Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.


Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.


Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:


Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.


Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2

Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Источник: studarium.ru

Что такое фотосинтез?

Фотосинтез – биохимический процесс, во время которого с помощью особых пигментов растений и энергии света из неорганических веществ (углекислого газа, воды) возникают органические. Это один из наиболее важных процессов, за счет которого появилось и продолжает существовать большинство организмов на планете.


Распределение фотосинтеза
Распределение фотосинтеза

Значение фотосинтеза для жизни на Земле


Без фотосинтеза вместо множества живых организмов на нашей планете существовали бы одни лишь бактерии. Именно энергия, полученная в результате данного химического процесса, позволила бактериям эволюционировать.

Любые природные процессы нуждаются в энергии. Она поступает от Солнца. Но правильную форму солнечный свет приобретает лишь после того, как преобразовывается растениями.

Растения используют лишь часть энергии, а остальную накапливают в себе. Ими питаются травоядные животные, которые являются пищей для хищников. В ходе образовавшейся цепочки каждое звено получает необходимые ценные вещества и энергию.

Растения, наподобие солнечных панелей, преобразовывают энергию света
Растения, наподобие солнечных панелей, преобразовывают энергию света

Кислород, вырабатываемый в ходе реакции, необходим для дыхания всем существам. Дыхание представляет процесс, противоположный фотосинтезу. При этом органические вещества окисляются, разрушаются. Полученная энергия используется организмами для выполнения различных жизненно необходимых задач.

В период существования планеты, когда растений было мало, кислород практически отсутствовал. Примитивные формы жизни получали минимум энергии другими способами. Ее было слишком мало для развития. Поэтому дыхание за счет кислорода открыло более широкие возможности.

Еще одна функция фотосинтеза – защита организмов от воздействия ультрафиолетового света. Речь идет об озоновом слое, находящемся в зоне стратосферы на высоте около 20-25 км. Образуется он за счет кислорода, который превращается в озон под действием солнечного света. Без этой защиты жизнь на Земле ограничивалась бы только подводными организмами.


Озоновый слой
Озоновый слой

Организмы выделяют во время дыхания углекислый газ. Он является обязательным элементом фотосинтеза. В противном случае углекислый газ просто накапливался бы в верхних слоях атмосферы, значительно усиливая парниковый эффект.

Это серьезная экологическая проблема, суть которой состоит в повышении температуры атмосферы с негативными последствиями. К ним относится изменение климата (глобальное потепление), таяние ледников, повышение уровня Мирового океана и др.

Функции фотосинтеза:

  • выделение кислорода;
  • образование энергии;
  • образование питательных веществ;
  • создание озонового слоя.

Определение и формула фотосинтеза

Термин «фотосинтез» произошел от сочетания двух слов: фото и синтез. В переводе с древнегреческого они означают «свет» и «соединение» соответственно. Таким образом, энергия света превращается в энергию связей органических веществ.

Упрощенная схема фотосинтеза
Упрощенная схема фотосинтеза

Схема:

Углекислый газ + вода + свет = углевод + кислород.

Научная формула фотосинтеза:

6СО2 + 6Н2О → С6Н12О6 + 6О2.

Фотосинтез происходит так, что непосредственный контакт воды и СО2 не наблюдается.

Значение фотосинтеза для растений

Растениям для роста и развития требуются органические вещества, энергия. Благодаря фотосинтезу они обеспечивают себя данными компонентами. Создание органических веществ – основная цель фотосинтеза для растений, а выделение кислорода считается побочной реакцией.

Образование органических веществ
Образование органических веществ

Как происходит фотосинтез?

Фотосинтез протекает непосредственно в зеленых частях растений – хлоропластах. Они входят в состав растительных клеток. Хлоропласты содержат вещество – хлорофилл. Это и есть тот основной фотосинтетический пигмент, благодаря нему происходит вся реакция. Кроме того, хлорофилл определяет зеленый цвет растительности.

Хлоропласты в клетках растения
Хлоропласты в клетках растения

Для этого пигмента характерна способность поглощать свет. А в клетках растения запускается настоящая биохимическая «лаборатория», в которой вода и СО2 превращаются в кислород, углеводы.

Вода поступает через корневую систему растения, а газ проникает непосредственно в листья. Свет выступает в качестве источника энергии. Когда частица света действует на молекулу хлорофилла, происходит ее активация. В молекуле воды H2O кислород (O) остается невостребованным. Таким образом, он становится побочным для растений, но таким важным для нас, продуктом реакции.

Фазы фотосинтеза

Фотосинтез делится на две стадии: световую и темновую. Протекают они одновременно, но в разных частях хлоропласта. Название каждой фазы говорит само за себя. Световая или светозависимая фаза происходит только при участии частиц света. Темновой или светонезависимой фазе наличие света не требуется.

Прежде чем рассматривать каждую фазу подробнее, стоит разобраться в строении хлоропласта, поскольку оно определяет суть и место протекания стадий. Хлоропласт является разновидностью пластид и внутри клетки расположен отдельно от остальных ее компонентов. Он имеет форму зернышка.

Строение хлоропласта
Строение хлоропласта

Составляющие части хлоропласта, участвующие в фотосинтезе:

  • 2 мембраны;
  • строма (внутренняя жидкость);
  • тилакоиды;
  • люмены (просветы внутри тилакоидов).

Световая фаза фотосинтеза

Протекает на тилакоидах, точнее, их мембранах. Когда на них попадает свет, выделяются и накапливаются негативно заряженные электроны. Таким образом, фотосинтетические пигменты лишаются всех электронов, после чего наступает очередь распада молекул воды:

H2O → Н+ + ОН-

При этом образованные протоны водорода имеют положительный заряд и копятся на внутренней мембране тилакоида. В итоге протоны с зарядом плюс и электроны с зарядом минус разделены лишь мембраной.

Происходит выработка кислорода, как побочного продукта:

4ОН → О2 + 2H2O

В определенный момент фазы электронов и протонов водорода становится слишком много. Тогда в работу вступает фермент – АТФ-синтаза. Его задача состоит в том, чтобы переместить протоны водорода из мембраны тилакоида в жидкую среду хлоропласта – строму.

Фазы фотосинтеза
Фазы фотосинтеза

На этом этапе водород попадает в распоряжение другого переносчика – НАДФ (сокращение от никотинамиддинуклеотидфосфат). Это также разновидность фермента, который ускоряет окислительные реакции в клетках. В данном случае его работа состоит в транспортировке протонов водорода в реакции углеводов.

На данной стадии происходит процесс фотофосфолирования, во время него вырабатывается огромное количество энергии. Ее источником является АТФ – аденозинтрифосфорная кислота.

Краткая схема:

  1. Попадание кванта света на хлорофилл.
  2. Выделение электронов.
  3. Выделение кислорода.
  4. Образование НАДФН-оксидазы.
  5. Образование энергии АТФ.
Вельвичия удивительная
Вельвичия удивительная

Темновая фаза фотосинтеза

Светонезависимая фаза происходит непосредственно в строме. Она представляет собой ряд ферментативных реакций. Углекислый газ, поглощенный на световой стадии, растворился в воде, а на этом этапе он восстанавливается до глюкозы. Также вырабатываются сложные органические вещества.

Реакции темновой фазы делятся на три основных типа и зависят от вида растений (точнее, их метаболизма), в клетках которых происходит фотосинтез:

  • С3-растения;
  • С4-растения;
  • САМ-растения.
Типы реакций темновой фазы
Типы реакций темновой фазы

К С3-растениям относится большая часть культур сельскохозяйственного назначения, которые растут в умеренном климате. В ходе фотосинтеза у них углекислый газ становится фосфоглицериновой кислотой.

К С4-растениям принадлежат субтропические и тропические виды, преимущественно сорняки. Для них характерна трансформация углекислого газа в оксалоацетат. САМ-растения – категория растений, которым не хватает влаги. Они отличаются особенным видом фотосинтеза – CАМ.

С3-фотосинтез

Наиболее распространенным является С3-фотосинтез, который также именуется циклом Кальвина – в честь американского ученого Мелвина Кальвина, который внес огромный вклад в изучение данных реакций и получил за это Нобелевскую премию.

Растения называются С3 из-за того, что во время реакций темновой фазы образуются 3-углеродные молекулы 3-фосфоглицериновой кислоты – 3-PGA. Непосредственное участие принимают различные ферменты.

Цикл Кальвина
Цикл Кальвина

Чтобы образовалась полноценная молекула глюкозы, должно пройти 6 циклов реакций светонезависимой фазы. Углевод – главный продукт фотосинтеза в цикле Кальвина, но помимо него вырабатываются жирные и аминокислоты, а также гликолипиды. У С3 растений фотосинтез проходит исключительно в клетках мезофилла.

Главный недостаток С3-фотосинтеза

Растения, относящиеся к группе С3, характеризуются одним существенным недостатком. Если в окружающей среде отмечается недостаточный уровень влаги, способность к фотосинтезу существенно снижается. Это происходит по причине фотодыхания.

Дело в том, что при невысокой концентрации углекислого газа в хлоропластах (меньше 50:1 000 000) вместо фиксации углерода происходит фиксация кислорода. Специальные ферменты существенно замедляются и расходуют солнечную энергию впустую.

Одновременно с этим замедляется рост и развитие растения, поскольку оно недополучает органические вещества. Также не происходит выброс кислорода в атмосферу.

Морской слизень Elysia chlorotica
Морской слизень Elysia chlorotica

С4-фотосинтез

В отличие от C3-синтеза, здесь реакции фиксации углекислого газа осуществляются в различных клетках растений. Эти виды растений способны справляться с проблемой фотодыхания, и делают они это при помощи двухэтапного цикла.

С одной стороны поддерживается высокий показатель углекислого газа, а с другой – контролируется низкий уровень кислорода в хлоропластах. Подобная тактика позволяет растениям С4 избежать фотодыхания и связанных с ним сложностей. Представителями растений данной группы являются сахарный тростник, кукуруза, просо и др.

По сравнению с растениями С3 они способны намного интенсивнее выполнять процессы фотосинтеза при условии высокой температуры и недостатка влаги. На первом этапе углекислый газ фиксируется в клетках мезофилла, где образуется 4-углеродная кислота. Затем кислота переходит в оболочку и распадается там на 3-углеродное соединение и углекислый газ.

С4-фотосинтез
С4-фотосинтез

На втором этапе полученный углекислый газ начинает работать в цикле Кальвина, где вырабатывается глицеральдегид-3-фосфат и углеводы, необходимые для энергетического обмена.

Благодаря двухэтапному фотосинтезу в растениях С4 образуется достаточное для цикла Кельвина количество углекислого газа. Поэтому ферменты работают в полную силу и не растрачивают энергию напрасно.

Но у и этой системы есть свои минусы. В частности расходуется больший объем энергии АТФ – она необходима для трансформации 4-углеродных кислот в 3-углеродные и в обратном направлении. Таким образом, С3-фотосинтез всегда продуктивнее, чем С4 при должном количестве воды и света.

Что влияет на скорость фотосинтеза?

Фотосинтез может протекать с различной скоростью. Этот процесс зависит от условий окружающей среды:

  • вода;
  • длина волны света;
  • углекислый газ;
  • температура.
График скорости фотосинтеза
График скорости фотосинтеза

Вода является основополагающим фактором, поэтому при ее недостатке реакции замедляются. Для фотосинтеза наиболее благоприятны волны красного и сине-фиолетового спектра. Также предпочтительнее высокая степень освещенности, но лишь до определенного значения – при его достижении связь между освещенностью и скоростью реакции исчезает.

Высокая концентрация углекислого газа обеспечивает быстрые фотосинтетические процессы и наоборот. Определенная температура важна для ферментов, которые ускоряют реакции. Идеальные условия для них – около 25-30℃.

Фотодыхание

Дышать необходимо всем живым существам, и растения не являются исключением. Однако этот процесс у них происходит немного иначе, чем у людей и животных, отчего носит название фотодыхания.

В целом, дыхание – физический процесс, во время которого живой организм и окружающая его среда обмениваются газами. Как и всему живому, растениям для дыхания нужен кислород. Но потребляют они его гораздо меньше, чем вырабатывают.

В ходе фотосинтеза, который происходит только при солнечном свете, растения создают для себя пищу. Во время фотодыхания, которое осуществляется круглосуточно, эти питательные вещества ими поглощаются с целью поддержки метаболизма внутри клеток.

Кислород (как и углекислый газ) проникает в клетки растений через особые отверстия – устьица. Они располагаются в нижней части листочков. На одном листе может располагаться около 1000 устьиц.

Устьица растения
Устьица растения

Газообмен растений в зависимости от освещенности

Процесс газообмена при разной освещенности представлен следующим образом:

  1. Яркий свет. Во время фотосинтеза используется углекислый газ. Растения выделяют больше кислорода, чем потребляют. Его излишки попадают в атмосферу. Углекислый газ потребляется быстрее, чем выделяется дыханием. Неиспользованные углеводы запасаются растением впрок.
  2. Тусклый свет. Газообмен с окружающей средой не происходит, поскольку растение потребляет весь кислород, который производит.
  3. Отсутствие света. Происходят только процессы дыхания. Углекислый газ выделяется, а кислород потребляется.
Газообмен в растениях
Газообмен в растениях

Хемосинтез

Некоторые живые организмы тоже способны к образованию моноуглеводов из воды и углекислого газа, при этом они не нуждаются в солнечном свете. К ним относятся бактерии, а процесс преобразования энергии называется хемосинтезом.

Хемосинтез являет собой процесс, во время которого синтезируется глюкоза, но вместо солнечной энергии используются химические вещества. Протекает он в зонах с достаточно высокой температурой, подходящей для работы ферментов, и отсутствием света. Это могут быть области вблизи гидротермальных источников, утечек метана на морских глубинах и др.

Хемосинтез
Хемосинтез

Источником энергии для бактерий выступают химические связи метана и сероводорода. В результате хемосинтеза возникает сера и ее соединения в качестве побочных продуктов реакции.

История открытия фотосинтеза

История открытия и изучения фотосинтеза берет начало в 1600 г., когда Ян Батист ван Гельмонт решил разобраться в актуальном на тот момент вопросе: чем питаются растения и откуда они черпают полезные вещества?

В то время считалось, что источником ценных элементов является почва. Ученый поместил в емкость с землей веточку ивы, но предварительно измерил их вес. На протяжении 5 лет он ухаживал за деревом, поливая его, после чего снова провел измерительные процедуры.

Выяснилось, что вес земли снизился на 56 г, однако деревце стало в 30 раз тяжелее. Это открытие опровергло мнение о том, что растения питаются почвой и породило новую теорию – водного питания.

Опыт Яна Батиста ван Гельмонта
Опыт Яна Батиста ван Гельмонта

В дальнейшем многие ученые пытались ее опровергнуть. Например, Ломоносов считал, что частично структурные компоненты попадают к растениям через листья. Он руководствовался растениями, которые успешно растут на засушливых территориях. Однако доказать эту версию не удалось.

Ближе всего к реальному положению вещей оказался Джозеф Пристли – ученый-химик и священник по совместительству. Однажды он обнаружил погибшую мышь в перевернутой вверх дном банке, и этот случай заставил его провести в 1770-х годах ряд опытов с грызунами, свечами и емкостями.

Пристли обнаружил, что свеча всегда быстро тухнет, если накрыть ее сверху банкой. Также не может выжить и живой организм. Ученый пришел к выводу, что существуют некие силы, которые делают воздух пригодным для жизни, и попытался связать это явление с растениями.

Он продолжил ставить опыты, но в этот раз попробовал поместить под стеклянную емкость горшочек с растущей мятой. К огромному удивлению, растение продолжало активно развиваться. Тогда Пристли поместил под одну банку растение и мышь, а под вторую – только животное. Результат очевиден – под первой емкостью грызун остался невредим.

Опыт Пристли
Опыт Пристли

Достижение химика стало мотивацией для других ученых всего мира повторить эксперимент. Но загвоздка была в том, что священник проводил опыты в дневное время. А, к примеру, аптекарь Карл Шееле – ночью, когда появлялось свободное время. В итоге, ученый обвинил Пристли в обмане, ведь его подопытные не переносили эксперимент с растением.

Между химиками разразилось настоящее научное противостояние, которое принесло существенную пользу и дало возможность сделать еще одно открытие – чтобы растения восстанавливали воздух, им нужен солнечный свет.

Конечно, фотосинтезом это явление тогда еще никто не называл, да и оставалось немало вопросов. Однако в 1782 ботаник Жан Сенебье смог доказать, что при наличии солнечного света растения способны расщеплять углекислый газ на клеточном уровне. А в 1864, наконец, появилось экспериментальное доказательство того, что растения поглощают углекислый газ и выделяют кислород. Это заслуга ученого из Германии – Юлиуса Сакса.

Источник: kipmu.ru

Пигменты хлоропластов

Что происходит во время фотосинтеза? На молекулярном уровне фотосинтез обеспечивают особые вещества — пигменты, благодаря которым энергия солнечного света становится доступной для биологических систем. У фотосинтезирующих организмов можно выделить три основные группы пигментов:

  • Хлорофиллы:
  • хлорофилл а — у большинства фотосинтезирующих организмов,
  • хлорофилл b — у высших растений и зелёных водорослей,
  • хлорофилл c — у бурых водорослей,
  • хлорофилл d — у некоторых красных водорослей.
  • Каротиноиды:
  • каротины — у всех фотосинтезирующих организмов, кроме прокариот;
  • ксантофиллы — у всех фотосинтезирующих организмов, кроме прокариот
  • Фикобилины — красные и синие пигменты красных водорослей.

<<Форма демодоступа>>

В хлоропластах пигменты ассоциированы с белками с помощью ионных, водородных и других типов связей. Не стоит забывать, что у растений есть множество других пигментов, находящихся не в хлоропластах и не принимающих участие в фотосинтезе — например, антоцианы.

Хлорофилл

Хлорофиллы выполняют функции поглощения, преобразования и транспорта энергии света. Лучше всего хлорофиллы поглощают свет в синей (430—460 нм) и красной (650—700 нм) областях спектра. Зелёную область спектра хлорофиллы эффективно отражают, что придаёт растению зелёный цвет.

Интересно, что строение молекулы хлорофилла схоже со строением гемоглобина, но центром молекулы хлорофилла является ион магния, а не железа.

Основными хлорофиллами высших растений являются хлорофилл a и хлорофилл b, они входят в состав реакционных центров фотосистем и светособирающих комплексов мембран тилакоидов хлоропластов. Светособирающие комплексы улавливают кванты света и передают энергию к фотосистемам I и II. Фотосистемы — это пигмент-белковые комплексы, играющие ключевую роль в световой фазе фотосинтеза.

Каротиноиды

Каротиноиды — это жёлтые, оранжевые или красные пигменты. В зелёных листьях каротиноиды обычно незаметны из-за наличия в листьях хлорофилла. При разрушении хлорофилла осенью именно каротиноиды придают листьям характерную жёлто-оранжевую окраску. 

Функции каротиноидов:

  • Антенная — входят в состав светособирающих комплексов, улавливают энергию света и передают её на хлорофиллы. Каротиноиды играют роль дополнительных светособирающих пигментов в той части солнечного спектра (450—570 нм), где хлорофиллы малоэффективны. Особенно это важно для водных экосистем, в которых волны оптимальной для хлорофиллов длины быстро исчезают с глубиной.
  • Защитная функция (антиоксидантная) — обезвреживание агрессивных кислородных соединений (активных форм кислорода) и избытка хлорофилла в возбуждённом состоянии при слишком ярком освещении.

Каротиноиды химически представляют собой 40-углеродную цепь с двумя углеродными кольцами по краям цепи. В строении ксантофиллов, в отличие от каротинов, присутствуют спиртовые, эфирные или альдегидные группы.

Учите биологию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду BIO72021 вы получите бесплатный доступ к курсу биологии 7 класса, в котором изучается тема фотосинтеза.

Что происходит в процессе фотосинтеза

Как уже было сказано ранее, в ходе фотосинтеза в хлоропластах под действием солнечного света образуются органические вещества. 

Процесс фотосинтеза можно разделить на две фазы:

1. Световая.

2. Темновая.

В ходе световой фазы фотосинтеза образуется энергия в виде АТФ и универсальный донор атома водорода — восстановитель НАДФН (НАДФ·Н2). Эти вещества необходимы для протекания темновой фазы. Также образуется побочный продукт — кислород. Световая фаза может проходить только на мембранах тилакоидов и на свету.

Благодаря сложному биохимическому процессу — циклу Кальвина — в темновую фазу фотосинтеза образуются органические вещества (сахара). Темновая фаза проходит в строме хлоропластов и на свету, и в темноте. Темновые ферментативные процессы протекают медленнее, чем световые, поэтому при очень ярком освещении скорость протекания фотосинтеза будет полностью определяться скоростью темновой фазы. Схемы процессов фотосинтеза представлены на рис.2. Подробное описание процессов смотри далее.

Рис.2. Схема процессов фотосинтеза и суммарное уравнение фотосинтеза.

Световая фаза фотосинтеза

Чтобы лучше понять, что происходит во время фотосинтеза, разберём фазы фотосинтеза. Световая фаза фотосинтеза включает в себя фотохимические и фотофизические процессы, и может быть поделена на три этапа:

  1. Фаза поглощения — энергия света улавливается при помощи светособирающих комплексов, переходит в энергию электронного возбуждения пигментов, передаётся в реакционный центр фотосистем I и II. 
  2. Фаза реакционных центров — энергия электронного возбуждения пигментов светособирающих комплексов используется для активации реакционных центров фотосистем. В реакционном центре электрон от возбуждённого хлорофилла передаётся другим компонентам электрон-транспортной цепи, пигмент после отдачи электрона переходит в окисленное состояние и становится способным, в свою очередь, отнимать электроны у других веществ. Именно в этом процессе происходит преобразование физической формы энергии в химическую.
  3. Фаза электрон-транспортной цепи — электроны переносятся по цепи переносчиков, образуются АТФ, НАДФН, O2. Необходимо, чтобы каждый переносчик электрон-транспортной цепи поочерёдно восстанавливался и окислялся, обеспечивая таким образом перенос энергии электронов. Любой этап переноса электрона сопровождается высвобождением или поглощением энергии. Часть энергии теряется. На некоторых участках электрон-транспортной цепи перенос электрона сопряжён с переносом протона.

Для того чтобы понять, что происходит во время фазы фотосинтеза, рассмотрим эти процессы подробнее. Кванты света улавливаются светособирающими комплексами фотосистемы I — молекула хлорофилла в составе светособирающего комплекса переходит в возбуждённое состояние, и энергия передаётся в реакционный центр фотосистемы I. Происходит возбуждение молекул хлорофилла фотосистемы I,   отщепляется электрон. Пройдя по цепочке внутренних компонентов фотосистемы I и внешних переносчиков, электрон в конце концов попадает к НАДФ+ — образуется восстановитель НАДФН. Получается, что хлорофилл фотосистемы I отдал электрон и приобрёл положительный заряд, и для дальнейшего функционирования необходимо восстановить нейтральность молекулы, получить электрон, чтобы закрыть «дырку». Этот электрон приходит от фотосистемы II.

На светособирающие комплексы фотосистемы II попадают кванты света — происходит возбуждение молекулы хлорофилла фотосистемы II, молекула хлорофилла отдаёт электрон и переходит в окисленное состояние. Нехватку электрона хлорофилл восполняет благодаря фотолизу воды, при этом образуется протоны H+, а также важный побочный продукт фотосинтеза — кислород. По цепи переносчиков электрон от хлорофилла фотосистемы II попадает к хлорофиллу реакционного центра фотосистемы I и восстанавливает его. Теперь этот хлорофилл может снова поглощать энергию кванта света и отдавать электрон в электрон-транспортную цепь.

Протоны, попадающие во внутритилакоидное пространство, используются для синтеза АТФ. С помощью фермента АТФ-синтазы за счёт градиента протонов образуется АТФ из АДФ и фосфата. Под градиентом понимают неравномерное распределение: во внутритилакоидном пространстве H+ больше, в строме — меньше. Поэтому частицы стремятся проникнуть в строму, переходят в неё через АТФ-синтазу, а в процессе пути сквозь белковый комплекс отдают ему часть энергии, которая и используется для синтеза АТФ. 

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

  1. Фаза карбоксилирования (введение CO2 в цикл).
  2. Фаза восстановления (используются АТФ и НАДФН, полученные в световую фазу).
  3. Фаза регенерации (превращения сахаров).

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле. 

Рис.3. Суммарные уравнения и частные реакции фотосинтеза.

Значение фотосинтеза

В процессе фотосинтеза энергия света заключается в энергию химических связей органических веществ. Поэтому фотосинтез служит первичным источником почти всей энергии, используемой живыми организмами в процессе жизнедеятельности. Практически все живые организмы, за исключением хемосинтетиков, так или иначе пользуются теми продуктами, что выделяются при фотосинтезе.

За счёт фотосинтеза сформировалась и поддерживается пригодная для дыхания атмосфера с высоким содержанием кислорода. 

Фиксация углекислого газа в ходе фотосинтеза служит главным местом входа неорганического углерода в биогеохимический цикл. Также ассимиляция CO2 препятствует перегреву Земли, предотвращая парниковый эффект.

Заключение

Каждый год на нашей планете благодаря фотосинтезу производится около 200 миллиардов тонн кислорода, из которого образуется озоновый слой, защищающий от ультрафиолетовой радиации. Фотосинтез помогает поддерживать состав атмосферы и препятствует увеличению количества углекислого газа. Без растений и кислорода, который они выделяют в процессе фотосинтеза, жизнь на нашей планете была бы просто невозможна.

Источник: externat.foxford.ru