получается:

6СО2 + 6Н2О → С6Н12О6 + 6О2

Из приведенного уравнения видно, что атомы С и О вошли в глюкозу из СО2, а атомы водорода из Н2О. Глюкоза в дальнейшем может быть использована как на синтез сложных углеводов (целлюлозы, крахмала), так и на образование белков и липидов.

4 – фотосинтез. В 1965 году было доказано, что у сахарного тростника – первыми продуктами фотосинтеза, являются кислоты, содержащие четыре атома углерода (яблочная, щавелевоуксусная, аспарагиновая). К С4 растениям принадлежат кукуруза, сорго, просо).

Лимитирующие факторы фотосинтеза

Скорость фотосинтеза – наиболее важный фактор влияющий на урожайность с/х культур. Так, для темновых фаз фотосинтеза нужны НАДФ.Н2 и АТФ, и поэтому скорость темновых реакций зависит от световых реакций. При слабой освещенности скорость образования органических веществ будет мала. Поэтому свет – лимитирующий фактор.

Из всех факторов одновременно влияющих на процесс фотосинтеза лимитирующим будет тот, который ближе к минимальному уровню. Это установил Блэкман в 1905 году. Разные факторы могут быть лимитными, но один из них главный.

  1. При низкой освещенности скорость фотосинтеза прямопропорциональна интенсивности света. Свет – лимитирующий фактор при низкой освещенности. При большой интенсивности света происходит обесцвечивание хлорофилла и фотосинтез замедляется. В таких условиях в природе растения обычно защищены (толстая кутикула, опушенные листья, чешуйки).

    Фотофизический этап фотосинтеза кратко

  2. Для темновых реакций фотосинтеза необходим углекислый газ, который включается в органические вещества, в полевых условиях является лимитирующим фактором. Концентрация СО2 варьирует в атмосфере в пределах от 0,03–0,04%, но если повысить ее, то можно увеличить скорость фотосинтеза. Некоторые тепличные культуры сейчас выращиваются при повышенном содержании СО2.
  3. Температурный фактор. Темновые и некоторые световые реакции фотосинтеза контролируются ферментами, а их действие зависит от температуры. Оптимальная температура для растений умеренного пояса составляет 25 °С. При каждом повышении температуры на 10 °С (вплоть до 35 °С) скорость реакций удваивается, но из-за влияния ряда иных факторов растения лучше растут при 25 °С.
  4. Вода – исходное вещество для фотосинтеза. Недостаток воды влияет на многие процессы в клетках. Но даже временное увядание приводит к серьезным потерям урожая. Причины: при увядании устьица растений закрываются, а это мешает свободному доступу СО2 для фотосинтеза; при нехватке воды в листьях некоторых растений накапливается абсцизовая кислота. Это гормон растений – ингибитор роста. В лабораторных условиях ее используют для изучения торможения ростового процесса.
  5. Концентрация хлорофилла. Количество хлорофилла может уменьшаться при заболеваниях мучнистой росой, ржавчиной, вирусными болезнями, недостатком минеральных веществ и возрастом (при нормальном старении). При пожелтении листьев наблюдаются хлоротичные явления или хлороз. Причиной может быть недостаток минеральных веществ. Для синтеза хлорофилла нужны Fe, Mg, N и К.
  6. Кислород. Высокая концентрация кислорода в атмосфере (21%) ингибирует фотосинтез. Кислород конкурирует с углекислым газом за активный центр фермента, участвующего в фиксации СО2, что снижает скорость фотосинтеза.
  7. Специфические ингибиторы. Лучший способ погубить растение – это подавить фотосинтез. Для этого ученые разработали ингибиторы – гербициды – диоксины. Например: ДХММ – дихлорфенилдиметилмочевина – подавляет световые реакции фотосинтеза. Успешно используют для изучения световых реакций фотосинтеза.
  8. Загрязнение окружающей среды. Газы промышленного происхождения, озон и сернистый газ, даже в малых концентрациях сильно повреждают листья у ряда растений. К сернистому газу очень чувствительны лишайники. Поэтому существует метод лихеноиндикации – определение загрязнения окружающей среды по лишайникам. Сажа забивает устьица и уменьшает прозрачность листовой эпидермы, что снижает скорость фотосинтеза.

Космическая роль растений (описана К. А. Тимирязевым) заключается в том, что растения – единственные организмы, усваивающие солнечную энергию и аккумулирующие ее в виде потенциальной химической энергии органических соединений. Выделяющийся О2 поддерживает жизнедеятельность всех аэробных организмов. Из кислорода образуется озон, который защищает все живое от ультрафиолетовых лучей. Растения использовали из атмосферы громадное количество СО2, избыток которого создавал «парниковый эффект», и температура планеты понизилась до нынешних значений.

19.12.2012

Источник: xn--i1abbnckbmcl9fb.xn--p1ai