КОНЪЮГАЦИЯ ХРОМОСОМ (лат. conjugatio соединение; хромосомы; син.: синапсис хромосом, спаривание хромосом) — тесное соединение хромосом друг с другом у всех организмов, включая человека, обладающих сформированным клеточным ядром.

Различают конъюгацию гомологичных и негомологичных хромосом. Конъюгация гомологичных хромосом является обязательным этапом мейоза (см.), а также происходит в некоторых соматических клетках, напр, при формировании политенных (гигантских) хромосом (см.) в клетках слюнных желез личинок мух, комаров и других двукрылых насекомых. Этот тип К. х. отличается тем, что гомологичные хромосомы за счет специфического взаимного «узнавания» и притяжения гомологичных генов плотно прилегают одна к другой по всей длине так, что хромомеры, содержащие гомологичные (аллельные) гены, находятся точно друг против друга. Если в одной из конъюгирующих хромосом произошла транслокация (см.) или инверсия (см.), то участок хромосомы с измененной последовательностью расположения генов не способен конъюгировать с противолежащим участком второй, гомологичной хромосомы (рис. 1). Однако если перестройка произошла на достаточно длинном отрезке, то хромосомы-партнеры, образуя петлю или крест, способны обеспечить сопоставление гомологичных локусов и тем самым осуществить конъюгацию.


В политенных хромосомах конъюгация гомологов носит необратимый характер, гомологичные хромосомы остаются соединенными до конца существования слюнных желез. Биол. значение такой К. х. остается неясным. Конъюгация гомологичных хромосом в мейозе носит обратимый характер и лежит в основе точного разделения диплоидного набора хромосом на два гаплоидных набора, которые расходятся в разные клетки (редукция числа хромосом). Это явление создает условия для полового процесса и генетической рекомбинации у диплоидных организмов. Процесс конъюгации гомологичных хромосом происходит В профазе I мейотического деления и начинается на стадии зиготены. При этом сначала происходит сближение гомологичных хромосом с расстояния нескольких микрометров до расстояния примерно 0,2 мкм, обеспечивающего контакт хромосом. Затем происходит собственно «узнавание» и специфическое притяжение гомологичных хромомеров (локусов генов). В результате две конъюгирующие гомологичные хромосомы ложатся параллельно одна другой так, что гомологичные хромомеры образуют пары. Две соединенные гомологичные хромосомы носят название бивалента, а стадия мейоза, на к-рой соединение (конъюгация) завершилось по всей длине хромосом, называется пахитеной.
время пахитены происходит кроссинговер (перекрест) — обмен участками гомологичных хромосом (см. Рекомбинация). На стадии пахитены каждая хромосома состоит из двух продольных половин — хроматид (4 хроматиды в биваленте). В данном месте бивалента кроссинговер происходит только между двумя несестринскими хроматидами из четырех. На следующей стадии — в диплотене — гомологичные хромосомы отталкиваются одна от другой во всех точках бивалента, кроме тех, где произошли перекресты. В результате места перекрестов (хиазмы) становятся видимыми в микроскоп. На следующих стадиях мейоза — в диплотене, диакинезе и метафазе I деления под влиянием конденсации и укорочения хромосом хиазмы перемещаются к концам бивалентов. Происходит так наз. терминализация хиазм. При этом хиазмы продолжают удерживать пары бывших партнеров по конъюгации. В метафазе I каждая хромосома в биваленте соединяется нитью веретена только с одним полюсом клеточного деления. Благодаря этому в анафазе I мейотического деления гомологичные хромосомы расходятся к противоположным полюсам и к каждому полюсу попадает по одной хромосоме из каждого бивалента. Таким образом, К. х. и хиазмы обеспечивают правильную редукцию числа хромосом. Если в кариотипе (см.) есть непарные хромосомы, напр, единичная половая хромосома в норме у самцов некоторых видов насекомых или одиночная половая хромосома у человека при синдроме Тернера, то такие хромосомы не вступают в конъюгацию из-за отсутствия партнера, остаются унивалентными в профазе I и случайным образом направляются к тому или иному полюсу в анафазе I.
противоположного полюса оказывается набор, лишенный одной хромосомы. У межвидовых гибридов, напр, у мула, нет ни одной парной хромосомы, т. к. половина хромосом получена от хромосомного набора лошади, а другая — осла. В результате в профазе I К. х. вообще отсутствует, и все хромосомы остаются унивалентными. В анафазе I деления они хаотически расходятся к полюсам, и дочерние клетки, а также формирующиеся из них гаметы получают несбалансированные как по видовому составу, так и по числу наборы хромосом. Это приводит к нежизнеспособности гамет или зигот. Бесплодие гибридов типа мула обусловлено отсутствием у них К. х. в мейозе.

Появление в диплоидном хромосомном наборе (см.) лишней хромосомы (трисомия по данной хромосоме) приводит к нарушению К. х. из-за конкуренции между тремя партнерами по конъюгации. Исследование таких случаев привело к открытию правила, согласно к-рому в каждой точке (локусе) хромосомы возможна конъюгация только двух партнеров. Однако в другом локусе может произойти смена партнера, и в результате появляются триваленты. Это также нарушает расхождение хромосом в анафазе I. Различные случаи нарушения К. х. приводят к появлению гипогаплоидных или гипергаплоидных гамет (недостаток хромосом или их избыток). Если такие гаметы выживают и формируют зиготу, то возникают анэуплоидные зародыши (нарушение строгой диплоидности), при этом возможны случаи моносомии (отсутствие одной из хромосом), трисомии (появление лишней хромосомы) и т. п. У человека моно- и трисомия по половым хромосомам и нек-рым аутосомам приводит к хромосомным болезням (см.), а анэуплоидия по крупным аутосомам — к гибели плода во внутриутробном периоде.


Иногда у гибридов близких видов, в частности у растительных гибридов, или у организмов, несущих крупные перестройки хромосом, наблюдается частичная гомология хромосом. Тогда о способности хромосом к конъюгации судят по числу бивалентов в клетке на стадиях диплотены — метафазы I и о «силе» этой конъюгации — по числу хиазм на бивалент. Однако известны случаи ахиазматии (полного отсутствия хиазм) при нормально протекающей конъюгации хромосом в зиготене и пахитене. Преждевременное разъединение гомологов (распад бивалентов) из-за отсутствия хиазм называют десинапсисом. Десинапсис приводит к такому же нарушению расхождения хромосом в анафазе I, какое наблюдается у мула.

Установлено, что процесс конъюгации гомологичных хромосом в мейозе находится под контролем многих генов, действующих только во время мейоза. Такие гены обнаружены у дрозофилы, грибов и ряда высших растений, но их действие оказывается одинаковым у самых разных организмов. Генетический контроль К. х. свидетельствует о том, что К. х. обеспечивается синтезируемыми во время мейоза специфическими белками. Сближение хромосом с дальних расстояний, вероятно, осуществляется за счет каких-то факторов в ядерной мембране: концы гомологичных хромосом, прикрепленные к ядерной мембране, «скользят» по ней навстречу друг другу, обеспечивая тем самым сближение хромосом.
зможно, что сближение хромосом с дальних расстояний происходит за счет неспецифического взаимодействия ДНК, локализованной в прицентромерных участках хромосом, за счет интеркалярного гетерохроматина (т. е. гетерохроматина, находящегося между двумя дисками эухроматина), способного к так наз. эктопическому спариванию — временной конъюгации негомологичных участков хромосом. Более известны молекулярные механизмы взаимодействия хромосом на близких расстояниях. Доказано участие в этом процессе уникальных последовательностей нуклеотидов ДНК, расположенных по ли локально по длине всех хромосом и реплицирующихся накануне или во время К. х. на стадии зиготены (зетДНК). Установлено, что К. х. на стадии зиготены сопровождается формированием так наз. синаптонемального комплекса (СК). Он формируется в процессе К. х. в мейозе у всех эукариотических организмов (от инфузорий и дрожжей до человека) и представляет собой субмикроскопическую структуру, к-рая состоит из трех рибонуклеопротеидных тяжей, идущих вдоль каждой пары гомологичных хромосом внутри бивалента (рис. 2). Два наружных тяжа называются боковыми элементами СК, внутренний — центральным. Боковые элементы возникают в каждой хромосоме до их конъюгации и сближаются в момент конъюгации до расстояния 150—200 нм. В это время между ними формируется центральный элемент. Предполагается, что центральный элемент служит местом формирования гетеро-дуплексов зетДНК (гибридных молекул ДНК), в к-рой полинуклеотидные нити двойной спирали принадлежат разным хромосомам — партнерам в биваленте.
едполагается, что СК препятствует необратимому соединению гомологичных хромосом, удерживая их на строго определенном расстоянии, ибо он отторгается от хромосом после прекращения их конъюгации на стадии диплотены, разрушается и выводится из ядра нередко в виде поликомплексов, упакованных в трехмерный штабель отрезков боковых и центральных элементов. СК отсутствует при необратимой К. х. в политенных хромосомах. Доказано, что формирование СК является результатом активации в мейозе специфических генов, в частности нормального аллеля гена с (3) G у дрозофилы. Формирование СК обеспечивает высокую частоту кроссинговера, но не является непременным условием для его осуществления; в отсутствие СК кроссинговер может идти, но с пониженной частотой.

Конъюгация негомологичных хромосом (конъюгация гомологичных участков в негомологичных хромосомах) наблюдается в мейозе у гаплоидных растений, во время митоза (см.) в соматических клетках многих растений и животных (эктопическое спаривание). На основе неслучайного расхождения негомологичных хромосом в мейозе у дрозофил с перестроенным хромосомным набором можно сделать вывод, что в профазе I мейоза происходила конъюгация негомологичных хромосом. Экспериментально подтверждается гипотеза о полилокальном расположении в хромосомах дрозофилы определенной фракции ДНК, состоящей из так наз. умеренных повторов нуклеотидов. Они способны обеспечить взаимное «узнавание» идентичных участков в той же самой и других хромосомах клетки и обусловить, т. о., конъюгацию негомологичных хромосом.


Библиография: Дубинин Н. П. Общая генетика, М., 1976; ДыбанА. П. иБара-н о в В. С. Методы исследования хромосом в гаметогенезе и эмбриогенезе млекопитающих, Арх. анат., гистол, и эмбриол., т. 66, № 1, с. 79, 1974, библиогр.; Прокофьева — Бельговская А. А. и д р. Цитогенетика человека, М., 1969; Цитология и генетика мейоза, под ред. В. В. Хвостовой и Ю. Ф. Богданова, М., 1975, библиогр.; Bordjadze V. К. a. Prokofieva-Belgov-skaya A. A. Pachytene analysis of human acrocentric chromosomes, Cytogenetics, v. 10, p. 38, 1971; J o h n B. a. L e w i s K. K. The meiotic system, Wien—N. Y., 1965, bibliogr.; Methods in human cytogenetics, ed. by H. G. Schwarzacher a. U. Wolf, N. Y., 1974.

Источник: xn--90aw5c.xn--c1avg

Гаметогенез

Какие периоды выделяют в развитии половых клеток? Расскажите, как протекает период созревания (мейоз).

В процессе гаметогенеза (образования половых клеток) выделяют четыре этапа.

1. Период размножения характеризуется митотическим делением первичных половых клеток; при этом увеличивается их количество.

2. Период роста заключается в увеличении размеров клетки. В конце периода в интерфазе I происходит редупликация ДНК. Формула клетки становится 2n4c.


3. Период созревания (мейоз). Во время мейоза клетки делятся дважды.

В результате I мейотического (редукционного) деления в дочерних клетках происходит уменьшение (редукция) числа хромосом в 2 раза.

Профаза I. Формула клетки 2n4c. Идет спирализация ДНК. Хромосомы укорачиваются и утолщаются, становятся видны как длинные тонкие нити. Происходит конъюгация гомологичных хромосом. Конъюгацией называется процесс точного и тесного сближения гомологичных хромосом, при котором каждая точка одной хромосомы совмещается с соответствующей точкой другой гомологичной хромосомы. Гомологичные — это парные хромосомы, одинаковые по строению, содержащие в одних и тех же локусах аллельные гены, отвечающие за одни и те же признаки. Хромосомы удерживаются друг около друга за счет образования соединения, напоминающего застежку молнию. Соединение образовано белковыми нитями с утолщением на свободных концах. В результате конъюгации образуется бивалент (тетрада), состоящий из четырех хроматид. В дальнейшем между гомологичными хромосомами может произойти кроссинговер — обмен гомологичными участками. Вероятность кроссинговера для каждой хромосомы равна 50%. При этом участками обмениваются две рядом лежащие, не сестринские хроматиды. В результате кроссинговера каждая хромосома оказывается состоящей из одной хроматиды с неизмененным набором генов и второй — с перекомбинированными генами (в составе бивалента все хроматиды разные). Спирализация хромосом усиливается, между ними возникают силы отталкивания. Они остаются связанными в местах кроссинговера, где образуются хиазмы (перекрест). По мере усиления спирализации и силы отталкивания хиазмы смещаются к концам плеч хромосом, где образуются терминальные (конечные) хиазмы.


Метафаза I. Спирализация хромосом достигает максимума. Биваленты выстраиваются по экватору клетки. В плоскости экватора лежат участки терминальных хиазм, а центромеры гомологичных хромосом обращены к разным полюсам клетки, к ним прикрепляется веретено деления.

Анафаза I. Участки терминальных хиазм разрываются, и гомологичные хромосомы из бивалента начинают движение к разным полюсам клетки.

В результате I мейотического деления в каждой дочерней клетке оказывается одна хромосома из каждой пары. Образуются гаплоидные клетки с формулой 1n2c.

Интерфаза II — короткая, редупликации ДНК не происходит. Идет репаративный синтез ДНК, направленный на восстановление возможных нарушений структуры ДНК, возникших в процессе кроссинговера.

II мейотическое деление — эквационное (уравнительное). Оно заключается в приведении в соответствие количества ДНК хромосомному набору и протекает по типу митоза. В анафазе II сестринские хроматиды, после деления центромеры, становятся самостоятельными хромосомами и начинают движение к разным полюсам клетки. В результате II мейотического деления из каждой гаплоидной клетки (1n2c) образуются две дочерние клетки с формулой 1n1c.

4. Период формирования заключается в приобретении клеткой соответствующей формы и размеров, необходимых для выполнения специфических функций.


Источник: biootvet.ru

Термином «мейоз» обозначают два следующих друг за другом деления, в результате которых из диплоидных клеток образуются гаплоидные половые клетки — гаметы. Если бы оплодотворение происходило диплоидными гаметами, то плоидность потомков в каждом следующем поколении должна была бы возрастать в геометрической прогрессии. В то же время благодаря мейозу зрелые гаметы всегда гаплоидны, что позволяет сохранять диплоидность соматических клеток вида. Возможность существования подобного мейозу деления при созревании гамет животных и растений была предсказана А. Вейсманом еще в 1887 г. Мейотические деления не эквивалентны митозу. Обоим мейотическим делениям предшествует только одна фаза синтеза ДНК. Продолжительность ее, как и профазы I деления мейоза, во много раз превосходит соответствующие показатели митотического цикла любых соматических клеток данного вида.

I I. Первое деление

Половое размножение имеет очень большие эволюционные преимущества по сравнению с бесполым. Это обусловлено тем, что генотип потомков возникает путем объединения генов, принадлежащих обоим родителям. В результате повышаются возможности организмов в приспособлении к условиям окружающей среды. Так как новые комбинации осуществляются в каждом поколении, то приспособленными к новым условиям существования может оказаться гораздо большее количество особей, чем при бесполом размножении. Появление новых комбинаций генов обеспечивает более успешное и быстрое приспособление вида к меняющимся условиям обитания.

Таким образом, сущность полового размножения заключается в объединении в наследственном материале потомка генетической информации из двух разных источников — родителей.

В половых железах развиваются половые клетки: мужские — сперматозоиды, женские — яйцеклетки (или яйца) . В первом случае их развитие называют сперматогенезом, во втором — овогенезом (от лат. ово — яйцо) .

В процессе образования половых клеток выделяют ряд стадий. Первая стадия — период размножения, в котором первичные половые клетки делятся путем митоза, в результате чего увеличивается их количество.

Вторая стадия — период роста. У незрелых мужских гамет он выражен не резко. Их размеры увеличиваются незначительно. Напротив, будущие яйцеклетки — овоциты — увеличиваются в размерах иногда в сотни, а чаще в тысячи и даже миллионы раз. Рост овоцитов осуществляется за счет веществ, образуемых другими клетками организма. Так, у рыб, амфибий и в большей степени у рептилий и птиц основную массу яйца составляет желток. Он синтезируется в печени, в особой растворимой форме переносится кровью в яичник, проникает в растущие овоциты и откладывается там в виде желточных пластинок. Кроме того, в самой будущей половой клетке синтезируются многочисленные белки и большое количество разнообразных РНК: транспортных, рибосомных и информационных. Желток — совокупность питательных веществ (жиров, белков, углеводов, витаминов и др.) , необходимых для питания развивающегося зародыша, а РНК обеспечивает синтез белков на ранней стадии развития, когда собственная бедственная информация еще не используется.

Следующая стадия — период созревания, или мейоз, — представлена на рисунке 2. Клетки, вступающие в период созревания, содержит диплоидный набор хромосом и уже удвоенное количество ДНК
Сущность мейоза состоит в том, что каждая половая клетка получает одинарный, гаплоидный, набор хромосом. Однако вместе с тем мейоз — это стадия, во время которой создаются новые комбинации генов путем сочетания разных материнских и отцовских хромосом, рекомбинирование наследственных задатков возникает, кроме того в результате кроссинговера — обмена участками между гомологичными хромосомами в процессе мейоза.

Мейоз включает два последовательных деления. Как и в митозе, в каждом мейотическом делении выделяют четыре стадии: профазу, метафазу, анафазу и телофазу.

Первое (I) мейотическое деление. Профаза I начинается спирализацией хромосом. Как вы помните, каждая хромосома состоит из двух хроматид, соединенных

Источник: otvet.mail.ru

Мейозособый способ деления эукариотических клеток, в результате которого образуются клетки со уменьшенным в два раза набором хромосом, образованные клетки имеют различный набор аллелей генов – генетически неодинаковы, эти клетки превращаются в гаметы (у животных) или споры (у растений и грибов). Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n4c) образуются две гаплоидные (1n2c).

Интерфаза 1 (в начале – 2n2c, вконце – 2n4c) происходит обычно и сопровождается ростом, синтезом и накоплением веществ и энергии, необходимых для осуществления обоих делений, увеличением числа органоидов, удвоением центриолей, репликацией ДНК, которая завершается в профазе 1.

Профаза 1 (2n4c). Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий.

Лептотена, стадия тонких нитей. Хромосомы слабо конденсированы. Они уже двухроматидные (каждая хромосома состоит из двух сестринских хроматид), но хроматиды настолько сближены, что хромосомы имеют вид длинных одиночных тонких нитей. Теломеры хромосом еще прикреплены к ядерной мембране с помощью особых структур – прикрепительных дисков.

Зиготена, стадия сливающихся нитей. Гомологичные хромосомы начинают притягиваться друг к другу сходными участками и конъюгируют. Конъюгацией называют процесс тесного сближения гомологичных хромосом. (Процесс конъюгации также называют синапсисом.). Начинается распад ядерной оболочки на фрагменты, происходит расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, продолжается конденсация двухроматидных хромосом. Происходит процесс, отсутствующий при митозе – конъюгация, процесс тесного сближения и гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом (это пара хромосом), или тетрадой (в биваленте четыре хроматиды). Полагают, что каждый ген приходит в соприкосновение с гомологичным ему геном другой хромосомы, количество бивалентов равно гаплоидному набору хромосом.

Сближение гомологичных хромосом в процессе мейоза называется   Рис. . Кроссинговер

Пахитена, стадия толстых нитей. Процесс спирализации хромосом продолжается, причем в гомологичных хромосомах он происходит синхронно. Становится хорошо заметно, что хромосомы двухроматидные. В пахитене наблюдается особенно тесный контакт между хроматидами. Важнейшим событием пахитены является кроссинговер – обмен участками между несестринскими хроматидами гомологичных хромосом. Кроссинговер приводит к первой во время мейоза рекомбинации генов.

Диплотена. Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы. Эти точки появляются в местах кроссинговера. В ходе гаметогенеза у человека может образовываться до 50 хиазм.

Диакинез. Хромосомы максимально укорачиваются и утолщаются за счет спирализации хроматид, ядерная оболочка почти полностью разрушена. Происходит сползание хиазм к концам хроматид.

Метафаза 1 (2n4c) происходит выстраивание бивалентов в экваториальной плоскости клетки, прикрепление микротрубочек веретена деления одним концом – к центриолям, другим – к центромерам хромосом, а не к центромерам хроматид, как это было при митозе.

Анафаза 1 (2n4c) – случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому). Происходит вторая рекомбинация генетического материала – у каждого полюса оказывается гаплоидный набор двухроматидных хромосом, часть из них – отцовские, часть – материнские. Многие хроматиды в хромосомах после кроссинговера стали мозаичными, одновременно несут некоторые гены отца и матери.

Телофаза 1 (1n2c в каждой клетке). Происходит образование ядерных оболочек вокруг гаплоидных наборов двухроматидных хромосом, деление цитоплазмы. Из одной диплоидной клетки (2n4c) образовались две клетки с гаплоидным набором хромосом (n2c), поэтому это деление называют редукционным.

Сближение гомологичных хромосом в процессе мейоза называется   Рис. . Изменение хромосомного набора и ДНК в 1 и 2 делении мейоза.

Интерфаза 2, или интеркинез (1n2c) представляет собой перерыв между первым и вторым мейотическими делениями, продолжительность этого периода различается у разных организмов – в некоторых случаях обе дочерние клетки сразу вступают во второе деление, а иногда второе деление начинается через несколько месяцев или лет. Но так как хромосомы двухроматидные, во время интерфазы 2 не происходит репликация ДНК.

Второе мейотическое деление (мейоз 2) называется эквационным.

Профаза 2 (1n2c). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.

Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

Амитоз – прямое деление интерфазного ядра путем перетяжки без спирализации хромосом, без образования веретена деления. Дочерние клетки имеют неодинаковый генетический материал. Может ограничиваться только делением ядра, что приводит к образованию дву- и многоядерных клеток. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл. В норме наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться – в эпителии, печени.

Гаметогенез. Гаметы формируются в половых железах – гонадах. Процесс развития гамет называется гаметогенезом. Процесс образования сперматозоидов называется сперматогенезом, а образование яйцеклеток – овогенезом (оогенезом). Предшественники гамет – гаметоциты образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. В половых железах различают три разных участка (или зоны) – зона размножения, зона роста, зона созревания половых клеток. В этих зонах происходят фазы размножения, роста и созревания гаметоцитов. В сперматогенезе имеется еще одна фаза – фаза формирования.

Фаза размножения. Диплоидные клетки в этой зоне половых желез (гонад) многократно делятся митозом. Количество клеток в гонадах растет. Их называют оогонии и сперматогонии.

Фаза роста. В эту фазу происходит рост сперматогоний и оогоний, репликация ДНК. Образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка с набором хромосом и ДНК 2n4с.

Фаза созревания. Сущность этой фазы – мейоз. Гаметоциты 1-го порядка вступают в первое мейотическое деление. В результате образуются гаметоциты 2-го порядка (n2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nc) – яйцеклетки и округлые сперматиды. Сперматогенез включает еще фазу формирования, во время которой сперматиды превращаются в сперматозоиды.

Сперматогенез. Во время периода полового созревания диплоидные клетки в семенных канальцах семенников делятся митотически, в результате чего образуется множество более мелких клеток, называемых сперматогониями. Часть образовавшихся клеток может подвергаться повторным митотическим делениям, в результате чего образуются такие же клетки сперматогонии. Другая часть прекращает делиться и увеличивается в размерах, вступая в следующую фазу сперматогенеза – фазу роста.

Клетки Сертоли обеспечивают механическую защиту, опору и питание развивающихся гамет. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу. Главными событиями фазы роста является репликация ДНК и накопление питательных веществ.

Сперматоциты 1-го порядка (2n4с) вступают в первое (редукционное) деление мейоза, после которого образуются сперматоциты 2-го порядка (n2c). Сперматоциты 2-го порядка вступают во второе (эквационное) деление мейоза и образуются округлые сперматиды (nc). Из одного сперматоцита 1-го порядка возникают четыре гаплоидные сперматиды. Фаза формирования характеризуется тем, что первично шаровидные сперматиды подвергаются ряду сложных преобразований, в результате которых образуются сперматозоиды.

Сближение гомологичных хромосом в процессе мейоза называется   Рис. . Сперматогенез в семенных канальцах. Строение сперматозоида: 1 – головка; 2 – шейка; 3 – промежуточный отдел; 4 – жгутик; 5 – акросома; 6 – ядро; 7 – центриоли; 8 – митохондрии.

У человека сперматогенез начинается в период полового созревания, срок формирования сперматозоида – три месяца, т.е. каждые три месяца сперматозоиды обновляются. Сперматогенез происходит непрерывно и синхронно в миллионах клеток.

Строение сперматозоида. Сперматозоид млекопитающих имеет форму длинной нити.

Длина сперматозоида человека 50-60 мкм. В строении сперматозоида можно выделить «головку», «шейку» промежуточный отдел и хвостик. В головке находится ядро и акросома. Ядро содержит гаплоидный набор хромосом. Акросома (видоизмененный комплекс Гольджи) – органоид, содержащий ферменты, используемые для растворения оболочек яйцеклетки. В шейке расположены две центриоли, в промежуточном отделе – митохондрии. Хвостик представлен одним, у некоторых видов двумя и более жгутиками. Жгутик является органоидом движения и сходен по строению со жгутиками и ресничками простейших. Для движения жгутиков используется энергия макроэргических связей АТФ, синтез АТФ происходит в митохондриях. Сперматозоид открыт в 1677 году А.Левенгуком.

Овогенез. В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости, процесс образования яйцеклеток у человека начинается еще в эмбриональном периоде и течет прерывисто. У зародыша полностью осуществляются фазы размножения и роста, и начинается фаза созревания. К моменту рождения девочки в ее яичниках находятся сотни тысяч овоцитов 1-го порядка, остановившихся, «застывших» на стадии диплотены профазы 1 мейоза.

В период полового созревания мейоз возобновится: примерно каждый месяц под действием половых гормонов один из овоцитов 1-го порядка (редко два) будет доходить до метафазы 2 мейоза и овулировать на этой стадии. Мейоз может пройти до конца только при условии оплодотворения, проникновения сперматозоида, если оплодотворение не происходит, овоцит 2-го порядка погибает и выводится из организма.

Овогенез осуществляется в яичниках, подразделяется на три фазы – размножения, роста и созревания. Во время фазы размножения диплоидные овогонии многократно делятся митозом. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу, клетки значительно увеличиваются в размерах вследствие накопления питательных веществ. Главным событием фазы роста является репликация ДНК. Во время фазы созревания клетки делятся мейозом. Во время первого деления мейоза они называются овоцитами 1-го порядка. В результате первого мейотического деления возникают две дочерние клетки: мелкая, называемая первым полярным тельцем, и более крупная – овоцит 2-го порядка.

 
 
Сближение гомологичных хромосом в процессе мейоза называется Рис. . Оплодотворение: 1 – цитоплазма овоцита 2-го порядка; 2 – метафазная пластинка; 3 – полярные (редукционные тельца); 4 – блестящая оболочка; 5 – оплодотворение; 6 – сперматозоиды; 7 – фолликулярные клетки; 8 – женский пронуклеус; 9 – формирование мужского пронуклеуса; 10 – слияние пронуклеусов.

Сближение гомологичных хромосом в процессе мейоза называется   Рис. . Овогенез и сперматогенез: 1 – овоцит 1-го порядка; 2 – первое полярное тельце; 3 – овоцит 2-го порядка; 4 – деление первого полярного тельца; 5 – образование второго полярного тельца; 6 – три полярных тельца; 7 – ядро яйцеклетки, сливающееся с ядром сперматозоида; 8 – зигота; 9 – сперматоцит 1-го порядка; 10 – сперматоциты 2-го порядка; 11 – сперматиды; 12 – сперматозоиды.

Второе деление мейоза доходит до стадии метафазы 2, на этой стадии и происходит овуляция – овоцит выходит из яичника и попадает в маточные трубы.

Если в овоцит проникает сперматозоид, второе мейотическое деление проходит до конца с образованием яйцеклетки и второго полярного тельца, а первое полярное тельце – с образованием третьего и четвертого полярных телец. Таким образом, в результате мейоза из одного овоцита 1-го порядка образуются одна яйцеклетка и три полярных тельца.

Строение яйцеклеток. Форма яйцеклеток обычно округлая. Размеры яйцеклеток колеблются в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 120 мкм). К особенностям строения яйцеклеток относятся: наличие оболочек, располагающихся поверх плазматической мембраны; и наличие в цитоплазме более

или менее большого количества запасных питательных веществ. У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения различают: первичные, вторичные и третичные оболочки. Первичные оболочки формируются из веществ, выделяемых овоцитом и, возможно, фолликулярными клетками. Образуется слой, контактирующий с цитоплазматической мембраной яйцеклетки. Он выполняют защитную функцию, обеспечивает видовую специфичность проникновения сперматозоида, т. е. не позволяет сперматозоидам других видов проникать в яйцеклетку. У млекопитающих эта оболочка называется блестящей. Вторичные оболочки образуются выделениями фолликулярных клеток яичника. Имеются далеко не у всех яйцеклеток. Вторичная оболочка яиц насекомых содержит канал – микропиле, через который сперматозоид проникает в яйцеклетку. Третичные оболочки образуются за счет деятельности специальных желез яйцеводов. Например, из секретов особых желез формируются белковая, подскорлуповая пергаментная, скорлуповая и надскорлуповая оболочки у птиц и рептилий.

Вторичные и третичные оболочки, как правило, образуются у яйцеклеток животных, зародыши которых развиваются во внешней среде. Поскольку у млекопитающих наблюдается внутриутробное развитие, их яйцеклетки имеют только первичную, блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток, доставляющих к яйцеклетке питательные вещества.

       
 
Сближение гомологичных хромосом в процессе мейоза называется Яйцеклетка млекопитающих: 1 – овоцит 2-го порядка на стадии метафазы 2; 2 – блестящая оболочка; 3 – лучистый венец; 4 – первое полярное тельце.
   
Сближение гомологичных хромосом в процессе мейоза называется   Типы яйцеклеток хордовых животных: 1 – алецитальная; 2 – изолецитальная; 3 – умеренно телолецитальная; 4 – резко телолецитальная.
 

В яйцеклетках происходит накопление запаса питательных веществ, которые называют желтком. Он содержит жиры, углеводы, РНК, минеральные вещества, белки, причем основную его массу составляют липопротеиды и гликопротеиды. Желток содержится в цитоплазме обычно в виде желточных гранул. Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки. Яйцеклетки млекопитающих, развивающиеся внутри тела матери, содержат малое количество желтка – менее 5%, так как питательные вещества, необходимые для развития эмбрионы получают от матери.

В зависимости от количества содержащегося желтка различают следующие типы яйцеклеток: алецитальные (не содержат желтка или имеют незначительное количество желточных включений – млекопитающие, плоские черви); изолецитальные (с равномерно распределенным желтком – ланцетник, морской еж); умеренно телолецитальные (с неравномерно распределенным желтком – рыбы, земноводные); резко телолецитальные (желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него – птицы).

В связи с накоплением питательных веществ, у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным. Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количества желтка возрастает от анимального к вегетативному полюсу).

Яйцеклетка человека была открыта в 1827 году К.М.Бэром.

Оплодотворение. Оплодотворение – процесс слияния половых клеток, приводящий к образованию зиготы. Собственно процесс оплодотворения начинается в момент контакта сперматозоида и яйцеклетки. В момент такого контакта плазматическая мембрана акросомального выроста и прилежащая к ней часть мембраны акросомального пузырька растворяются, фермент гиалуронидаза и другие биологически активные вещества, содержащиеся в акросоме, выделяются наружу и растворяют участок яйцевой оболочки. Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. Ядро сперматозоида набухает, его хроматин разрыхляется, ядерная оболочка растворяется, и он превращается в мужской пронуклеус. Это происходит одновременно с завершением второго деления мейоза ядра яйцеклетки, которое возобновилось благодаря оплодотворению. Постепенно ядро яйцеклетки превращается в женский пронуклеус. Пронуклеусы перемещаются к центру яйцеклетки, происходит репликация ДНК, и после их слияния набор хромосом и ДНК зиготы становится 2n4c. Объединение пронуклеусов и представляет собой собственно оплодотворение. Таким образом, оплодотворение заканчивается образованием зиготы с диплоидным ядром.

В зависимости от количества особей, принимающих участие в половом размножении, различают: перекрестное оплодотворение – оплодотворение, в котором принимают участие гаметы, образованные разными организмами; самооплодотворение – оплодотворение, при котором сливаются гаметы, образованные одним и тем же организмом (ленточные черви).

Партеногенез – девственное размножение, одна из форм полового размножения, при котором из не происходит оплодотворения, из неоплодотворенной яйцеклетки развивается новый организм. Встречается у ряда видов растений, беспозвоночных и позвоночных животных, кроме млекопитающих, у которых партеногенетические зародыши погибают на ранних стадиях эмбриогенеза. Партеногенез может быть искусственным и естественным.

Искусственный партеногенез вызывается человеком путем активизации яйцеклетки воздействием на нее различными веществами, механическим раздражением, повышением температуры и т.д.

При естественном партеногенезе яйцо начинает дробиться и развиваться в эмбрион без участия сперматозоида, только под влиянием внутренних или внешних причин. При постоянном (облигатном) партеногенезе яйца развиваются только партеногенетически, например, у кавказских скальных ящериц. Все животные этого вида – только самки При факультативном партеногенезе зародыши развиваются и партеногенетически и половым путем. Классический пример – у пчел семяприемник матки устроен так, что она может откладывать оплодотворенные и неоплодотворенные яйца, из неоплодотворенных развиваются трутни. Оплодотворенные яйца развиваются в личинок рабочих пчел – недоразвитых самок, или в цариц – в зависимости от характера питания личинки. При циклическом партеногенезе происходит чередование партеногенеза с обычным половым размножением – все лето у дафний и тлей партеногенетическое размножение и рождаются только самки, а осенью появляются и самцы и самки и происходит половое размножение.

Партеногенетически могут размножаться и личинки некоторых животных, такой партеногенез называется педогенезом. Например, у сосальщиков наблюдается партеногенетическое размножение на стадии личинок.

Источник: studopedia.ru

Развитие половых клеток (гаметогенез)

Сперматозоиды развиваются в семенниках, яйцеклетки — в яичниках. Зрелые половые клетки несут одинарный (гаплоидный) набор хромосом. Число хромосом в гаплоидном наборе всегда в 2 раза меньше, чем в соматических (диплоидных клетках). Число хромосом принято обозначать буквой n, количество ДНК в хромосомном наборе — буквой c. Следовательно, в соматических клетках хромосомный набор обозначается 2n2c., в половых клетках — 1n1c.

В развитии половых клеток выделяют ряд стадий. На первой стадии сперматогенеза — стадии размножения — первичные половые клетки делятся митозом. Затем некоторые из них после удвоения хромосом (2n4c) вступают в стадию роста. При образовании мужских половых клеток рост выражен слабо. После завершения этого периода клетки вступают в период созревания и называются сперматоцитами I порядка. В процессе созревания (мейоза) клетки двукратно делятся.

I деление созревания (или I мейотическое деление) протекает следующим образом. Профаза начинается спирализацией хромосом. Они видны в виде тонких слабоокрашивающихся нитей. Затем гомологичные хромосомы сближаются, и каждая точка одной хромосомы совмещается с соответствующей точкой другой гомологичной хромосомы. Процесс тесного и точного сближения гомологичных хромосом в мейозе называется конъюгацией.

В процессе конъгации гомологичные хромосомы сближаются и удерживаются рядом благодаря образованию каждой хроматидой нитей толщиной 1,5-2,0 нм, растущих по направлению к одной из хроматид второй (гомологичной) хромосомы. Нити на конце утолщены. Утолщения нитей двух противостоящих несестринских хроматид соединяются на подобие застежки «молния». Благодаря образованию таких мостиков гомологичные хромосомы могут долго находиться в сближенном состоянии. Во время профазы между конъюгированными хромосомами может происходить обмен гомологичными участками — кроссинговер. К концу профазы гомологичные хромосомы разъединяются в области центромер, оставаясь соединенными в области плеч.

 

Источник: mirbiologa.ru