Митохондрии — одни из самых важных составляющих любой клетки. Их еще называют хондриосомами. Это грануловидные или нитевидные органеллы, которые являются составляющей частью цитоплазмы растений и животных. Именно они являются производителями молекул АТФ, которые так необходимы для многих процессов в клетке.

Что такое митохондрии?

Митохондрии – это энергетическая база клеток, их деятельность основана на окислении органических соединений и применении энергии, освободившейся при распаде молекул АТФ. Биологи на простом языке его называют станцией вырабатывания энергии для клеток.В 1850 г. митохондрии выявили в виде гранул в мышцах. Их число менялось в зависимости от условий роста: они скапливаются больше в тех клетках, где большой дефицит кислорода. Это происходит чаще всего при физических нагрузках. В таких тканях появляется острая нехватка энергии, которую восполняют митохондрии.

Появление термина и место в теории симбиогенеза

В 1897 г. Бенд впервые ввел понятие «митохондрия», чтобы обозначить зернистую и нитчатую структуру в цитоплазме клеток. По форме и величине они разнообразны: толщина составляет 0,6 мкм, длина – от 1 до 11 мкм. В редких ситуациях митохондрии могут быть большого размера и разветвленным узлом.


В теории симбиогенеза дается четкое представление о том, что такое митохондрии и как они появились в клетках. В ней говорится, что хондриосома возникла в процессе поражения клетками бактерий, прокариотами. Так как они не могли автономно применять кислород для выработки энергии, это препятствовало полному их развитию, а прогеноты могли развиваться беспрепятственно. В течение эволюции связь между ними дала возможность прогенотам передать свои гены теперь уже эукариотам. Благодаря такому прогрессу митохондрии теперь не являются независимыми организмами. Их генофонд не может быть реализован в полной мере, так как происходит его частичная блокировка ферментами, которые есть в любой клетке.

Где они живут?

Митохондрии сосредотачиваются в тех районах цитоплазмы, где появляется необходимость в АТФ. Например, в мышечной ткани сердца они располагаются неподалеку от миофибрилл, а в сперматозоидах формируют защитную маскировку вокруг оси жгута. Там они вырабатывают очень много энергии для того, чтобы «хвост» крутился. Именно таким образом сперматозоид двигается к яйцеклетке.

В клетках новые митохондрии образуются с помощью простого деления предыдущих органелл. Во время него сохраняется вся наследственная информация.

Митохондрии: как они выглядят


По форме митохондрии напоминает цилиндр. Они часто встречаются в эукариотах, занимая от 10 до 21 % объема клетки. Их размеры и формы во многом разнятся и способны меняться в зависимости от условий, но ширина постоянна: 0,5-1 мкм. Перемещения хондриосом зависят от того, в каких местах клетки совершается быстрая трата энергии. Передвигаются по цитоплазме, применяя для передвижения структуры цитоскелета.Заменой разных по габаритам митохондрий, работающих отдельно друг от друга и снабжающих энергией некоторые зоны цитоплазмы, являются длинные и разветвленные митохондрии. Они способны обеспечить энергией участки клеток, находящиеся далеко друг от друга. Подобная совместная работа хондриосом наблюдается не только у одноклеточных организмов, но и у многоклеточных. Самое сложное строение хондриосом встречается в мышцах скелета млекопитающих, где самые большие разветвленные хондриосомы стыкуются друг с другом, используя межмитохондриальные контакты (ММК).

Они представляют собой узкие просветы между прилегающими друг к другу митохондриальными мембранами. Данное пространство обладает высокой электронной плотностью. ММК больше встречаются в клетках сердечной мышцы, где связываются вместе с работающими хондриосомами.

Чтобы лучше разобраться в вопросе, нужно кратко расписать значимость митохондрии, строение и функции этих удивительных органелл.

Как они устроены?

Для понимания, что такое митохондрии, необходимо узнать их строение. Этот необычный источник энергии имеет форму шара, но чаще вытянут. Две мембраны располагаются близко друг к другу:

  • наружная (гладкая);
  • внутренняя, которая образует выросты листовидной (кристы) и трубчатой (тубулы) формы.

Если не принимать во внимание размер и форму митохондрии, строение и функции у них одинаковые. Хондриосома разграничена двумя мембранами, размером 6 нм. Наружная мембрана митохондрии напоминает емкость, которая ограждает их от гиалоплазмы. Внутреннюю мембрану от внешней отъединяет участок шириной 11-19 нм. Отличающей чертой внутренней мембраны считается ее способность выпячиваться внутрь митохондрии, принимая форму сплющенных гребней.
Внутреннюю полость митохондрии заполняет матрикс, который имеет мелкозернистую структуру, где иногда обнаруживают нити и гранулы (15-20 нм). Нити матрикса создают молекулы ДНК органеллы, а гранулы небольших размеров – рибосомы митохондрии.

Синтез АТФ на первой стадии проходит в гиалоплазме. На данной ступени идет начальное окисление субстратов или глюкозы до пировиноградной кислоты. Данные процедуры проходят без кислорода — анаэробное окисление. Следующая стадия образования энергии заключается в аэробном окислении и распада АТФ, данный процесс происходит в митохондриях клеток.

Что делают митохондрии?

Основными функциями этой органеллы являются:

  • выработка энергии для клеток;

  • хранение наследственной информации в виде собственной ДНК.


Наличие в митохондриях своей дезоксирибонуклеиновой кислоты еще раз подтверждает симбиотическую теорию появления этих органелл. Также, помимо основной работы, они участвуют в синтезе гормонов и аминокислот.

Митохондриальная патология

Мутации, происходящие в геноме митохондрии, приводят к удручающим последствиям. Носителем наследственной информации человека является ДНК, которая передается потомкам от родителей, а митохондриальный геном передается только от матери. Объясняется данный факт очень просто: цитоплазму с заключенными в ней хондриосомами дети получают вместе с женской яйцеклеткой, в сперматозоидах они отсутствуют. Женщины с данным отклонением могут передать потомству митохондриальное заболевание, больной мужчина – нет.

В обычных условиях хондриосомы располагают одинаковой копией ДНК — гомоплазмия. В геноме митохондрии могут происходить мутации, вследствие совместного существования здоровых и мутированных клеток возникает гетероплазмия.

Благодаря современной медицине на сегодняшний день выявлены более 200 заболеваний, поводом возникновения чего послужила мутация митохондрии ДНК. Не во всех случаях, но терапевтическому поддержанию и лечению митохондриальные болезни поддаются хорошо.

Вот мы и разобрались с вопросом о том, что такое митохондрии. Как и все остальные органеллы, они очень важны для клетки. Они косвенно принимают участие во всех процессах, для которых нужна энергия.


Источник: fb.ru

Митохондрии – маленькие труженики или большие начальники?

Если вы думаете, что самая важная для нас история совместной жизни начинается во время свадьбы, то это совсем не так. Самая важная история совместной жизни каждого человека началась более миллиарда лет назад, когда наши далекие одноклеточные предки вынуждены были подписать «брачный контракт» с теми, кого мы сейчас называем митохондрии (см. теория симбиогенеза).

Митохондрии имеют две мембраны (внутреннюю и внешнюю) и собственный наследственный материал в виде ДНК (рис.1). На внутренней мембране митохондрий находится система окислительного фосфорилирования, работа которой обеспечивает окисление энергетических субстратов с образованием АТФ.

Рис. 1. Схематическое строение митохондрии

В брачном контракте клетки и митохондрии нет пункта «в болезни и здравии», — и хорошо. Если митохондрия становится старой, клетка может ее убить в процессе митофагии, а митохондрии, в свою очередь, регулируют процесс апоптоза у недееспособных и старых клеток. Если процесс обоюдного контроля качества нарушается, запускаются механизмы старения. Нарушаются механизмы апоптоза, увеличивается количество свободных радикалов, не контролируемых митохондрией. Это вызывает системное воспаление, повреждение ДНК клетки. Таким образом, есть сильная взаимосвязь между МХ дисфункцией, возраст-зависимыми заболеваниями, старением организма и метаболическими дисфункциями [1]. Метаболическая дисфункция – неизменный всадник апокалипсиса старения.


«Как белка в колесе» — динамика митохондрий

Не вся вина за метаболические нарушения лежит на нашем переедании. Метаболические нарушения связывают, в первую очередь, с неспособностью митохондрий справиться с питательными веществами. Митохондриям в клетке приходится нелегко. Мы «кормим» свои клетки то слишком много, то слишком мало, а предъявляем им «заявку» выдать энергию в виде АТФ, количество которой точно должно соответствовать нашим потребностям. Для того чтобы регулярно «выкручиваться» из этой ситуации митохондрии и правда используют некоторые «движения» — деление (fission) и слияние (fusion). Эти «митодвижения» объединяют под названием «динамика митохондрий». Баланс между делением и слиянием митохондрий — центральный механизм биоэнергетической адаптации к метаболическим потребностям клетки [2, 3].

Больше всего митохондрий находится в тканях с высокими энергетическими потребностями, — мышцы, печень, бурая жировая ткань, мозг. Неудивительно, что и динамика митохондрий в этих тканях изучена лучше.

Итак, если в клетку какой-либо из этих тканей (кроме некоторых нейронов в мозге, об этом потом) поступает большое количество питательных веществ (поступление превышает затраты), то митохондрии находятся в разделенном (фрагментированном) состоянии. Если клетка находится в состоянии голода (поступления меньше затрат), то происходит слияние митохондрий и они находятся в соединенном состоянии. [3,4]. Так поддерживается гомеостаз клетки (рис.2).


Как выглядит митохондрия фото
Рис. 2 Регулирование морфологии и биоэнергетической эффективности митохондрий в ответ на избыточное или недостаточное поступление питательных веществ [из 2]

Клеточный метаболический гомеостаз зависит от баланса между потреблением питательных веществ и их расходом. Перемены в поставке питательных веществ приводит к клеточным адаптациям для восстановления баланса. Избыток питания приводит к фрагментации митохондриальной сети, что вызывает снижение биоэнергетической эффективности митохондрий. Это позволит избежать потерь энергии. Напротив, при метаболическом голоде митохондрии удлиняются, чтобы увеличить свою биоэнергетическую эффективность.

В чем хитрость этих движений? Если клетка находится в состоянии голода, то слияние митохондрий позволяет увеличить их биоэнергетическую эффективность (количество АТР, которое создается на молекулу питательного вещества). Если же в клетку поступает избыток питательных веществ, то их можно либо 1) запасти, либо 2)рассеять эту энергию в виде тепла. Задача митохондрий в этом случае, — рассеять больше энергии в виде тепла, запасти меньше в виде АТФ (накопление NADH и АФК приведет к окислительному стрессу). Фрагментация митохондрий позволяет им снизить биоэнергетическую эффективность, главным механизмом снижения которой считается «утечка» протонов.

Так что, мы ходим на работу, а жизнь митохондрий постоянно протекает в режиме цикла деления и слияния (рис 3).


Как выглядит митохондрия фото
Рис.3 Баланс энергопотребления и энерогообеспечения связан с соответствующими изменениями архитектуры митохондрий и их биоэнергетической эффективностью [из 3]
Физиологические процессы, связанные с увеличением спроса на энергию и снижением энергопоставок, (например, острый стресс, голодание и фаза G1/S) характеризуются удлинением митохондрий и дыханием, связанным с синтезом АТФ. С другой стороны, физиологические процессы, связанные с уменьшением спроса на энергию и увеличением ее поставок (высокий уровень питательных веществ, ожирение и диабет типа 2), связаны с фрагментацией митохондрий, выделением тепла или снижением функции митохондрий.

Здоровые циклы деления и слияния – залог метаболического здоровья клетки

Нормальный цикл деления митохондрий и их слияния является ключевым звеном контроля их качества. Почему? При делении митохондрий образуется две дочерние, одна из которых имеет более высокий мембранный потенциал и идет дальше в цикл слияния-деления, а другая, с более деполяризованной мембраной, остается отделенной до восстановления мембранного потенциала. Если потенциал восстанавливается, — она воссоединяется с митохондриальной сетью. Если она остается деполяризованной, то она элиминируется в процессе аутофагии, что является залогом качества пула митохондрий (рис.4).


Длительное ингибирование деления митохондрий (при длительном клеточном голодании) приводит к накоплению поврежденных митохондрий, которые не могут быть сегрегированы [3, 4].

С другой стороны, избыток питательных веществ приводит к ингибированию слияния митохондрий, что приводит к нарушению цикла митохондриальной динамики, увеличивает внутриклеточную митохондриальную гетерогенность. Да, при избытке еды фрагментация митохондрий протективна, однако длительная фрагментация, как и длительное слияние, вредна для контроля качества митохондрий. Не происходит селективного удаления, митохондриальная масса будет уменьшаться и состоять из небольших деполяризованных митохондрий.

Как выглядит митохондрия фото
Рис.4 Жизненный цикл митохондрий и его регулирование доступностью питательных веществ [из 3]

Митофузины – не просто какие-то белки

На молекулярном уровне слияние митохондрий является двухстадийным процессом, который требует координированного слияния внешней и внутренней мембран в ходе отдельных последовательных событий. У млекопитающих этот процесс регулируется тремя белками, которые относятся к GTPазам: Mfn1 и Mfn2 необходимы для слияния внешней мембраны, а ОРА1 – для слияния внутренней мембраны. Для деления нужны другие белки, — Fis1 и Drp1.


Роль белков-митофузинов была изучена в loss- and gain-of function studies. Мышки, мутантные по белкам-митофузинам, погибают еще в mid-gestation, потому что у них невозможным становится слияние митохондрий. Митофузины важны для процессов аутофагии и митофагии. Снижение экспрессии Mfn2 в кардиомиоцитах блокирует запуск процесса аутофагии, потому что блокируется слияние аутофагосом с лизосомами. Истощение Mfn2 приводит к снижению потенциала мембран митохондрий, для компенсации происходит снижение работы дыхательной цепи, возрастает поглощение глюкозы и снижается синтез гликогена. Клетка переходит на анаэробный глиоклиз, а это – путь к онкологическому перерождению клетки. Дефицит Mfn2 приводит к нейродегенеративным изменениям. Повышение экспрессии Mfn2 в скелетных мышцах повышает их чувствительность к инсулину.

Mfn1 выполняет сходные функции, однако, вероятно, в других тканях (экспрессия Mfn2 и Mfn1 различается в разных тканях) – Mfn1 экспрессируется в большей степени в сердце, печени, поджелудочной, яичках, а Mfn2 в сердце, скелетных мышцах, мозге, бурой жировой ткани.
Таким образом митофузины являются ключевыми регуляторами динамики митохондрий. Экспрессия митофузинов различна в различных органах, они обеспечвают биоэнергетическую эффективность и механизмы адаптации к доступности питательных веществ, а также от них зависит «судьба» клетки. Не удивительно, что митохондриальные fusion белки являются потенциальными таргетами фармакологических вмешательств [2, 5].

Гипоталамус, митохондрии, метаболическая дисфункция и старение

Динамика митохондрий важна во всех клетках. В бета-клетках поджелудочной железы митохондрии являются сенсорами питательных веществ и генераторами сигналов синтеза инсулина, в мышцах динамика митохондрий важна для регуляции метаболизма глюкозы и т.д. Однако человек не просто совокупность клеток разного типа, каждая из которых принимает самостоятельные решения. Организм – это система, у которой есть центральное регуляторное звено поддержания гомеостаза энергии и глюкозы. Этим главным регулятором является гипоталамус.

Гипоталамус расположен в промежуточном мозге и именно он обеспечивает взаимосвязь нервной и гуморальной систем регуляции. Нейроны гипоталамуса воспринимают, обрабатывают и реагируют на сигналы от жировой ткани (лептин), поджелудочной железы (инсулин), и прочие гормональные стимулы (грелин, холецистокинин, панкреатический полипептид и др.). Гипоталамус управляет деятельностью эндокринной системы человека благодаря тому, что его нейроны способны выделять нейроэндокринные трансмиттеры, стимулирующие или угнетающие выработку гормонов гипофизом. Иными словами, гипоталамус, масса которого не превышает 5 % мозга, является центром регуляции эндокринных функций и поддержания гомеостаза всего организма.

Еще Дильман (Дильман В. М «Большие биологические часы») указывал на ведущую роль гипоталамуса в планомерном развитии метаболической дисфункции, приводящей к ожирению, сахарному диабету, сердечно-сосудистым, онкологическим заболеваням и старению. Согласно сформированной Дильманом теории гиперадаптоза чувствительность рецепторов гипоталамуса к сигналам, поступающим от тканей организма (лептин, инсулин и др.) постепенно планомерно снижается с возрастом. Для того, чтобы вызывать его «ответ» нужно все больше и больше того или иного гормона, — больше инсулина, больше лептина. Развивается инсулин- и лептинрезистентность, метаболические заболевания, приводящие к старению и смерти.

В зависимости от выполняемых функций группы нейронов объединяют в ядра гипоталамуса. Одно из них – аркуатное (дугообразное) ядро является ключевым регулятором пищевого поведения и обмена веществ. В нем могут образовываться орексигенные нейропептиды (стимулируют аппетит) и анорексигенные (подавляют аппетит), относящиеся, соответственно к AgRP и POMC нейронам. Периферические сигналы (инсулин, грелин, лептин и др) влияют на экспрессию пептидов, стимулирующих либо подавляющих аппетит, что обеспечивает слаженность центральной регуляции (рис.5).

Как выглядит митохондрия фото
Рис. 5. Гипоталамический контроль метмболизма энергии. Мозг интегрирует метаболические сигналы (лептин, инсулин, грелин, PYY3-36) от периферических тканей, таких как поджелудочная железа, жировая ткань, желудок. В мозге специализированные нейронные сети координируют адаптивные изменения в поглощении и расходе пищи [из 5].

Так кто и как регулирует чувствительность нейронов гипоталамуса?

Изучение динамики митохондрий в тканях мозга показало, что динамика митохондрий играет существенную роль в способности нейронов гипоталамуса контролировать уровень глюкозы и гомеостаз энергии в организме [6,7,8].

В AgRP нейронах (hunger-promoting AgRP neurons), которые стимулируют аппетит и регулируют набор массы, голодание приводит к делению митохондрий, а high-fat feeding – к слиянию. То есть ответ митохондрий отличается от такового в большинстве других клеток.

Слияние МХ в этих нейронах регулирует электрическую активность в ответ на высокожировую диету, стимулируя выработку орексигенного пептида (AgRP пептида) оно необходимо для набора веса и отложения жира при избытке питательных веществ. Делеции Mfn1 и Mfn2 в этих нейронах приводили к меньшему набору веса у крыс за счет снижения уровня циркулирующего лептина.

РОМС нейроны (подавляют аппетит) имеют противоположную функцию, и динамика митохондрий в ответ на поступление питательных веществ у них иная. Снижение экспрессии митофузинов в этих нейронах приводит к нарушению связи митохондрий с ЭПС, а в результате – гиперфагия, лептинрезистентность и ожирение. При этом возрастало употребление пищи, а энергозатраты снижались.

Таким образом, ответ организма на высокожировую диету зависит от паттернов динамики митохондрий в нейронах гипоталамуса. Ремоделирование митохондрий в нейронах обеспечивает их ответ на поступление в организм питательных веществ, стимулирует выработку нейропептидов, которые будут либо стимулировать либо подавлять аппетит, влияя на метаболизм на уровне организма (Рис.6).

Как выглядит митохондрия фото
Рис.6. Метаболическая адаптация к стимулам окружающей среды [из 2]

В ответ на экзогенные стимулы Mfns вовлечены в трансдукцию метаболического сигналинга в разных органах, что обеспечивает поддержание гомеостаза энергии всего организма. В частности, в ответ на потребление пищи, изменения температуры, стресс или физические упражнения, бурая жировая ткань, мозг, сердце или скелетные мышцы адаптируют свой метаболизм для контроля питания, веса тела, сократительных функций, антиоксидантного ответа или чувствительности к инсулину.

Как повлиять на динамику митохондрий?

1. Питание и физические упражнения

Циклы питания Избыток пищи и высокожировая диета (HFD) ингибирует слияние митохондрий в клетках (в некоторых нейронах мозга механизм иной). Незавершенный цикл деления-слияния митохондрий нарушает процессы аутофагии → увеличивается внутриклеточная гетерогенность митохондрий → не происходит селективного удаления митохондрий → накапливаются митохондрии с дисфункцией.

Calorie restriction (fed/fasting cycle) стимулирует биоэнргетическую адаптацию, обеспечивая работу механизмов качества митохондрий.

2. Здоровые мембраны: стеариновая кислота, кардиолипин, фосфатидная кислота

От «здоровья» мембран митохондрий зависят все ключевые процессы, — аутофагия, митофагия, апоптоз, связь митохондрий с эндоплазматической сетью, динамика митохондрий. Мембраны клеточных органелл состоят из липидов и из белков. Ремоделирование этих мембран контролируется взаимодействиями между специфическими липидами и белками.

К насыщенным жирным кислотам относится пальмитиновая (С16) и стеариновая (С18). Показано, что употребление стеариновой кислоты (C18:0) стимулирует процесс слияния митохондрий. Действие ее связано с влиянием на митофузины. У мышей диетические добавки стеариновой кислоты могут частично восстанавливать митохондриальную дисфункцию, вызванную мутациями в генах Pink1 или parkin. В нейтрофилах людей, находящихся 2 дня на low-С18:0 диете, митохондрии находятся во фрагментированном состоянии (50% клеток имели фрагментированные МХ, 10 % соединенные МХ). Употребление стеариновой кислоты приводило у них к слиянию митохондрий через 3 часа [8]. Таким образом., стериновая кислота важна для поддержания циклов динамики митохондрий. Больше всего стеариновой кислоты находится в какао-бобах (31-34 %).

Фосфолипиды – основные компоненты мембран органелл. Они также регулируют динамику митохондрий, при этом их влияние различно [9].

Кардиолипин (СL) стимулирует деление митохондрий и слияние внутренних мембран.

Кардиолипин необходим для работы комплекса IV (цитрохром С оксидазы) электронтранспортной цепи. Кардиолипин находится практически исключительно во внутренней мембране митохондрий. С возрастом происходит снижение количества кардиолипина. Есть теория, что потеря функции кардиолипина связана с заменой насыщенных жирных кислот в его молекуле полиненасыщенными жирными кислотами. Для решения этого вопроса необходимо вводить в рацион насыщенные жиры, богатые, в первую очередь, стеариновой жирной кислотой.

Для повышения эффективности доставки насыщенных жирных кислот в мембрану возможно использование переносчиков. Например, – использование насыщенного фосфатидилхолина (дипальмитофосфатидилхолин и дисероилфосфатидилхолин), который, потенциально, сможет доставить насыщенные ЖК прямо в кардиолипин [10]. Холин, как переносчик, легко проходит через цитозоль и поступает в митохондрии.

Фосфатидная кислота (РА) ингибирует митохондриальное деление и стимулирует слияние внешних мембран (рис.7).

Как выглядит митохондрия фото
Рис.7 Регулирование слияния митохондрий фосфатидной кислотой (PA) и кардиолипином (CL) [из 9].

Во внешней мембране (ОМ) РА стимулирует митофузин-опосредованное (Mfn) слияние. Во внутренней мембране (IM) CL стимулирует Opa1-опосредованное слияние. Сокращения: ER — эндоплазматический ретикулум; MitoPLD,- митохондрия-локализованная фосфолипаза D.

3. Регуляция экспрессии митофузинов (белков, отвечающих за динамику митохондрий)

Все, о чем мы говорили выше (сalorie restriction, стеариновая кислота, фосфолипиды) действуют, влияя на экспрессию митофузинов.

Помимо этого, есть ряд препаратов, которые опосредованно могут влиять на динамику митохондрий. К ним можно отнести использование метформина.

Наиболее интересным является использование веществ, которые способны напрямую влиять на экспрессию митофузинов. Одним из потенциальных препаратов назван лефлюномид (leflunomide), который был одобрен FDA [5,11]. Он является индуктором экспрессии Mfn1 и Mfn2, а зарегистрирован был как препарат для лечения ревматоидного артрита.

Генная терапия митохондрий

Нарушение динамики митохондрий может быть связано с нарушением экспрессии белков, отвечающих за слияние и деление митохондрий. Помимо этого, нарушение функции этих белков может быть связано (и это и происходит чаще всего) с их мутациями. Тут есть два подхода к рассмотрению причинно-следственных взаимодействий нарушения функции митохондрий.

Ранее считалось, что образ жизни, в том числе переедание, приводит к образованию свободных радикалов, окислительному стрессу, мутациям митохондриального генома и, последовательно, нарушениям функциии митохондрий. Однако, в последнее время есть убедительные доказательства того, что мутации митохондриальной ДНК неизбежны, есть у всех (heteroplasmic DNA point mutations) и связаны с ошибками репликации, а не с оксидативными повреждениями, к которым митохондриальная ДНК довольно устойчива [12]. Уже на этапе оплодотворенной яйцеклетки часть наших митохондрий несут мутации. Со временем они делятся, мутантных митохондрий становится больше, они не могут нормально выполнять свою функцию.

Как выглядит митохондрия фото
Рис. 8 Клональное экспансия мутированных молекул мтДНК может приводить к митохондриальной дисфункции или может быть «спасено» компенсационным биогенезом [из 12].

Тут очень кстати можно было бы использовать редактирование генома митохондрий in vivo. Было показано, что для heteroplasmic DNA point mutations у мышей уже был достигнут значительный успех при помощи targeted zinc-finger nucleases (mtZFN) с доставкой при помощи аденовирусного вектора [13].

Перенос митохондрий

Другой многообещающий метод устранения дисфункции митохондрий – это трансплантация митохондрий. Суть этого подхода сводится к «замене» поврежденных митохондрий здоровыми экзогенными митохондриями. Впервые данный подход был использован клинически у детей с ишемией миокарда. Для трансплантации использовали аутологичные изолированные митохондрии, которые изолировали при прямой мышцы живота (делали биопсию, а затем готовили препарат), а затем вводили путем прямой инъекции [14]. Прорабатываются различные подходы введния митохондрий: прямое инъецирование изолированных митохондрий (локальное введение) и системное введение в кровоток, когда митохондрия сама «ищет» в какую клетку ей отправиться. Группы исследователей изучают возможность трансплантации митохондрий при болезни Паркинсона, ишемии печени, инсульте, митохондриальных заболеваниях [15].

Как выглядит митохондрия фото
Рис.9 Способы доставки экзогенных митохондрий в клетку

Автор Ольга Борисова

Источник: habr.com

На берегу древнего залива

Чтобы сказка получилась понятной, потратим какое-то время на описание того древнего мира, в котором мы оказались.

Жизнь, причем самая примитивная, теплилась только в океане, который снабжал живые организмы питательными веществами и защищал от губительных солнечных лучей. Сразу же хочется задать вопрос — почему «губительных», ведь мы ходим по улице, загораем, и ничего с нами не происходит. Это связано с тем, что солнечный свет содержит ультрафиолетовые лучи, которые отрицательно воздействуют на живые организмы (фотоны высоких энергий разрушают компоненты клеток, мембраны, ДНК и пр.). Недаром в микробиологических лабораториях и операционных отделениях больниц для дезинфекции используют свет ультрафиолетовых ламп.

Древняя атмосфера была проницаема для ультрафиолетовых лучей, поэтому первым организмам приходилось жить под защитой водной толщи. Современная атмосфера, как фильтр, задерживает эти губительные лучи и не позволяет им достигать поверхности Земли. Наиболее существенным фильтром является озон (О3), который образуется в верхних слоях атмосферы под действием солнечной радиации.

И вот мы направились к берегу морского залива, зачерпнули немного воды и увидели в ней небольшие комочки — одноклеточные организмы. Некоторые из них были потребителями растворенных в воде органических веществ, которые они всасывали всей поверхностью. Другие являлись хищниками и питались менее удачливыми собратьями. Предполагается, что даже в те далекие времена существовали не отдельные организмы, а сообщества, объединенные системой пищевых взаимоотношений.

Растворенное в воде органическое вещество образовывалось в атмосфере, в основном химическим путем за счет энергии ультрафиолетовых лучей, электрических разрядов при грозах и вулканической деятельности (Опарин, 1968; Бернал, 1969)*. Это были самые простые вещества — аминокислоты, белки, нуклеиновые кислоты, углеводы. Они постепенно накапливались в океане, превращая его в разбавленный «бульон», так как в то время было совсем немного организмов, способных его потреблять.

* — Это предположение, высказанное Опариным, было экспериментально проверено в 1953 году в знаменитом эксперименте Миллера—Юри, показавшем возможность синтеза различных органических веществ из неорганических под действием «экстремальных» факторов. Более того, полвека спустя в «остатках» этого эксперимента с помощью новых химических методик зарегистрировано куда более обширное разнообразие синтезированной органики, нежели предполагалось исходно: «Получены новые результаты старого эксперимента Стэнли Миллера». — Ред.

Появление первых примитивных одноклеточных организмов произошло не по мановению волшебной палочки*: на это потребовались миллионы лет. Большинство из них, так же как современные бактерии, водоросли, простейшие, потребляли растворенные в воде вещества всей своей поверхностью. Другие, так же как амебы, обволакивали жертву и растворяли ее.

* — В настоящее время предполагается, что этапу клеточной жизни на Земле предшествовали стадии химической эволюции и доклеточной жизни, когда роль биологических мембран играли пористые геологические породы, образующие древние гидротермальные источники: «К вопросу о происхождении жизни». — Ред.

Постепенно биомасса потребителей увеличивалась, а готовой пищи («бульона») в океане становилось все меньше и меньше. Наконец запасы питательных веществ, которые образовывались главным образом химическим путем, сократились настолько, что организмам его стало не хватать. Пища, которая когда-то была в неограниченном количестве, постепенно становилась дефицитной. Процветающая в то время жизнь начала приходить в упадок. По-видимому, это была одна из первых глобальных экологических катастроф. Организмы (а это были анаэробы, живущие при отсутствии кислорода в среде) должны были нащупать выход из сложившейся ситуации, найти иные источники энергии для жизнедеятельности, ведь на кону было само их существование.

Вскоре некоторые организмы «научились» использовать для своей жизнедеятельности энергию Солнца. С ее помощью они стали синтезировать органические вещества из неорганических, как когда-то это осуществлялось химическим путем, но только гораздо эффективнее. Так возник новый способ создания органического вещества, который называется фотосинтезом. Для синтеза простейшего органического вещества необходим углерод, водород и кислород. Оказалось, наиболее дефицитным элементом на Земле является водород. Поэтому организмы стали получать его из воды, которую расщепляли с помощью солнечной энергии. Водород воды и углекислый газ шел на построение органических молекул, а избыток кислорода как побочный продукт выделялся в среду. В то время он никому еще не был нужен.

Необходимо отметить, что кислород является сильным окислителем и представляет большую опасность не только для живых существ, но и для органических молекул, в том числе и тех, которые были созданы химическим путем. Как мы уже говорили, они являлись пищевым компонентом для примитивных анаэробов. Кислород стал вступать с органическими молекулами в химические реакции (окисляя их), изменял их структуру и свойства. Он как бы становился «пищевым конкурентом» для живых существ.

«Первооткрыватели» фотосинтеза — первые примитивные растения, которые смогли расщеплять воду и выделять в среду кислород, появились 2,3 млрд. лет назад (некоторые исследователи считают, что это произошло значительно раньше — 3,8 млрд. лет назад). Они чем-то напоминали современные одноклеточные водоросли, хотя были значительно проще по строению. Они не имели ядра, многих клеточных структур, клеточной оболочки. Эти «растения» плавали в поверхностном слое воды или обитали на скалах в мелководьях. Однако до настоящих растений им было еще очень и очень далеко.

Первые примитивные растения начали бурно развиваться, так как дефицита в солнечной энергии и питательных веществах для них не было. Они, так же как и современные растения, создавали органическое вещество и выделяли в среду кислород (в химии он обозначается O2). Вначале кислород шел на окисление неорганических соединений и только затем постепенно начал накапливаться в атмосфере. В верхних слоях атмосферы кислород под действием солнечных лучей превращался в озон (О3), который стал защищать поверхность Земли от губительных ультрафиолетовых лучей. Оказывается, в земных условиях ультрафиолетовая радиация солнца ограничена длинами волн 2900–2950 Å, которые как раз активно поглощаются озоном.

Под защитой озона живые организмы, прежде обитавшие в океане, получили возможность выйти на сушу (хотя до этого было еще очень далеко).

Одноклеточные примитивные растения своим появлением на Земле буквально совершили революцию, которая получила название «кислородная катастрофа». Потребители органического вещества (это были анаэробные организмы), которые до того питались тем, что создавалось химическим путем (т.е. «бульоном» океана), постепенно перешли на питание органическим веществом, создаваемым примитивными растениями. Однако они находились в двойственном положении. С одной стороны, они стали независимы от неконтролируемых сил стихии, с другой — выделяемый растениями кислород представлял для них смертельную опасность. Ведь анаэробы потребляют органические вещества в бескислородных условиях! В связи с этим перед анаэробами опять возникла дилемма. Они должны были найти пути защиты от возрастающего количества агрессивного молекулярного кислорода.

В живых организмах энергия потребленной пищи освобождается не одномоментно, как, к примеру, при горении пламени. Освобождение энергии идет в виде ступенчатого процесса, управляемого окислительными ферментами. В этом случае энергия органического вещества постепенно переходит в макроэнергетическую связь в молекуле АТФ (аденозинтрифосфат), которая синтезируется с использованием освобождающейся при усвоении пищи энергии. Анаэробы способны только частично окислять пищу: усваивается менее 10% энергии. Это же расточительно! Если перевести сказанное на бытовой язык, это то же самое, что топить печку дровами, которые сгорают не до золы, а, к примеру, до головешек.

Начальный этап этого процесса называется гликолизом. Он протекает в цитоплазме клетки и кислород для этого не нужен. При этом процессе теми самыми головешками, о которых шла речь выше, являются органические кислоты, спирты и пр., которые еще, как говорится, окислять и окислять. А окисление в данном случае равнозначно здоровому питанию.

Чтобы было более понятно, как происходит процесс использования энергии органического вещества при гликолизе, представим, к примеру, молекулу глюкозы в виде высокой стопки кирпичей. Если мы разрушим кладку одним ударом, кирпичи упадут, и выделится большое количество механической энергии. Этот процесс аналогичен горению пламени, когда одновременно выделяется большое количество тепла. Если же мы будем аккуратно последовательно сбрасывать по одному кирпичу на какой-то рычажок, в этом случае будет выполняться работа, эквивалентная всей стопке кирпичей. Этот процесс чем-то напоминает клеточное дыхание. Немного грубо, но, думаю, наглядно.

Аэробы же с участием в окислительном процессе кислорода «сжигают» пищу практически полностью, выделяя в качестве конечных продуктов лишь углекислый газ и воду, т.е. те соединения, которые использовались при фотосинтезе органического вещества.

Еще раз напомню: увеличивающееся количество кислорода в атмосфере и океане поставило жизнь (т.е. анаэробов) на грань выживания. Вскоре анаэробы нашли выход: появились первые организмы, которые научились использовать кислород. Причем они получили преимущество перед анаэробами, т.к. могли из одного и того же количества органического вещества (пищи, субстрата) получать большее количество энергии, сжигая органическое вещество более эффективно.

Более рациональное использование энергии, запасенной в органическом веществе, позволило этим организмам занять новую экологическую нишу. С этого времени судьба анаэробов была предрешена. Постоянно увеличивающееся в среде количество кислорода и развивающиеся вслед за ним аэробные организмы начинали вытеснять доминировавшую ранее группу. Анаэробы сохранились и поныне, но только в экстремальных бескислородных условиях (в частности, в рубце жвачных животных, в кишечнике некоторых насекомых, в глубинах океанов, горячих источниках и др.).

Давайте для удобства назовем эти новые организмы, способные жить в кислородной среде, «примитивными митохондриями».

А теперь постараемся рассмотреть процесс использования энергии органического вещества аэробными организмами в кислородных условиях, опять же на примере окисления глюкозы. При гликолизе первый этап окисления субстрата осуществляется до пировиноградной кислоты, и этот процесс осуществляется в цитоплазме клетки в бескислородных условиях. Появившиеся аэробы (мы договорились, что будем называть их «примитивными митохондриями») потребляют эти «головешки» (т.е. пировиноградную кислоту) и продолжают их дальнейшее расщепление. Этот процесс протекает с обязательным участием кислорода и называется аэробным дыханием.

В древнем Океане эти процессы осуществляли новые организмы, которые мы назвали «примитивные митохондрии». В клетках современных организмов гликолиз (бескислородный процесс) происходит в цитоплазме, а аэробный (т.е. кислородный) осуществляется внутри уже современных митохондрий, которые находятся (а может быть, живут) внутри клетки. Как они туда могли попасть, мы расскажем в виде сказки. Тем более что теория симбиогенеза (вот и появился новый термин) окончательно не признана учеными, хотя будоражит умы уже более ста лет.

Как мы уже отмечали, конечными продуктами аэробного процесса является углекислый газ и вода, т.к. энергия, запасенная в органическом веществе, используется более полно. Часть энергии запасается в АТФ и используется для жизнедеятельности клетки, а остальная — рассеивается в виде тепла. Так что, если есть пища, организм чувствует себя бодро и весело даже при сильных морозах. К примеру, маленькие синицы в нашем холодном климате чувствуют себя прекрасно, т.к. могут найти пищу в виде семян, жирных яиц, личинок и куколок насекомых.

Как появились митохондрии

А теперь продолжим рассказ, напоминающий сказку.

На мелководьях морей и океанов были благоприятные условия для жизни. Вода прогревалась солнечными лучами, а с поверхности земли вместе со стоками поступали минеральные соли, столь необходимые для жизнедеятельности водных организмов. А волны перемешивали все это. Мы зачерпнули немного воды, и нам удалось разглядеть плавающий в ней организм, чем-то напоминающий амебу. Она передвигалась с помощью ложноножек — выпячиваний содержимого организма. Протоплазма медленно перетекала в образующиеся ложноножки. При этом одни выпячивания исчезали, другие появлялись вновь, а очертания живого существа непрерывно менялись.

Наша древняя амеба медленно «перетекала» по поверхности субстрата, «посматривая» по сторонам, нет ли поблизости чего-нибудь вкусненького (кстати, она была анаэробом)*.

* — Давайте не забывать, что этот организм здесь называется амебой лишь условно. Амёба — это современный аэробный организм, содержащий и ядро, и во множестве митохондрии. Корректнее было бы говорить про древний фагоцитирующий организм, клеточная мембрана которого напоминает эукариотическую, но для целей сказки оставим всё как есть. — Ред.

Если поблизости появлялась жертва, амеба устремлялась к ней, хотя скорость ее передвижения была очень небольшой. Амеба обволакивала жертву, вовлекая ее внутрь тела. Затем пищу окружал пищеварительный сок, выделяемый протоплазмой. Образовывался пузырек — пищеварительная вакуоль, в которой частицы пищи превращались в растворимые вещества, за счет которых амеба передвигается, растет и размножается. Проходит немного времени, и от жертвы остаются «рожки да ножки», т.е. всё то, что не смогла переварить хищная амеба. Непереваренные остатки выбрасываются наружу, а пищеварительная вакуоль исчезает. Захват пищи и выбрасывание остатков происходит у амебы в любом участке тела.

Ты, мой друг, должен понимать, что мы используем многие термины только для красного словца, так как даже современные амебы (не говоря уже о примитивных) не могут смотреть по сторонам, думать и разговаривать. На то у нас и сказка!

Наша амеба была голодна и готова съесть все, что встретится ей на пути. Наконец, она набрела на небольшое существо (это была «примитивная митохондрия»), которое не успело спрятаться. Амеба обрадовалась, что пища сама ползет ей в «рот» и раскрыла «объятия» своими ложноножками. Перед нами предстала во всей красе драма взаимоотношения хищника и жертвы, причем, не менее трепетная, чем если бы это были, к примеру, лев и антилопа. Амеба обхватила свою жертву и приготовилась ее съесть, но тут митохондрия человеческим голосом молвила:

— Амеба-амеба, не ешь меня, я тебе еще пригожусь (в сказках так, кажется, говорят).

— Как ты мне можешь пригодиться, кроме как в качестве еды?

— О, ты даже не догадываешься, на что я способна. Меня называют митохондрией, я умею вырабатывать и запасать энергию. Я, можно сказать, ходячая электростанция. Кроме того, мне совершенно не страшен кислород.

Наша амеба, конечно, ничего не поняла из сказанного, но, подумав, решила оставить ее жить внутри своего тела. Скорее всего, на нее подействовало магическое слово «кислород», которого в то время большинство живых существ (в том числе и амеба) боялись пуще огня (более страшного слова трудно придумать). Еду можно найти, а «митохондрия» может и сгодится в хозяйстве. В крайнем случае, ее всегда можно переварить, никуда она не денется.

«Такого не может быть», — скажете вы. — «Во-первых, амеба хищник, и вряд ли будет церемониться со своей жертвой. Во-вторых, если организм попал внутрь клетки, то он обязательно должен быть переварен». Я с вами в чем-то согласен, однако ведь существуют и исключения из правил.

Что касается «проживания» живых организмов внутри чужой клетки, то таких примеров много. В живой природе широко распространено явление симбиоза, когда один организм поселяется внутри другого. При этом они оба — хозяин и квартирант — приносят друг другу пользу.

Внутри инфузорий, моллюсков, кораллов, морских червей и других животных преспокойно обитают микроскопические водоросли, которые при высокой численности порой окрашивают своих хозяев в зеленый цвет. Они обитают внутри клетки в качестве симбионтов, снабжая организм хозяина питательными веществами. В свою очередь они потребляют продукты его жизнедеятельности.

Процесс пошел

А теперь давайте опять вернемся к нашей амебе, которая приютила в своем теле митохондрию. Последней в клетке амебы очень понравилось, и зажила она там в свое удовольствие. Митохондрия перестала думать о своем пропитании, защите от хищников и многом, с чем сталкивается в течение жизни живое существо. Решение этих проблем взяла на себя амеба.

Какая же польза амебе от присутствия митохондрий? Оказалось — огромная, о которой она не могла и мечтать. За счет митохондрии анаэробная амеба стала аэробной: приобрела способность использовать кислород воздуха. В результате такого сожительства жизнь амебы резко изменилась. Она не только перестала бояться кислорода, он даже стал необходимым для нее. За счет этого изменился обмен веществ, она стала более полно усваивать пищу, а это положительно сказалось на ее здоровье и самочувствии. Так что митохондрия не обманула, когда говорила, что пригодится в хозяйстве.

Амеба по секрету рассказала о своем приобретении подружке, та (тоже по секрету) — своей. Вскоре эта новость разнеслась по всему заливу, где они обитали, затем — все дальше и дальше… Наверное, вряд ли кому когда-то посчастливится стать таким же знаменитым, как наша амеба. Каждое живое существо огромного океана знало имя амебы и следило за ее самочувствием. Ведь для большинства из них амеба была «подопытным кроликом».

Вскоре наиболее отважные (а может быть — бóльшие модники) начали заводить в своем «доме» (т.е. в клетке) собственных митохондрий. Желающих становилось все больше и больше. Вскоре появился дефицит митохондрий, их стало не хватать на всех. Живые существа начали гоняться за каждой митохондрией, предлагая лучшие условия жизни, чем у соседей. Вскоре в ход пошли иные существа, которые обитали в огромном океане. Одни уговорили жить с ними мельчайших клеток водорослей, другие — спирохет… В любом сообществе (или обществе, если говорить о людях) есть состоятельные особи, а есть и бедные. Соответственно, они смогли пригласить для жилья разное количество организмов. У одних такой союз быстро распадался, как и браки у людей. У других он был более длительным.

Так появились современные клетки, внутри которых обитают митохондрии.

Почему сожительство амебы и митохондрии стало таким длительным и счастливым? Это, скорее всего, связано с тем, что амеба не эксплуатировала своих квартирантов. Митохондрии внутри клетки хозяина сохранили некоторую независимость. Они имеют собственную генетическую информацию, записанную в ДНК, сами синтезируют некоторые белки, способны размножаться делением, могут перемещаться внутри клетки хозяина. При делении клетки хозяина часть митохондрий переходит в новую клетку, и они достаточно быстро восстанавливают свою численность по согласованию с хозяином. А вот существовать отдельно от клетки-хозяина они уже не могут — разучились. Сейчас почти во всех клетках современных растений, грибов и животных продолжают жить эти квартиранты, став необходимой их частью.

Источник: biomolecula.ru

Происхождение митохондрий[править | править код]

В соответствии с теорией симбиогенеза, митохондрии появились в результате захвата примитивными клетками (прокариотами) бактерий. Клетки, которые не могли сами использовать кислород для генерации энергии, имели серьёзные ограничения в возможностях развития; бактерии же (прогеноты) могли это делать. В процессе развития таких отношений прогеноты передали множество своих генов сформировавшемуся, благодаря повысившейся энергоэффективности, ядру теперь уже эукариот[2]. Вот почему современные митохондрии больше не являются самостоятельными организмами. Хотя их геном кодирует компоненты собственной системы синтеза белка, многие ферменты и белки, необходимые для их функционирования, кодируются ядерными хромосомами, синтезируются в цитоплазме клетки и только потом транспортируются в органеллы.

Митохондрии в клетке[править | править код]

Впервые митохондрии обнаружены в виде гранул в мышечных клетках в 1850 году. Число митохондрий в клетке непостоянно. Их особенно много в клетках, у которых велика потребность в кислороде. По своему строению митохондрии представляют собой органеллы, обычно сферической формы, встречающиеся в эукариотической клетке в количестве от нескольких сотен до 1—2 тысяч и занимающие 10—20% её внутреннего объёма. Сильно варьируются также размеры (от 1 до 70 мкм) и форма митохондрий. В зависимости от того, в каких участках клетки в каждый конкретный момент времени происходит повышенное потребление энергии, митохондрии способны перемещаться по цитоплазме в зоны наибольшего энергопотребления, используя для движения структуры цитоскелета эукариотической клетки. В клетках растений и животных одновременно и примерно в равных количествах существуют три типа митохондриальных органелл: молодые протомитохондрии, зрелые митохондрии и старые постмитохондрии, деградирующие в липофусциновые гранулы[3].

Структура митохондрий[править | править код]

Наружная мембрана[править | править код]

Наружная мембрана митохондрии имеет толщину около 7 нм, не образует впячиваний и складок и замкнута сама на себя. На наружную мембрану приходится около 7% площади поверхности всех мембран клеточных органелл. Основная функция — отграничение митохондрии от цитоплазмы. Наружная мембрана митохондрии состоит из липидов с вкраплениями белков (соотношение 2 : 1). Особую роль играет порин — каналообразующий белок. Он образует в наружной мембране отверстия диаметром 2-3 нм, через которые могут проникать небольшие молекулы и ионы весом до 5 кДа. Крупные молекулы могут проникать сквозь наружную мембрану только посредством активного транспорта с помощью транспортных белков митохондриальных мембран. Для наружной мембраны характерно присутствие ферментов: монооксигеназы, ацил-СоА-синтетазы и фосфолипазы А2. Наружная мембрана митохондрии может взаимодействовать с мембраной эндоплазматического ретикулума; это играет важную роль в транспортировке липидов и ионов кальция.

Межмембранное пространство[править | править код]

Межмембранное пространство представляет собой пространство между наружной и внутренней мембранами митохондрии. Его размер — 10-20 нм. Так как наружная мембрана митохондрии проницаема для небольших молекул и ионов, их концентрация в периплазматическом пространстве мало отличается от таковой в цитоплазме. Крупным же белкам для транспорта из цитоплазмы в периплазматическое пространство необходимо иметь специфические сигнальные пептиды; поэтому белковые компоненты периплазматического пространства и цитоплазмы различны. Одним из белков, содержащихся не только во внутренней мембране, но и в периплазматическом пространстве, является цитохром c.

Внутренняя мембрана[править | править код]

Внутренняя мембрана состоит в основном из белковых комплексов (соотношение белок/липид — 3:1) и образует многочисленные гребневидные складки — кристы, существенно увеличивающие площадь её поверхности и, например, в клетках печени составляет около трети всех клеточных мембран. Характерной чертой состава внутренней мембраны митохондрий является присутствие в ней кардиолипина — особого фосфолипида, содержащего сразу четыре жирные кислоты и делающего мембрану абсолютно непроницаемой для протонов. Ещё одна особенность внутренней мембраны митохондрий — очень высокое содержание белков (до 70 % по весу), представленных транспортными белками, ферментами дыхательной цепи, а также крупными АТФ-синтетазными комплексами. Внутренняя мембрана митохондрии в отличие от внешней не имеет специальных отверстий для транспорта мелких молекул и ионов; на ней, на стороне, обращённой к матриксу, располагаются особые молекулы АТФ-синтазы, состоящие из головки, ножки и основания. При прохождении через них протонов происходит синтез АТФ. В основании частиц, заполняя собой всю толщу мембраны, располагаются компоненты дыхательной цепи. Наружная и внутренняя мембраны в некоторых местах соприкасаются, там находится специальный белок-рецептор, способствующий транспорту митохондриальных белков, закодированных в ядре, в матрикс митохондрии.

Матрикс[править | править код]

Матрикс — ограниченное внутренней мембраной пространство. В матриксе (розовом веществе) митохондрии находятся ферментные системы окисления пирувата, жирных кислот, а также ферменты цикла трикарбоновых кислот (цикла Кребса). Кроме того, здесь же находится митохондриальная ДНК, РНК и собственный белоксинтезирующий аппарат митохондрии.

Митохондриальная ДНК[править | править код]

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре. В целом митохондриальная ДНК кодирует 2 рРНК, 22 тРНК и 13 субъединиц ферментов дыхательной цепи, что составляет не более половины обнаруживаемых в ней белков. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с-редуктазы. При этом все белки, кроме одного, две рибосомные и шесть транспортных РНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

На этом фоне геном митохондрий растений значительно больше и может достигать 370000 нуклеотидных пар, что примерно в 20 раз больше описанного выше генома митохондрий человека. Количество генов здесь также примерно в 7 раз больше, что сопровождается появлением в митохондриях растений дополнительных путей электронного транспорта, не сопряжённых с синтезом АТФ.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ATA вместо изолейцина в стандартном коде кодирует аминокислоту метионин, кодоны AGA и AGG, обычно кодирующие аргинин, являются стоп-кодонами, а кодон TGA, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четыре кодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70S-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.

В специализированных (не делящихся) клетках митохондрии обычно не делятся. Обновление пула митохондрий в этом случае происходит путём созревания митохондрий из протомитохондрий, имеющих исходно диаметр 0,1-0,2 микрона. Откуда берутся протомитохондрии неизвестно, но предполагается, что затравкой для них служит ДНК постмитохондрий, высвобождающаяся в цитоплазму. Протомитохондрии обладают высокой скоростью дыхания, но невысоким дыхательным контролем (Векшин Н. Л. и др. 2004—2014).

Митохондриальные белки[править | править код]

Количество транслируемых с митохондриальной мРНК белков, формирующих субъединицы крупных ферментных комплексов, ограничено. Значительная часть белков кодируется в ядре и синтезируется на цитоплазматических 80S-рибосомах. В частности, так образуются некоторые белки — переносчики электронов, митохондриальные транслоказы, компоненты транспорта белков в митохондрии, а также факторы, необходимые для транскрипции, трансляции и репликации митохондриальной ДНК. При этом подобные белки на своём N-конце имеют особые сигнальные пептиды, размер которых варьирует от 12 до 80 аминокислотных остатков. Данные участки формируют амфифильные завитки, обеспечивают специфический контакт белков со связывающими доменами митохондриальных распознающих рецепторов, локализованных на наружной мембране. До наружной мембраны митохондрии данные белки транспортируются в частично развёрнутом состоянии в ассоциации с белками-шаперонами (в частности — с hsp70). После переноса через наружную и внутреннюю мембраны в местах их контактов поступающие в митохондрию белки вновь связываются с шаперонами, но уже собственного митохондриального происхождения, которые подхватывают пересекающий мембраны белок, способствуют его втягиванию в митохондрию, а также контролируют процесс правильного сворачивания полипептидной цепи. Большинство шаперонов обладает АТФазной активностью, в результате чего как транспорт белков в митохондрию, так и образование их функционально активных форм являются энергозависимыми процессами.

Функции митохондрий и энергообразование[править | править код]

Одной из основных функций митохондрий является синтез АТФ — универсальной формы химической энергии в любой живой клетке. Как и у прокариот, данная молекула может образовываться двумя путями: в результате субстратного фосфорилирования в жидкой фазе (например, при гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент ΔμН+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В целом весь процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние — на кристах митохондрий:

  1. Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;
  2. Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН и двух молекул СО2;
  3. Перенос электронов с НАДН на кислород по дыхательной цепи с образованием Н2О;
  4. Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.

Ещё в цитоплазме в серии из 10 отдельных ферментативных реакций гликолиза шестиуглеродная молекула глюкозы частично окисляется до двух трёхуглеродных молекул пирувата с образованием двух молекул АТФ. Затем пируват переносится из цитозоля через наружную и внутреннюю мембраны в матрикс, где первоначально декарбоксилируется и превращается в ацетил-СоА. Этот процесс катализируется крупным пируватдегидрогеназным комплексом, имеющим размер, сопоставимый с размером рибосомы, и состоящим из трёх ферментов, пяти коферментов и двух регуляторных белков. Точно так же жирные кислоты, полученные при расщеплении нерастворимых триглицеридов в цитоплазме, переносятся в митохондриальный матрикс в виде ацил-СоА-производных и подвергаются бета-окислению с образованием ацетил-СоА.

На следующем этапе, также протекающем в матриксе митохондрии, ацетил-СоА полностью окисляется в цикле Кребса. В его работе задействованы четыре отдельных фермента, за каждый цикл обеспечивающие распад ацетил-СоА на два атома углерода, в виде СО2. Этот процесс обеспечивает образование одной молекулы ГТФ, а также НАДН — высокоэнергетического промежуточного соединения, которое легко отдаёт электроны в цепь переноса электронов на кристах митохондрий.

Дальнейшие процессы энергообразования в митохондрии происходят на её кристах и связаны с переносом электронов от НАДН к кислороду. В соответствии с тем, что потребление кислорода в качестве окислителя обычно называют «внутриклеточным дыханием», электронно-транспортную цепь ферментов, осуществляющих последовательный перенос электронов от НАДН к кислороду, часто называют «дыхательной цепью». При этом трансформация энергии окисления осуществляется ферментами, расположенными на кристах митохондрий и осуществляющими векторный (направленный по отношению к сторонам мембраны) перенос протонов водорода из матрикса митохондрии в межмембранное пространство. В этом состоит принципиальное отличие работы оксидоредуктаз дыхательной цепи от функционирования ферментов, катализирующих реакции в гомогенном (изотропном) растворе, где вопрос о направлении реакции в пространстве не имеет смысла.

Весь процесс переноса электрона по дыхательной цепи может быть разбит на три стадии, каждая из которых катализируется отдельным трансмембранным липопротеидным комплексом (I, III и IV), встроенным в мембрану кристы митохондрии. В состав каждого из названных комплексов входят следующие компоненты:

  1. Большой олигомерный фермент, катализирующий перенос электронов;
  2. Небелковые органические (простетические) группы, принимающие и высвобождающие электроны;
  3. Белки, обеспечивающие движение электронов.

Каждый из этих комплексов осуществляет перенос электронов от донора к акцептору по градиенту редокс-потенциала через ряд последовательно функционирующих переносчиков. В качестве последних в дыхательной цепи митохондрий функционируют мигрирующие в плоскости мембраны жирорастворимые молекулы убихинона, а также небольшие (молекулярная масса 13 кДа) водорастворимые белки, содержащие ковалентно связанный гем и называемые «цитохромами с». При этом три из пяти компонентов, составляющих дыхательную цепь, работают так, что перенос электронов сопровождается переносом протонов через мембрану крист митохондрий в направлении из матрикса в межмембранное пространство.

Дыхательная цепь начинается с комплекса I (НАДН-убихинон-оксидоредуктаза), состоящего как минимум из 26 полипептидных цепей и имеющего молекулярную массу около 850 кДа. Функциональная активность этого комплекса определяется тем, что он содержит в своём составе более 20 атомов железа, упакованных в ячейки из атомов серы, а также флавин (флавинмононуклеотид — производное витамина рибофлавина). Комплекс I катализирует окисление НАДН, отщепляя от него два электрона, которые после «путешествия» по окислительно-восстановительным компонентам комплекса I попадают на молекулу-переносчик, в качестве которой выступает убихинон (Q). Последний способен ступенчато восстанавливаться, принимая на себя по два электрона и протона и, таким образом, превращаясь в восстановленную форму — убихинол (QH2).

Энергетический потенциал (запас энергии) в молекуле убихинола существенно ниже, чем в молекуле НАДН, а разница в подобной энергии временно запасается в виде электрохимического протонного градиента. Последний возникает в результате того, что перенос электронов по простетическим группам комплекса I, ведущий к снижению энергетического потенциала электронов, сопровождается трансмембранным переносом двух протонов из матрикса в межмембранное пространство митохондрии.

Восстановленный убихинол мигрирует в плоскости мембраны, где достигает второго фермента дыхательной цепи — комплекса III (цитохром bc1). Последний представляет собой димер с молекулярной массой более 300 кДа, сформированный из восьми полипептидных цепей и содержащий атомы железа как в виде железосерных центров, так и в виде комплексов с гемами b(I), b(II) и c1 — сложными гетероциклическими молекулами с четырьмя атомами азота, расположенными по углам металлосвязывающего квадрата. Комплекс III катализирует реакцию окисления двух убихинолов до убихинонов, восстанавливая две молекулы цитохрома c (гемсодержащий переносчик, находящегося в межмембранном пространстве). Отщепляющиеся при этом от убихинолов четыре протона освобождаются в межмембранное пространство, продолжая формирование электрохимического градиента.

Последняя стадия катализируется комплексом IV (цитохром c-оксидаза) с молекулярной массой около 200 кДа, состоящим из 10-13 полипептидных цепей и, помимо двух различных гемов, включающим также несколько атомов меди, прочно связанных с белками. При этом электроны, отбираемые у восстановленного цитохрома c, пройдя по атомам железа и меди в составе комплекса IV, попадают на связанный в активном центре этого фермента кислород, что приводит к образованию воды.

Таким образом, суммарная реакция, катализируемая ферментами дыхательной цепи, состоит в окислении НАДН кислородом с образованием воды. По сути этот процесс заключается в ступенчатом переносе электронов между атомами металлов, присутствующих в простетических группах белковых комплексов дыхательной цепи, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. При этом сами электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая же при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. При этом считается, что в процессе транспорта по дыхательной цепи пары электронов перекачивается от трёх до шести протонов.

Завершающим этапом функционирования митохондрии является генерация АТФ, осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом с молекулярной массой 500 кДа. Этот комплекс, называемый АТФ-синтазой, как раз и катализирует синтез АТФ путём конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ.

АТФ-синтаза[править | править код]

В структурно-функциональном плане АТФ-синтаза состоит из двух крупных фрагментов, обозначаемых символами F1 и F0. Первый из них (фактор сопряжения F1) обращён в сторону матрикса митохондрии и заметно выступает из мембраны в виде сферического образования высотой 8 нм и шириной 10 нм. Он состоит из девяти субъединиц, представленных пятью типами белков. Полипептидные цепи трёх субъединиц α и стольких же субъединиц β уложены в похожие по строению белковые глобулы, которые вместе образуют гексамер (αβ)3, имеющий вид слегка приплюснутого шара. Подобно плотно уложенным долькам апельсина, последовательно расположенные субъединицы α и β образуют структуру, характеризующуюся осью симметрии третьего порядка с углом поворота 120°. В центре этого гексамера находится субъединица γ, которая образована двумя протяжёнными полипептидными цепями и напоминает слегка деформированный изогнутый стержень длиной около 9 нм. При этом нижняя часть субъединицы γ выступает из шара на 3 нм в сторону мембранного комплекса F0. Также внутри гексамера находится минорная субъединица ε, связанная с γ. Последняя (девятая) субъединица обозначается символом δ и расположена на внешней стороне F1.

Мембранная часть АТФ-синтазы, называемая фактором сопряжения F0, представляет собой гидрофобный белковый комплекс, пронизывающий мембрану насквозь и имеющий внутри себя два полуканала для прохождения протонов водорода. Всего в состав комплекса F0 входит одна белковая субъединица типа а, две копии субъединицы b, а также от 9 до 12 копий мелкой субъединицы c. Субъединица а (молекулярная масса 20 кДа) полностью погружена в мембрану, где образует шесть пересекающих её α-спиральных участков. Субъединица b (молекулярная масса 30 кДа) содержит лишь один сравнительно короткий погружённый в мембрану α-спиральный участок, а остальная её часть заметно выступает из мембраны в сторону F1 и закрепляется за расположенную на её поверхности субъединицу δ. Каждая из 9-12 копий субъединицы c (молекулярная масса 6-11 кДа) представляет собой сравнительно небольшой белок из двух гидрофобных α-спиралей, соединённых друг с другом короткой гидрофильной петлёй, ориентированной в сторону F1, а все вместе образуют единый ансамбль, имеющий форму погружённого в мембрану цилиндра. Выступающая из комплекса F1 в сторону F0 субъединица γ как раз и погружена внутрь этого цилиндра и достаточно прочно зацеплена за него.

Таким образом, в молекуле АТФ-синтазы можно выделить две группы белковых субъединиц, которые могут быть уподоблены двум деталям мотора: ротору и статору. «Статор» неподвижен относительно мембраны и включает в себя шарообразный гексамер (αβ)3, находящуюся на его поверхности и субъединицу δ, а также субъединицы a и b мембранного комплекса F0. Подвижный относительно этой конструкции «ротор» состоит из субъединиц γ и ε, которые, заметно выступая из комплекса (αβ)3, соединяются с погружённым в мембрану кольцом из субъединиц c.

Способность синтезировать АТФ — свойство единого комплекса F0F1, сопряжённого с переносом протонов водорода через F0 к F1, в последнем из которых как раз и расположены каталитические центры, осуществляющие преобразование АДФ и фосфата в молекулу АТФ. Движущей же силой для работы АТФ-синтазы является протонный потенциал, создаваемый на внутренней мембране митохондрий в результате работы цепи электронного транспорта.

Сила, приводящая в движение «ротор» АТФ-синтазы, возникает при достижении разности потенциалов между наружной и внутренней сторонами мембраны > 220 мВ и обеспечивается потоком протонов, протекающих через специальный канал в F0, расположенный на границе между субъединицами a и c. При этом путь переноса протонов включает в себя следующие структурные элементы:

  1. Два расположенных несоосно «полуканала», первый из которых обеспечивает поступление протонов из межмембранного пространства к существенно важным функциональным группам F0, а другой обеспечивает их выход в матрикс митохондрии;
  2. Кольцо из субъединиц c, каждая из которых в своей центральной части содержит протонируемую карбоксильную группу, способную присоединять H+ из межмембранного пространства и отдавать их через соответствующие протонные каналы. В результате периодических смещений субъединиц с, обусловленных потоком протонов через протонный канал происходит поворот субъединицы γ, погружённой в кольцо из субъединиц с.

Таким образом, каталитическая активность АТФ-синтазы непосредственно связана с вращением её «ротора», при котором поворот субъединицы γ вызывает одновременное изменение конформации всех трёх каталитических субъединиц β, что в конечном счёте и обеспечивает работу фермента. При этом в случае образования АТФ «ротор» крутится по часовой стрелке со скоростью четыре оборота в секунду, а само подобное вращение происходит дискретными скачками по 120°, каждый из которых сопровождается образованием одной молекулы АТФ.

Непосредственная функция синтеза АТФ локализована на β-субъединицах сопрягающего комплекса F1. При этом самым первым актом в цепи событий, приводящих к образованию АТФ, является связывание АДФ и фосфата с активным центром свободной β-субъединицы, находящейся в состоянии 1. За счёт энергии внешнего источника (тока протонов) в комплексе F1 происходят конформационные изменения, в результате которых АДФ и фосфат становятся прочно связанными с каталитическим центром (состояние 2), где становится возможным образование ковалентной связи между ними, ведущей к образованию АТФ. На данной стадии АТФ-синтазы ферменту практически не требуется энергии, которая будет необходима на следующем этапе для освобождения прочно связанной молекулы АТФ из ферментативного центра. Поэтому следующий этап работы фермента заключается в том, чтобы в результате энергозависимого структурного изменения комплекса F1 каталитическая β-субъединица, содержащая прочно связанную молекулу АТФ, перешла в состояние 3, в котором связь АТФ с каталитическим центром ослаблена. В результате этого молекула АТФ покидает фермент, а β-субъединица возвращается в исходное состояние 1, благодаря чему обеспечивается цикличность работы фермента.

Работа АТФ-синтазы связана с механическими движениями её отдельных частей, что позволило отнести этот процесс к особому типу явлений, названных «вращательным катализом». Подобно тому, как электрический ток в обмотке электродвигателя приводит в движение ротор относительно статора, направленный перенос протонов через АТФ-синтазу вызывает вращение отдельных субъединиц фактора сопряжения F1 относительно других субъединиц ферментного комплекса, в результате чего это уникальное энергообразующее устройство совершает химическую работу — синтезирует молекулы АТФ. В дальнейшем АТФ поступает в цитоплазму клетки, где расходуется на самые разнообразные энергозависимые процессы. Подобный перенос осуществляется специальным встроенным в мембрану митохондрий ферментом АТФ/АДФ-транслоказой, который обменивает вновь синтезированную АТФ на цитоплазматическую АДФ, что гарантирует сохранность фонда адениловых нуклеотидов внутри митохондрий.

Митохондрии и наследственность[править | править код]

ДНК митохондрий наследуются почти исключительно по материнской линии. Каждая митохондрия имеет несколько участков нуклеотидов в ДНК, идентичных во всех митохондриях (то есть в клетке много копий митохондриальных ДНК), что очень важно для митохондрий, неспособных восстанавливать ДНК от повреждений (наблюдается высокая частота мутаций). Мутации в митохондриальной ДНК являются причиной целого ряда наследственных заболеваний человека.

История изучения[править | править код]

Митохондрия была открыта в середине XIX века. В конце XX века стало известно, что, выпуская сигнальные молекулы, митохондрии активируют смерть клетки[4].

См. также[править | править код]

  • Симбиогенез
  • Митохондриальная ДНК
  • Митохондриальная Ева
  • Митохондриальные заболевания
  • Гидрогеносомы

Литература[править | править код]

  • М. Б. Беркинблит, С. М. Глаголев, В. А. Фуралев. Общая биология. — М.: МИРОС, 1999.
  • Д. Тейлор, Н. Грин, У. Стаут. Биология. — М.: МИР, 2006.
  • Э. Уиллет. Генетика без тайн. — М.: ЭКСМО, 2008.
  • Д. Г. Дерябин. Функциональная морфология клетки. — М.: КДУ, 2005.
  • Белякович А.Г. Изучение митохондрий и бактерий с помощью соли тетразолия п-НТФ. — Пущино: ОНТИ НЦБИ АН СССР, 1990.
  • Н. Л. Векшин. Флуоресцентная спектроскопия биополимеров. Пущино, Фотон, 2009.

Источник: ru.wikipedia.org