Гомологичные хромосомы (гомологи) — это парные хромосомы, аутосомы, по одной от каждого родителя в диплоидных клетках. Перед обычным митотическим делением каждый из пары гомологов удваивается, и две образовавшиеся копии остаются соединенными вместе в центромерной области. Эти копии называются сестринскими хроматидами. Гомологичные хромосомы конъюгируют между собой в процессе мейоза, т.е. сближаются и соединяются в пары. У них одинаковые локусы расположены в одной и той же линейной последовательности. Соответствующие локусы гомологичных хромосом могут нести как одинаковые, так и разные варианты (аллели) одних и тех же генов.

Диплоидный Набор Хромосом -совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д н х содержит 44 аутосомы и 2 половые хромосомы.

Диплоидный набор хромосом клетки называется кариотипом (от греч. karyon- ядро, typhe-форма). Этот термин введен в 1924 г. со­ветским цитологом Г. А. Левитским. Нормальный кариотип человека включает 46 хромосом, или 23 пары; из них 22 пары аутосом и одна па­ра- половых хромосом (гетерохромосом). 

27.Гетерохроматин и эухроматин.


Хроматин, его классификация.

В ядре клеток обнаруживаются мелкие зернышки и глыбки материала, который окрашивается основными красителями и поэтому был назван хроматином (от греч. chroma – краска). Хроматин представляет собой дезоксирибонуклеопротеид (ДНП) и состоит из ДНК, соединённой с белка-ми-гистонами или негистоновыми белками.

Классификация хроматина. Различают два вида хроматина:

1)Эухроматин, активный хроматин — участки хроматина, сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе.

Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы) диаметром 200—500, которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма

2) гетерохроматин — плотно спирализованная часть хроматина. Гетерохроматин соответствует конденсированным, плотно скрученным сегментам хромосом (что делает их недоступными для транскрипции). Гетерохроматин располагается ближе к оболочке ядра, более компактен, чем эухроматин и содержит “молчащие” гены, т.е. гены, которые в настоящий момент неактивны. Различают конститутивный и факультативный гетерохроматин. Конститутивный гетерохроматин никогда не переходит в эухроматин и является гетерохроматином во всех типах клеток. Факультативный гетерохроматин может превращаться в эухоматин в некоторых клетках или на разных стадиях онтогенеза организма.


28. Значение механизмов положительных и отрицательных обратных связей. Иммунитет.

Обратная связь характеризует системы регулирования и управления в живой природе, обществе и технике. Различают положительную и отрицательную обратную связь. Обратная связь классифицируют также в соответствии с природой тел и сред, посредством которых они осуществляются. Обратную связь в сложных системах рассматривают как передачу информации о протекании процесса, на основе которой вырабатывается то или иное управляющее воздействие.

Отрицательная обратная связь (ООС) – тип обратной связи, при котором входной сигнал системы изменяется таким образом, чтобы противодействовать изменению выходного сигнала. Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров. Отрицательная обратная связь широко используется живыми системами разных уровней организации – от клетки до экосистем – для поддержания гомеостаза. Например, в клетках на принципе отрицательной обратной связи основаны многие механизмы регуляции работы генов, а также регуляция работы ферментов (ингибирование конечным продуктом метаболического пути).
организме на этом же принципе основана система гипоталамо-гипофизарной регуляции функций, а также многие механизмы нервной регуляции, поддерживающие отдельные параметры гомеостаза (терморегуляция, поддержание постоянной концентрации диоксида углерода и глюкозы в крови и др.).Положительная обратная связь (ПОС) – тип обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое способствует дальнейшему отклонению выходного сигнала от первоначального значения.

Положительная обратная связь ускоряет реакцию системы на изменение входного сигнала, поэтому её используют в определённых ситуациях, когда требуется быстрая реакция в ответ на изменение внешних параметров. В то же время положительная обратная связь приводит к неустойчивости и возникновению качественно новых систем, называемых генераторы (производители).Положительная обратная связь рассогласует систему, и, в конечном счёте, существующая система трансформируется в другую систему, которая оказывается более устойчивой (то есть в ней начинают действовать отрицательные обратные связи).Действие механизма нелинейной положительной обратной связи ведёт к тому, что система начинает развиваться в режиме с обострением.Положительная обратная связь играет важную роль в макроэволюции. В целом, в макроэволюции положительная обратная связь приводит к гиперболическому ускорению темпов развития, что создает эффект равномерного распределения событий по логарифмической шкале времени.


Иммунитет (лат. immunitas — освобождение, избавление от чего-либо) — невосприимчивость, сопротивляемость организма к инфекциям и инвазиям чужеродных организмов (в том числе — болезнетворных микроорганизмов), а также воздействию чужеродных веществ, обладающих антигенными свойствами. Иммунные реакции возникают и на собственные клетки организма, измененные в антигенном отношении.

Иммунитет делится на врождённый и приобретенный.

  • Врождённый (неспецифический, конституционный) иммунитет обусловлен анатомическими, физиологическими, клеточными или молекулярными особенностями, закрепленными наследственно. Как правило, не имеет строгой специфичности к антигенам, и не обладает памятью о первичном контакте с чужеродным агентом

Приобретенный иммунитет делится на активный и пассивный.

  • Приобретенный активный иммунитет возникает после перенесенного заболевания или после введения вакцины.

  • Приобретенный пассивный иммунитет развивается при введении в организм готовых антител в виде сыворотки или передаче их новорожденному с молозивом матери или внутриутробным способом.

Также иммунитет делится на естественный и искусственный.

  • Естественный иммунитет включает врожденный иммунитет и приобретенный активный (после перенесенного заболевания)

  • А также пассивный при передаче антител ребёнку от матери.


Источник: StudFiles.net

Хромосомы  — это структурно-функциональные элементы клетки человека, которые содержат гены. Данные единицы клеточного ряда способны окрашиваться в момент деления клетки. Хромосомы имеют формы палочек, нитей, петель и др. По своей длине эти элементы являются неоднородными. Они состоят из центромеры, короткого и длинного плеча, вторичной перетяжки, спутника, нити веретена, хромонем. Место расположения такой части хромосомы, как центромера, влияет на то, какой будет форма самой единицы клеточного ряда. В том случае, если данная часть располагается у конца структурно-функционального элемента, то он будет палочкообразным. Нахождение такой части, как центромера, в середине влияет на то, что хромосома принимает форму равноплечей шпильки. Если рассматриваемая часть располагается сбоку от центра, то структурно-функциональный элемент становится шпилькой с разными плечами. 

Вообще существует 4 типа  строения хромосом. Первым типом являются телоцентрические структурно-функциональные элементы. Вторым — акроцентрические (второе плечо очень короткое и практически незаметное). Третьим типом служат субметацентрические хромосомы, форма которых напоминает букву «L». Наконец, четвертый вид — метацентрический. Хромосомы данного типа имеют так называемые плечи, которые являются равными по своей длине. Помимо этого такие элементы напомминают букву и вместе с тем символ победы «V».


Следует отметить, что каждая ядросодержащая соматическая клетка человека содержит двадцать три пары хромосом, которые являются линейными. Помимо этого, там присутствует большое количество копий митохондриальной ДНК (дезоксирибонуклеи́новая кислота). 

Стоит сказать несколько слов о половых структурно-функциональных элементах клетки человека. Это Y- и X-хромосомы. Первая содержит примерно 58 пар азотистых оснований, несет 78 генов и при этом обладает высокой скоростью мутирования благодаря той среде, в которой она располагается. Эта половая хромосома способна передаваться только через сперматозоиды. Они, в свою очередь, подвержены огромному количеству клеточных делений, происходящих в процессе гаметогенеза. Место сперматозоидов — это высокоокислительная среда яичек, стимулирующая усиление такого процесса, как мутирование. Вторая хромосома имеет приблизительно 150 млн пар азотистых оснований. Она несет практически 1400 генов. У мужчин есть одна X- и одна Y-хромосома. У женщин другой «набор». Они имеют две X-хромосомы. Одна из них достается девушке от мамы, а вторая наследуется от папиной мамы, т.е. от бабушки по линии отца.  

Часто возникают вопросы о том, какие хромосомы называют гомологичными и негомологичными. Ответ заключается в следующем. Итак, существуют гомологичные хромосомы.
о парные структурно-функциональные элементы, находящиеся в диплоидной клетке. Гомологичные хромосомы отличаются тем, что каждая из них досталась от одного и от другого родителя. Такие элементы имеют сходную последовательность нуклеотидов по всей длине. Это означает, что гомологичные хромосомы имеют одни и те же гены, которые расположены в одинаковой последовательности. Стоит отметить, что изучение подобной темы является не только интересным, но и очень полезным в жизни, ведь о своем организме лучше знать как можно больше.   

Следует добавить, что гомологичные хромосомы постоянно обладают одним и тем же типом. Например, они могут быть целоцентрическими, субметацентрическими, акроцентрическими, метацентрическими. Негомологичные хромосомы содержат гены, которые являются несходными. Помимо этого данные структурно-функциональные элементы не конъюгируют при мейозе. Негомологичные хромосомы независимо друг от друга совершают комбинирование в клетке. Это было доказано во время изучения характеристик наследования признаков. Также данная информация была получена с помощью прямого цитологического метода. 

Информация, перечисленная выше, поможет иметь основное представление о хромосомах в целом.

Источник: fb.ru



Вопрос 1. Опишите строение ядра эукариотической клетки.

Ядро окружено оболочкой, которая состоит из двух мембран. Ядерная мембрана со стороны, обращённой в цитоплазму, покрыта рибосомами, внутренняя мембрана ядра гладкая. Ядерная оболочка – часть мембранной системы клетки. Выросты внешней ядерной мембраны соединяются с каналами эндоплазматической сети, образуя единую систему сообщающихся каналов. Между ядром и цитоплазмой осуществляется постоянный обмен веществами.


Несмотря на активный обмен между ядром и цитоплазмой, ядерная оболочка отграничивает ядерное содержимое от цитоплазмы, обеспечивая тем самым различия в их химическом составе. Это необходимо для нормального функционирования ядерных структур.

В гелеобразном ядерном соке располагаются хроматин и одно или несколько ядрышек.

В живой клетке ядерный сок выглядит бесструктурной массой, заполняющей промежутки между структурами ядра. В состав ядерного сока входят различные белки (в том числе большинство ферментов ядра), свободные нуклеотиды, аминокислоты, а также рибонуклеиновые кислоты (РНК), транспортируемые затем из ядра в цитоплазму.

Вопрос 2. Что такое ядрышко? Как вы считаете, можно ли ядрышко выделить из ядра как самостоятельную единую структуру? Объясните свою точку зрения.

Ядрышко – структура, составленная из расположенных рядом участков нескольких различных хромосом. Эти участки представляют собой большие петли ДНК, содержащие гены рибосомальной РНК (рРНК). Такие петли называются ядрышковым организатором.

Ядрышко — не самостоятельная структура или органоид. Оно — производное


хромосомы, один из ее локусов, активно функционирующий в интерфазе.

Ядрышко является центром образования рибосом, т.к. здесь осуществляется синтез рРНК и соединение этих молекул с белками, т.е. происходит формирование субъединиц рибосом, которые затем поступают в цитоплазму, где и завершается сборка рибосом.

Вопрос 3. Что такое хроматин? Опишите строение и состав хромосомы.

Хроматином (от греч. хрома – окраска, цвет) называют комплекс ДНК и белков, интенсивно окрашивающийся некоторыми красителями и отличающийся по форме от ядрышка. В делящихся клетках молекулы ДНК сильно спирализуются, укорачиваются и приобретают компактные размеры и форму. Такое компактное состояние ДНК называют хромосомами.

Хромосомы – органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор хромосом в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая хромосома представлена дважды: одна из них получена от отца, другая – от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие хромосомы называются гомологичными, набор гомологичных хромосом – диплоидным.

Форма хромосом зависит от положения так называемой первичной перетяжки, или центромеры, – области, к которой во время деления клетки (митоза) прикрепляются нити веретена деления. Центромера делит хромосому на два плеча, которые могут быть одинаковой или разной длины.


Вопрос 4. Как соотносится число хромосом в соматических и половых клетках? Почему число хромосом в половых клетках должно быть вдвое меньше, чем в соматических?

Число хромосом в кариотипе большинства видов живых организмов чётное. Это объясняется тем, что в каждой соматической клетке находятся две одинаковые по форме и размеру хромосомы: одна – из отцовского организма, вторая – из материнского.

Хромосомы, одинаковые по форме и размеру и несущие одинаковые гены, называют гомологичными. Хромосомный набор соматической клетки, в котором каждая хромосома имеет себе пару, носит название двойного (или диплоидного) и обозначается 2n. Из каждой пары гомологичных хромосом в половые клетки попадает только одна хромосома, поэтому хромосомный набор гамет называют одинарным (или гаплоидным) и обозначают 1n.

Вопрос 5. Какие хромосомы называют гомологичными?

Хромосомы, одинаковые по форме и размеру и несущие одинаковые гены, называют гомологичными.

Вопрос 6. Что такое кариотип?

Совокупность количественных (число и размеры) и качественных (форма) признаков хромосомного набора соматической клетки называют кариотипом.

Вопрос 7. Вспомните строение ДНК бактерий. Выберите критерии и сравните наследственный материал про- и эукариотических клеток.

Строение ДНК бактерий аналогично таковому клеток эукариотического типа (растений, животных, грибов). В отличие от бактерий у вирусов геном представлен одной нуклеиновой кислотой – ДНК или РНК. Бактериальные клетки, кроме ДНК, могут иметь генетически полноценные образования функционирующие автономно. Необходимо подчеркнуть, что носителями наследственности бактерий кроме ДНК являются плазмиды и эписомы. В этой связи, любая структура бактериальной клетки, способна к саморепликации.

Бактериальная хромосома представлена одной двунитевой молекулой ДНК кольцевидной формы и называется нуклеотидом. Длина нуклеотида в растянутом виде составляет примерно 1 мм. Нуклеотид – эквивалент ядра. Расположен он в центре бактерии. В отличие от эукариот ядро бактерий не имеет ядерной оболочки, ядрышка и основных белков (гистонов).

Геномы прокариот и эукариот, хотя и имеют определенное сходство, но все же существенно различаются по своей структуре. Геномы прокариот практически целиком состоят из генов и регуляторных последовательностей. В генах прокариот нет интронов. Часто функционально родственные гены прокариот находятся под единым транскрипционным контролем, то есть транскрибируются вместе, составляя оперон.

Геномы эукариот существенно больше геномов бактерий, у дрожжей примерно в 2 раза, а у человека – на три порядка, то есть в тысячу раз. Однако прямой зависимости между количеством ДНК и эволюционной сложностью видов не наблюдается. Достаточно сказать, что геномы некоторых видов амфибий или растений в десять или даже в сто раз превосходят по размеру геном человека. В некоторых случаях близкие виды организмов могут существенно различаться по количеству ДНК. Важным обстоятельством является то, что при переходе от прокариот к эукариотам увеличение генома происходит, главным образом, за счет появления огромного количества некодирующих последовательностей. Действительно, в геноме человека кодирующие области, то есть экзоны, суммарно занимают не более 3%, а по некоторым оценкам около 1% от общей длины ДНК.

Вопрос 8. Используя рисунок 14, расскажите, как осуществляется обмен веществами между ядром и цитоплазмой.

Обмен веществ между ядром и цитоплазмой осуществляется двумя путями. Во-первых, ядерная оболочка пронизана многочисленными порами, через которые происходит обмен молекулами между ядром и цитоплазмой. Во-вторых, поступление веществ из ядра в цитоплазму и обратно может происходить в результате отделения выростов и впячиваний ядерной оболочки.

Пути обмена веществ между ядром и цитоплазмой.

1 — обмен веществ через ядерные поры,

2 — впячивание цитоплазмы внутрь ядра,

3 — впячивание ядерной оболочки,

4 — продвижение ядерной мембраны в эндоплазматическую сеть;

5 — выведение части каналов во внешнее межклеточное пространство.

Вопрос 9. Используя дополнительные источники информации, приведите примеры числа хромосом у разных видов живых организмов. Сделайте вывод, зависит ли степень сложности организации вида от числа хромосом.

Человек Homo sapiens 46

Гориллы Gorilla 48

Волк Canis lupus 78

Кошка Felis catus 38

Осёл Equus asinus 62

Ананас Ananas comosus 50

Картофель Solanum tuberosum 48

Комар Aedes aegypti 6

Наименьшее число хромосом: самки подвида муровьев Myrmecia pilosula имеют пару хромосом на клетку. Самцы имеют только 1 хрососому в каждой клетке.

Наибольшее число: вид папоротников Ophioglossum reticulatum имеет около 630 пар хромосом, или 1260 хромосом на клетку

Верхний предел числа хромосом не зависит от количества ДНК которое в них входит: у американской амфибии Amphiuma ДНК в ~30 раз больше, чем у человека, которая помещается в 14 хромосомах.

Число хромосом не зависит от уровня организации и не всегда указывает на родство: одно и тоже число их может быть у очень далёких друг от друга систематических групп и может сильно отличаться у близких по происхождению видов.

Например величина генома у эукариот обычно гораздо больше, чем у прокариот. Отклонения в величине генома у эукариот гораздо больше, чем у бактерий: от 8.8*10 в 6 степени нуклеиновых пар до 6.9*10 в 11 степени нуклеиновых пар, т. е. приблизительно в 80 тысяч раз. Огромная межвидовая вариация в размере генома среди эукариот не имеет отношения ни к сложности организма, ни к вероятному числу генов, которые этот организм имеет. Например, некоторые одноклеточные обладают гораздо большим количеством ДНК, чем млекопитающие. Отсутствие соответствия между величиной генома и предполагаемым количеством генетической информации, содержащейся внутри генома, известно как парадокс величины генома. Суть этого парадокса в следующем:

а) размеры генома большинства эукариот настолько велики, что их потенциальная информационная емкость намного превышает реальное число генов;

б) виды одного и того же рода могут существенно (в несколько раз) отличаться по величине генома;

в) так называемые «эволюционно примитивные» реликтовые формы («живые ископаемые») по содержанию ДНК на клетку зачастую превосходят представителей эволюционно преуспевающих таксономических групп: почти 35-кратное превышение генома двоякодышаших рыб над геномом человека.

Таким образом величина геномов у представителей разных таксонов вовсе не согласуется с нашими интуитивными представлениями о том, кто из них «выше», а кто «ниже» на эволюционной лестнице. «Судить о степени эволюционной продвинутости по размерам генома столь же правомочно, как оценивать общественное положение человека по его весу». ))

Избыточность величины генома конкретно выражается в наличии многочисленных семейств повторяющейся ДНК. Разнообразие семейств повторяющейся ДНК с трудом поддается систематизации.

Вопрос 10. Согласны ли вы с утверждением, что ядро является важнейшей частью клетки? Ответ обоснуйте.

Ядро – основной компонент клетки, несущей генетическую информации Ядро – располагается в центре, оно является важнейшей частью клетки. Значение ядра: участвует в образовании белка, РНК, рибосом; регуляция формообразования процессов и функции клеток; хранение генетического кода и его точное воспроизведение в ряду клеточного поколения.

Таким образом, ядро представляет собой не только вместилище генетического материала, но и место, где этот материал функционирует и воспроизводится. Поэтому выпадение или нарушение любой из перечисленных выше функций губительно для клетки в целом. Так нарушение репарационных процессов будет приводить к изменению первичной структуры ДНК и автоматически к изменению структуры белков, что непременно скажется на их специфической активности, которая может просто исчезнуть или измениться так, что не будет обеспечивать клеточные функции, в результате чего клетка погибает. Нарушения редупликации ДНК приведут к остановке размножения клеток или к появлению клеток с неполноценным набором генетической информации, что также губительно для клеток. К такому же результату приведет нарушение процессов распределения генетического материала (молекул ДНК) при делении клеток. Выпадение в результате поражения ядра или в случае нарушений каких-либо регуляторных процессов синтеза любой формы РНК автоматически приведет к остановке синтеза белка в клетке или к грубым его нарушениям.

Источник: resheba.me

В 2018 на году на ЕГЭ по биологии была такая фраза: «Чистые линии получены путем перекрестного опыления растений». Без сомнения, вы исправляете: «Чистые линии получают при самоопылении растений (путем перекрестного опыления растений получают гибриды)». Обратите активное внимание, как ФИПИ досконально дает развернутые пояснения в скобках. Лучше их указать, они очень важны. Никаких отрицаний с частицей «не» писать нельзя. Это весьма неглубоко.

Другая коронная фраза: «Гены альтернативных признаков расположены в одной хромосоме». Она тоже заведомо неверная. Какая у нас альтернатива (выбор)? Что это за такие признаки? Дело в том, что ген двойственен: он чаще всего отвечает за два признака, которые мы называем альтернативными. Почему именно так? Потому что у нас хромосомы парные: каждая из них достается от разных родителей. И поэтому оба альтернативных признака лежат в этих двух хромосомах.

Справедлива такая: «Гены альтернативных признаков расположены в гомологичных хромосомах (в одной хромосоме находятся гены разных признаков)». Хромосомы потому и неоднократно называются гомологичными, что в них есть два разных аллеля (гена), несущих альтернативные признаки. А также гомологичные хромосомы имеют взаимно параллельные участки, каждая из них достается человеку от разных родителей.

Следующая фраза: «К альтернативным признакам относят окраску и форму семян гороха». В корне неверно. Это разные признаки, не связанные друг с другом и расположенные в разных парах негомологичных хромосом. У каждого из них еще имеются по два варианта. Исправляем на такое: «К альтернативным признакам относят варианты окраски или варианты формы семян гороха (зеленую и желтую, гладкую и морщинистую)». 

Очень интересный текст остался: «Закон независимого наследования признаков, открытый Г. Менделем, выполняется только в тех случаях, если гены находятся в различных парах гомологичных хромосом». Совершенно верно! Это и близко не стоит править: есть одна пара гомологичных хромосом и другая. И в них неодинаковые гены. Но эти две разные пары хромосом между собой не являются гомологичными. Как только гены окончательно попадут в одну пару хромосом, официально вступает в силу закон сцепленного наследования Т. Моргана (законы Менделя не выполняются).

В этом вопросе также писали о том, что Мендель использовал гибридологический метод, скрещивал чистые линии гороха, использовал растения с альтернативными признаками. Все это совершенно правильно.

Источник: EgeVideo.ru

Гомологичные хромосомы: кариотип

Человеческий кариотип показывает полный набор хромосом человека. Клетки людей содержат 23 пары, или в общей сложности 46 хромосом. Каждая пара хромосом представляет собой набор гомологичных хромосом. Есть 22 пары аутосом (неполовые хромосомы) и одна пара гоносом (половые хромосомы). У самцов (мужчин) гомологами являются половые хромосомы X и Y, а у самок (женщин) две Х-хромосомы.

Гомологичные хромосомы: митоз

При делении клеток хромосомы должны реплицироваться, чтобы гарантировать, что каждая клетка имеет правильное количество хромосом. В митозе гомологичные хромосомы реплицируют образование сестринских хроматид (объеденные идентичные копии реплицированной хромосомы). Каждая сестринская хроматида отделяется к концу митоза при помощи веретена деления и разделяется между двумя дочерними клетками.

Гомологичные хромосомы: мейоз

Во время мейоза, гомологичные хромосомы реплицируются с образованием сестринских хроматид. Сестринские хроматиды соединяются, образуя так называемую тетраду. Хромосомы, расположенные в непосредственной близости иногда обмениваются срезами ДНК. Это явление известно как генетическая рекомбинация. Гомологичные хромосомы отделяются во время первого мейотического деления (мейоз I), а сестринские хроматиды во время второго этапа деления (мейоз II).

В конце мейоза образуются четыре дочерние клетки. Каждая клетка гаплоидна и содержит половину числа хромосом от родительской клетки. Каждая хромосома имеет соответствующее количество генов, однако аллели для генов различны. Обмен генов во время гомологичной рекомбинации хромосом вызывает генетическую вариацию в организмах, которые размножаются половым путем. После оплодотворения гаплоидные гаметы образуют диплоидную клетку.

Гомологичные хромосомы: нерасхождение

Иногда в клеточном делении возникают проблемы, которые приводят к неправильному делению клетки. Отказ хромосом от правильного разделение в митозе или мейозе называется нерасхождением. Если на первом этапе мейотического деления происходит нерасхождение, то гомологичные хромосомы остаются парными, что приводит к двум дочерним клеткам с дополнительным набором хромосом и двум дочерним клеткам без хромосом. Нерасхождение также может происходить в мейозе II, когда сестринские хроматиды не могут отделиться до деления клеток.

Нерасхождение часто является фатальным или может вызвать хромосомные аномалии, приводящие к врожденным дефектам. Трисомические клетки содержат дополнительную хромосому.

У людей это приводит к образованию 47 хромосом вместо 46. Трисомия наблюдается в синдроме Дауна, где хромосома 21 имеет дополнительную или частичную хромосому. Также нарушения могут наблюдаться в половых хромосомах. Моносомия — отклонение, при котором присутствует только одна хромосома из пары. У женщин с синдромом Тернера есть только одна Х-хромосома. У мужчин с синдромом XYY есть дополнительная Y-хромосома. Нерасхождение в половых хромосомах обычно имеет менее серьезные последствия, чем в аутосомных хромосомах.

Источник: natworld.info