Поговорим о таком загадочном и важным процессе, как фотосинтез.

В чем же значимость фотосинтеза? Как мы знаем, атмосфера Земли на 78% состоит из азота, на 21% из кислорода, а оставшаяся доля приходится на другие газы, в том числе и на углекислый газ. А теперь представьте, что из воздуха изъяли весь кислород.

Все ли пострадают от такого террора? Нет, только аэробы, то есть существа способные жить и развиваться исключительно при наличии атмосферного кислорода. Мы с вами, большинство животных, все растения и многие микроорганизмы как раз относимся к числу аэробов.

Лишить аэробов кислорода относительно просто. Бóльшая часть этого газа вырабатывается растениями, мы же его потребляем и радостно бежим по дорожке. Если основной поставщик исчезнет, то пропадает и кислород. А мы будем вынуждены надеть скафандр и искать более подходящее место для пробежки.

Кислород в растениях образуется во время фотосинтеза, который представляет собой процесс производства органических веществ с использованием солнечной энергии. Некоторые бактерии также способны к фотосинтезу.


Итак, у нас есть солнышко, которое при излучении выделяет фотоны — частицы электромагнитного излучения. Попадая в клетку, эти частицы запускают синтез глюкозы из воды и углекислого газа. В дальнейшем глюкоза используются для быстрого получения энергии и строительства более сложных углеводов. И наконец, в качестве побочного продукта выделяется тот самый заветный кислород.

Познакомимся с фотосинтезирующими бактериями. Цианобактерии, как и растения, занимаются оксигенным фотосинтезом. Они используют углекислый газ и воду, а выделяют кислород.

В отличие от своих кислородолюбивых собратьев, пурпурные бактерии предпочли аноксигенный фотосинтез с участием сероводорода и образованием свободной серы. Пурпурные не то что не выделяют кислород, но даже избегают его, так как родились анаэробами. Когда в чашку Петри добавляют крошечное количество кислорода, они быстро перемещаются в ту часть, где этого губительного для них газа нет. А вот когда их лишают солнечного света, они дружно бегут на его поиски.

Мы рассмотрим оксигенный фотосинтез в зеленых частях растений. Если взглянуть на лист растения под лупой или микроскопом, то мы увидим, что он состоит из множества клеток, по форме напоминающих многоугольники, а в этих клетках зеленеют хлоропласты. В этих органоидах и происходит фотосинтез.

В хлоропласте выделяют тилакоиды — дисковидные образования, содержащие пигмент хлорофилл, который придает зеленую окраску листьям. Тилакоиды, собранные в стопочку, образуют грану. А вещество, заполняющее пространство между гранами носит название стромы.


Кстати сказать, хлорофилл очень полезен для человека. При его употреблении снижается риск сахарного диабета, артрита и даже онкологических заболеваний. Самой богатой хлорофиллом является трава люцерна. В ней содержатся витамины К, Е, С, бета-каротин, многие микроэлементы и минералы.

Фотосинтез проходит в две стадии: световую и темновую. Для световой фазы необходимо наличие солнечного света, а вот для темновой солнышко роли не играет. Поэтому темновая фаза может проходить и днем, и ночью.

Интересно, что влияние температуры на фотосинтез зависит от интенсивности освещения. Если света мало, фотосинтез идет одинаково при любой температуре. А при высокой освещенности фотосинтез наиболее активно идет в определенных температурных пределах, которые различны для разных растений.

Познакомимся с таким термином, как фотолиз. Фотолиз — это расщепление молекулы воды под действием фотонов. Если взять молекулу воды (H2O) и воздействовать на нее квантами света, то она распадется на катион водорода (H+) и анион гидроксида (OH). Дело в том, что изначально молекула воды электронейтральна, но один из атомов водорода решает отдать свой электрон паре ОН. Электрон заряжен отрицательно, поэтому его потеря приводит к появлению «+» на водороде. А ОН, присоединив лишний электрон, оказывается с «–».


Световая фаза фотосинтеза проходит в тилакоиде. Здесь содержится пигмент хлорофилл, который по своему составу очень похож на гемоглобин крови человека, но вместо атома железа содержит магний.

Фотон света, попадая на хлорофилл, возбуждает электрон магния. В это же время происходит фотолиз воды. Электрон движется к катиону водорода и молекуле аденозиндифосфата (АДФ). АДФ содержит два остатка фосфорной кислоты, а при встрече с электроном присоединяет еще один остаток и превращается в аденозинтрифосфат (АТФ). Молекула АТФ — это энергетическое депо клетки, в ней запасается энергия для всех процессов жизнедеятельности.

Кроме того, электрон присоединяется к катиону водорода и делает из него нейтральный атом, который затем переходит в строму.

Гидроксид-анион жертвует своим электроном, и тот занимает место ушедшего ранее. При этом образуется нейтральный ОН.

Четыре ОН-группы в ходе химической реакции дают две молекулы воды и кислород. Обращаю внимание, что кислород является побочным продуктом.

Газообмен в растениях происходит с помощью специальных отверстий — устьиц. Устьица находятся с обратной стороны листа и, в зависимости от условий окружающей среды, способны уменьшать или увеличивать размер щели. Так выделяется кислород и поглощается углекислый газ.

Кстати, каждый год растения удаляют из тропосферы Земли 1,16×1015 кг углекислого газа.


Интересно, что кактусы, пытаясь уменьшить испарение воды, которое также происходит через устьица, приспособились открывать отверстия и поглощать углекислый газ ночью, когда не так жарко. СО2 откладывается про запас в специальных пузырьках-вакуолях. Хранится он здесь присоединенным к молекуле-посреднику, которая потом выдерживает еще несколько превращений. В результате получается яблочная кислота. Днем от нее отщепляется СО2, который готов вступить в темновую фазу фотосинтеза.

Темновая фаза идет в строме хлоропласта. В ней участвуют атомы водорода, пришедшие из тилакоида, и молекулы углекислого газа.

Сначала к CO2 присоединяется фермент рибулозобисфосфаткарбоксилаза и преобразует его из неорганического материала в активного участника биологического круговорота. На сегодняшний день эта белковая молекула — единственный фермент на Земле, способный на подобные преобразования.

Для синтеза органического вещества необходима энергия, которая выделяется при отщеплении одного остатка фосфорной кислоты от молекулы АТФ. Та-дам! Мы получили молекулу глюкозы и воду.

Ежегодно в растениях на нашей планете синтезируется 7,88×1014 кг глюкозы.

Для синтеза одной молекулы глюкозы необходимо 16 фотонов с длиной волны 680 нм. Но так как часть этой энергии рассеивается, для синтеза требуется 60 фотонов. Получается, эффективность фотосинтеза лишь 27,22%.


Несмотря на это, растения в год аккумулируют 1,26×1019 кДж энергии, что в 3500 раз больше, чем ежегодно потребляют люди на всей планете.

Хлорофилл не единственный пигмент, содержащийся в растениях. Выделяют еще каротиноиды и фикобилины. Эти молекулы тоже поглощают энергию солнечных лучей, но при другой длине волны, и передают энергию этих лучей на молекулы хлорофилла.

Это очень важно для красных водорослей, которые растут на глубине больше 200 метров. В толще воды хлорофилл уже неспособен улавливать солнечные лучи, и фотосинтез идет благодаря фикобилинам. В последнее время ученые уделяют большое внимание красным водорослям, надеясь, что содержащиеся в них сульфатированные углеводы помогут в борьбе со СПИДом.

Кроме того, из красных водорослей получают агар-агар — полисахарид, который используется в кондитерской промышленности в качестве загустителя и в микробиологии для уплотнения сред, куда высеиваются микроорганизмы. Преимуществом агара является то, что он не изменяет своих свойств при нагревании, а бактерии и грибы не могут расщепить его.

Фотосинтезом увлекаемся не только мы. Например, морской слизень Elysia chlorotica научился заводить внутри себя хлоропласты. Поедая водоросли, он не переваривает их зеленые органеллы, а ассимилирует их в клетках пищеварительного тракта. После этого начинается процесс фотосинтеза. Хлоропласты снабжают слизня глюкозой, а он, в свою очередь, синтезирует белки, необходимые хлоропластам.

А вот секвойе-альбиносу повезло меньше. Из-за генетической мутации растение оказалось альбиносом. Чтобы выжить без хлорофилла, ей пришлось паразитировать на здоровых деревьях, присоединяя свои корни к чужим.

В это сложно поверить, но большую часть кислорода на Земле вырабатывают такие маленькие существа, как фитоплактон. Они в огромном количестве обитают в океане, а флуоресцентные виды видны даже из космоса.


Комментарий специалиста

Конкурс «био/мол/текст», цитирую, «ежегодно собирает более сотни участников, отважившихся весело, но корректно рассказать о сложнейших проблемах современной биологии для широкого круга читателей». В представленных статье и видео о фотосинтезе первый пункт выполнен замечательно — рассказ ведется весело и задорно, однако научная часть нуждается в серьезной корректировке. Основные ошибки в представлениях о фотосинтезе кочуют по разным источникам, в том числе их, к сожалению, можно отыскать и в школьных учебниках по биологии за 11 класс.

Итак, попытаемся самые грубые ошибки исправить.

«Для световой фазы необходимо наличие солнечного света, а вот для темновой солнышко роли не играет. Поэтому темновая фаза может проходить и днем, и ночью».

Световая фаза фотосинтеза действительно зависит от света, а вот темновая — это скорее историческое название. Во-первых, темновая фаза фотосинтеза полностью зависит от наличия продуктов световой фазы, и, во-вторых, в темноте ключевые ферменты темновой фазы ингибируются, а в строме хлоропласта идут совсем другие процессы.


«Если света мало, фотосинтез идет одинаково при любой температуре».

Это все же художественное преувеличение — не при любой, но в некоторых температурных пределах, приемлемых для растительного организма. Так, при низкой интенсивности света фотосинтез будет идти одинаково при температурах 15 °С и 25 °С, однако при 5 °С интенсивность фотосинтеза значительно снизится из-за снижения скорости ферментативных реакций.

«Познакомимся с таким термином, как фотолиз. Фотолиз — это расщепление молекулы воды под действием фотонов. Если взять молекулу воды (H2O) и воздействовать на нее квантами света, то она распадется на катион водорода (H+) и анион гидроксида (OH). Дело в том, что изначально молекула воды электронейтральна, но один из атомов водорода решает отдать свой электрон паре ОН. Электрон заряжен отрицательно, поэтому его потеря приводит к появлению “+” на водороде. А ОН, присоединив лишний электрон, оказывается с “−”».

Термин «фотолиз» абсолютно неприемлем для описания процессов, происходящих с водой во время световой фазы фотосинтеза. «Фотолиз» означает распад вещества непосредственно под действием света, однако с водой этого не происходит, иначе фотолиз шел бы у нас в каждом стакане воды… Вода — довольно устойчивое соединение, для ее расщепления на O2 и H2 необходимо либо действие электрического тока, либо очень высокие температуры (выше 1000 °С); ни то, ни другое не характерно для биологических систем.
этому термин «фотолиз» при рассказе о световой фазе фотосинтеза некорректен и не должен употребляться. Фотолиз, наверное, одно из самых распространенных заблуждений, связанных с фотосинтезом.

«Здесь содержится пигмент хлорофилл, который по своему составу очень похож на гемоглобин крови человека, но вместо атома железа содержит магний».

Гемоглобин — это белок, содержащий гем, а вот гем, в свою очередь, содержит центральный атом железа. Хлорофилл по своей структуре немного похож на гем, а не на гемоглобин.

«В это же время происходит фотолиз воды. Электрон движется к катиону водорода и молекуле аденозиндифосфата (АДФ). АДФ содержит два остатка фосфорной кислоты, а при встрече с электроном присоединяет еще один остаток и превращается в аденозинтрифосфат (АТФ). Молекула АТФ — это энергетическое депо клетки, в ней запасается энергия для всех процессов жизнедеятельности.

Кроме того, электрон присоединяется к катиону водорода и делает из него нейтральный атом, который затем переходит в строму.

Гидроксид-анион жертвует своим электроном, и тот занимает место ушедшего ранее. При этом образуется нейтральный ОН.


Четыре ОН-группы в ходе химической реакции дают две молекулы воды и кислород».

К сожалению, в описании световой фазы фотосинтеза в этой части статьи нет ни слова правды… Электрон не движется ни к протону, ни к молекуле АДФ. Атомарного водорода и «нейтрального ОН» не образуется. ОН-группы не вступают в реакцию, результатом которой будет образование кислорода и воды.

«Темновая фаза идет в строме хлоропласта. В ней участвуют атомы водорода, пришедшие из тилакоида, и молекулы углекислого газа».

И еще раз повторим, атомарного водорода при фотосинтезе не образуется. Во время работы световой фазы протоны (Н+) закачиваются во внутреннее пространство тилакоидов и выходят обратно, в строму, в результате работы АТФ-синтазы — фермента, синтезирующего АТФ.

«Сначала к CO2 присоединяется фермент рибулозобисфосфаткарбоксилаза»

Фермент рибулозобисфосфаткарбоксилаза захватывает молекулу СО2, но не присоединяется к ней, а наоборот присоединяет СО2 к молекуле пятиуглеродного сахара — рибулозо-1,5-бисфосфата.

«Для синтеза одной молекулы глюкозы необходимо 16 фотонов с длиной волны 680 нм».

Не очень понятно, откуда такая цифра и почему только фотоны с длиной волны 680 нм. По самым скромным подсчетам, на фиксацию одной молекулы СО2 необходимо затратить 8 квантов света, причем не обязательно с одинаковой длиной волны. Для синтеза одной молекулы глюкозы нужно 6 атомов углерода, то есть 6 молекул СО2, а значит, минимум 6×8=48 фотонов.


«Хлорофилл не единственный пигмент, содержащийся в растениях. Выделяют еще каротиноиды и фикобилины».

Здесь необходимо уточнить, что каротиноиды встречаются у всех фотосинтезирующих организмов, а вот фикобилины — только у некоторых водорослей и цианобактерий.

Внимательный читатель, возможно, подумает, что критиковать-то легко, а вот как же описать фотосинтез «на пальцах», без сложных терминов, чтобы было понятно неспециалистам, а еще лучше — старшеклассникам. Попробуем сделать это в рамках комментария.

Если сформулировать очень кратко, цель фотосинтеза — восстановить очень окисленное соединение СО2 до восстановленного соединения — сахара — с помощью энергии солнечных квантов и электронов от воды.

Действительно, традиционно фотосинтез делится на световую и темновую фазы, однако помним, что название «темновая» — историческое.

Световая фаза фотосинтеза происходит в мембране тилакоидов хлоропласта и полностью зависит от света, так как использует энергию фотонов. Основная задача световой фазы — обеспечить энергией (АТФ) и восстановителем (источником электронов) темновую фазу. Как это происходит?

Квант света (он же фотон) переводит молекулу хлорофилла в возбужденное состояние: это значит, что за счет энергии кванта повышается энергия одного из электронов молекулы хлорофилла, и этот возбужденный электрон может уйти (и уходит!) от хлорофилла по цепочке переносчиков. Практически весь дальнейший путь этого электрона будет связан с окислительно-восстановительными реакциями (переносчик, получающий электрон, восстанавливается, а затем отдает электрон следующему переносчику в цепочке, восстанавливая его, а сам при этом окисляется, и так далее).

Отдавший свой электрон хлорофилл (точнее, здесь совместно работает пара молекул хлорофилла, называемая димером хлорофилла) остается со знаком «+» и становится самым сильным окислителем в биологическом мире, настолько сильным, что может отнять электрон у молекулы воды. В этом процессе участвует специальная структура — водоокисляющий комплекс, в состав которого входят четыре атома Mn, связанные с белком. Четыре марганца водоокисляющего комплекса захватывают одномоментно две молекулы воды, а дальше на каждый квант света, попавший на димер хлорофилла и приведший к уходу от хлорофилла одного возбужденного электрона, от одного из атомов марганца на «димер-с-плюсом» приходит следующий электрон. Следующий квант света — еще один возбужденный электрон уходит в цепь переносчиков от димера, и один электрон приходит на димер от марганца. Так от атомов марганца по одному уходят четыре электрона, каждый из них, попадая на димер хлорофилла, получает дополнительную энергию от фотонов и уходит дальше в цепь переносчиков. Лишившиеся четырех электронов марганцы одномоментно отнимают четыре электрона у двух молекул воды, система возвращается в исходное состояние, захватывает две новые молекулы воды и снова может поставлять электроны на димер хлорофилла. Что же останется от воды? Два атома кислорода соединятся, образуя молекулу O2 — побочный продукт фотосинтеза. А четыре протона (4H+) остаются во внутритилакоидном пространстве. Этот процесс можно назвать фотоокислением воды, но очевидно, что он не имеет ничего общего с фотолизом.

Оказывается, энергии одного кванта света недостаточно для того, чтобы сделать и восстановитель, и АТФ, поэтому электрон, путешествуя по цепи переносчиков, в некоторый момент попадает на следующий димер хлорофилла. Здесь электрон получает еще одну порцию световой энергии — еще один квант света, — чтобы в конечном итоге через несколько переносчиков попасть на молекулу-восстановителя, которая необходима для превращения СО2 в сахар.

Итак, восстановитель готов! А как же АТФ? Во время путешествия нашего электрона по цепи переносчиков при некоторых окислительно-восстановительных реакциях из стромы во внутреннее пространство тилакоида переносятся протоны (Н+). Тут надо вспомнить два важных факта, во-первых, внутреннее пространство тилакоида — замкнутое и полностью отделено от стромы мембраной, а во-вторых, в этом же пространстве накапливаются протоны, оставшиеся от воды. Таким образом, внутри тилакоида накапливается много протонов, гораздо больше, чем в строме. И оказывается, что этот «запас» протонов — это одна из форм запасания энергии, так как каждая система стремится к равновесию, и протоны из внутритилакоидного пространства будут стремиться обратно в строму, чтобы сравнять концентрации и «восстановить справедливость». Это стремление протонов восстановить равновесие использует фермент АТФ-синтаза. Понять, как работает АТФ-синтаза, нам поможет великолепный образ — представьте себе гидроэлектростанцию: вода падает с огромной высоты и крутит турбину, энергия падающей воды превращается в механическую энергию вращения турбины, а эта механическая энергия, в свою очередь, превращается в электрическую, которую мы используем на самые разные нужды. Примерно так же работает АТФ-синтаза, только не на воде, а на протонах. Протоны, стремясь вырваться из внутритилакоидного пространства, попадают в специальный канал АТФ-синтазы и, проходя его, раскручивают вращающуюся часть фермента. Энергия, запасенная в разнице концентраций протонов между внутренним пространством тилакоида и стромой, превращается в механическую энергию вращения. Вращение передается на другую часть АТФ-синтазы, которая за счет этой механической энергии присоединяет фосфат к молекуле АДФ, образуя АТФ.

Таким образом, в результате работы световой фазы фотосинтеза благодаря энергии света получаются два основных продукта:

  1. Восстановитель — источник электронов.
  2. АТФ — источник энергии.

Оба продукта световой фазы используются на следующем этапе при восстановлении СО2. Не забудем и побочный продукт световой фазы фотосинтеза — кислород, благодаря которому жизнь на нашей планете такая, какой мы ее знаем.

Темновая фаза фотосинтеза, во время которой происходит фиксация СО2, носит также название цикла Кальвина — в честь его первооткрывателя, лорда Мелвина Кальвина, который получил за это открытие Нобелевскую премию по химии в 1961 году.

Цикл Кальвина начинается с того, что фермент рибулозобисфосфаткарбоксилаза (РуБисКО или РБФК) присоединяет молекулу СО2 к пятиуглеродному сахару рибулозо-1,5-бисфосфату. Этот цикл удобно рассчитывать сразу на шесть молекул СО2, и, соответственно, 6 молекул рибулозо-1,5-бисфосфата (см. рис). Итак, в результате реакции образуется нестабильное шестиуглеродное соединение (помним, что у нас их получается шесть штук!), которое распадается на два одинаковых трехуглеродных фрагмента (у нас их будет 2×6=12 трехуглеродных фрагментов). Эти трехуглеродные соединения необходимо восстановить — здесь используем АТФ и восстановитель из световой фазы, а затем 10 (из 12-и) восстановленных трехуглеродных соединений вернутся обратно в цикл, специальный набор ферментов сделает из них снова шесть пятиуглеродных сахаров, которые мы видели в самом начале цикла. При этом еще раз придется потратить АТФ. Оставшиеся два восстановленных трехуглеродных соединения дадут нам в итоге желанный сахар.

Источник: biomolecula.ru

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

Источник: studarium.ru

По­яс­не­ние.

ЭНЕР­ГЕ­ТИ­ЧЕ­СКИЙ ОБМЕН

1 ЭТАП (под­го­то­ви­тель­ный):

1) про­ис­хо­дит в ЖКТ и ли­зо­со­мах (вто­рич­ных ли­зо­со­мах – пи­ще­ва­ри­тель­ных ва­ку­о­лях);

2) про­ис­хо­дит гид­ро­лиз: вы­со­ко­мо­ле­ку­ляр­ные со­еди­не­ния (по­ли­са­ха­ри­ды, белки, ли­пи­ды) рас­щеп­ля­ют­ся до низ­ко­мо­ле­ку­ляр­ных (мо­но­са­ха­ри­дов (глю­ко­зы), ами­но­кис­лот, гли­це­рин и жир­ных кис­лот);

3) энер­гия не за­па­са­ет­ся, а рас­се­и­ва­ет­ся в виде тепла.

2 ЭТАП (бес­кис­ло­род­ный, или анаэ­роб­ный):

1) про­ис­хо­дит в ги­а­ло­плаз­ме (ци­то­плаз­ме);

2) про­ис­хо­дит гли­ко­лиз: бес­кис­ло­род­ное рас­щеп­ле­ние мо­ле­ку­лы глю­ко­зы до 2 мо­ле­кул пи­ро­ви­но­град­ной кис­ло­ты (ПВК);

3) за­па­са­ет­ся 2 мо­ле­ку­лы АТФ.

3 ЭТАП (кис­ло­род­ный, или аэроб­ный):

1) про­ис­хо­дит в ми­то­хон­дри­ях;

2) в мат­рик­се про­ис­хо­дит окис­ле­ние ор­га­ни­че­ских ве­ществ (ПВК) до уг­ле­кис­ло­го газа и воды (цикл Креб­са, или цикл три­кар­бо­но­вых кис­лот, или цикл ли­мон­ной кис­ло­ты), на кри­стах – окис­ли­тель­ное фос­фо­ри­ли­ро­ва­ние (син­тез АТФ);

3) син­те­зи­ру­ет­ся более 30 мо­ле­кул АТФ (в ЕГЭ обыч­но ука­зы­ва­ют 36 АТФ, по дру­гим ис­точ­ни­кам – мень­ше).

 

(1) хло­ро­пла­стах рас­те­ний — фо­то­син­тез;

(2) ка­на­лах эн­до­плаз­ма­ти­че­ской сети — син­тез бел­ков, ли­пи­дов, уг­ле­во­дов;

(3) ли­зо­со­мах кле­ток жи­вот­ных — под­го­то­ви­тель­ный этап энер­ге­ти­че­ско­го об­ме­на;

(4) ор­га­нах пи­ще­ва­ре­ния че­ло­ве­ка — под­го­то­ви­тель­ный этап энер­ге­ти­че­ско­го об­ме­на;

(5) ап­па­ра­те Голь­д­жи эу­ка­ри­от — мо­ди­фи­ка­ция ор­га­ни­че­ских ве­ществ;

(6) пи­ще­ва­ри­тель­ных ва­ку­о­лях про­стей­ших — под­го­то­ви­тель­ный этап энер­ге­ти­че­ско­го об­ме­на.

 

Ответ: 346.

Источник: bio-ege.sdamgia.ru