Одним из главных видов пластид являются хлоропласты. Их определение очень важно в такой науке как биология. За счет пигмента хлорофилла, который преобладает в них, хлоропласты имеют зеленый цвет. Главная их функция – это фотосинтез, но об этом мы поговорим позже более детально.

Хлоропласты – это органоиды, которые могут содержаться в клетке в разном количестве. К примеру, в одних растениях в каждой клетке содержится сотни их штук, а в некоторых водорослях – всего лишь один хлоропласт, причем очень странной формы.

Давайте же более детально разберемся, что такое хлоропласты и как они появляются в клетках. Развиваются они в некоторых клетках из пропластид, а в других ранее существующие делятся надвое, и появляются новенькие.
Высшие растения имеют хлоропласты больших размеров – около 5 мкм.

Хлоропласты: где находятся и из чего состоят


Строение хлоропласта
Строение хлоропласта

Хлоропласты состоят из таких частей:

  • внешняя мембрана;
  • внутренняя мембрана;
  • люмен;
  • тилакоиды;
  • граны;
  • ламеллы.

Мембрана служит для защиты хлоропластов от разных факторов. А тилакоид имеет форму приплюснутого диска. Их может быть много в клетке. Тилакоиды объединяются в стопки, образуя собой граны. Последние связаны между собой своеобразными нитями под названием ламеллы.

Также в составе хлоропластов присутствует жидкость, называемая стромой. В ней содержатся РНК и ДНК и другие части, которые выполняют важную задачу – обеспечение полуавтономности хлоропласта. Кроме того, при избытке углеводов в составе стромы иногда образуется сахар в виде крахмала. Он позже используется растением для дыхания или производства целлюлозы.

Хлоропласты и их функции

Что такое хлоропласты?


Давайте же разберемся, какую функцию выполняют хлоропласты. Эти внутриклеточные органеллы осуществляют фотосинтез. Все растения могут производить кислород только при помощи этих частиц. Хлоропласты – это в биологии один из самых важных органоидов, так как они выполняют синтез глюкозы и воды при помощи солнечной энергии. Хлорофиллы – зеленые тельца – улавливают энергию солнца. Но как из этого получается кислород? На самом деле это всего лишь побочный эффект фотосинтеза.

К слову, этот процесс проходит в несколько этапов, и сам по себе является достаточно сложным.
Что касается хлорофилла, то это основный пигмент, без которого фотосинтез невозможен. В разных клетках он содержится в разных формах. Кроме того, в фотосинтезе принимают участие каротиноиды, пигменты другого вида.

Хлорофилл имеет головку и длинное кольцо. Солнечную энергию улавливает именно головкой. Когда солнечный свет поступает к ней, электроны возбуждаются, отделяются от хлорофиллов.

Хлоропласты: другие функции

Хлоропласты одновременно с фотосинтезом принимают участие и в других, менее важных задачах. Зеленые пластиды (так еще называются хлоропласты), собирают и хранят нужные вещества. Эти вещества необходимы для производства энергии, так необходимой для растения.

Итак, хлоропласты – это частицы клетки, которые имеют собственную ДНК, отвечают за производство энергии и участвуют в фотосинтезе.

Источник: www.vseznaika.org

Основное определение


Так называются специфические структуры, в которых происходят процессы фотосинтеза, которые направлены на связывание углекислого газа и образование некоторых углеводов. Побочным продуктом является кислород. Это вытянутые в длину органоиды, достигающие в ширину 2-4 мкм, длина их доходит до 5-10 мкм. У некоторых видов зеленых водорослей порой встречаются хлоропласты-гиганты, вытянутые на 50 мкм!

У этих же водорослей может быть другая особенность: на всю клетку у них имеется только один органоид этого вида. В клетках высших растений чаще всего имеется в пределах 10-30 хлоропластов. Впрочем, и в их случае могут встречаться яркие исключения. Так, в палисадной ткани обычной махорки имеется по 1000 хлоропластов на одну клетку. Для чего нужны эти хлоропласты? Фотосинтез – вот их главная, но далеко не единственная роль. Чтобы четко понимать их значение в жизни растения, важно знать многие аспекты их происхождения и развития. Все это описывается в дальнейшей части статьи.

Происхождение хлоропласта

Итак, что такое хлоропласт, мы узнали. А откуда эти органоиды произошли? Как получилось, что у растений появился столь уникальный аппарат, который превращает углекислый газ и воду в сложные органические соединения?


В настоящее время среди ученых превалирует точка зрения об эндосимбиотическом происхождении данных органоидов, так как их самостоятельное возникновение в клетках растения довольно сомнительно. Отлично известно, что лишайник – это симбиоз водоросли и гриба. Одноклеточные водоросли при этом живут внутри грибной клетки. Сейчас ученые предполагают, что в незапамятные времена фотосинтезирующие цианобактерии проникли внутрь растительных клеток, а затем частично утратили «самостоятельность», передав большую часть генома в ядро.

Но свою главную особенность новый органоид сохранил в полной мере. Речь идет как раз о процессе фотосинтеза. Впрочем, сам аппарат, необходимый для выполнения данного процесса, формируется под контролем как клеточного ядра, так и самого хлоропласта. Так, деление этих органоидов и прочие процессы, связанные с реализацией генетической информации на ДНК, контролируются ядром.

Доказательства

Относительно недавно гипотеза о прокариотическом происхождении этих элементов была не слишком популярна в научном сообществе, многие считали ее «измышлениями дилетантов». Но после того как был проведен углубленный анализ нуклеотидных последовательностей в ДНК хлоропластов, это предположение получило блестящее подтверждение. Выяснилось, что эти структуры чрезвычайно схожи, даже родственны, ДНК бактериальных клеток. Так, аналогичная последовательность была найдена у свободноживущих цианобактерий. В частности, оказались чрезвычайно схожи гены АТФ-синтезирующего комплекса, а также в «аппаратах» транскрипции и трансляции.


Промоторы, которые определяют начало считывания генетической информации с ДНК, а также терминальные нуклеотидные последовательности, которые отвечают за ее прекращение, также организованы по образу и подобию бактериальных. Разумеется, миллиарды лет эволюционных преобразований смогли внести множество изменений в хлоропласт, но последовательности в хлоропластных генах остались абсолютно прежними. И это – неопровержимое, полное доказательство того, что хлоропласты и в самом деле когда-то имели прокариотического предка. Возможно, это был организм, от которого произошли также современные цианобактерии.

Развитие хлоропласта из пропластиды

«Взрослый» органоид развивается из пропластиды. Это маленькая, полностью бесцветная органелла, имеющая всего несколько микрон в поперечнике. Она окружена плотной двуслойной мембраной, которая содержит кольцевую ДНК, специфическую для хлоропласта. Внутренней мембранной системы эти «предки» органоидов не имеют. Из-за предельно малых размеров их изучение крайне затруднено, а потому данных об их развитии чрезвычайно мало.

Известно, что несколько таких протопластид имеется в ядре каждой яйцеклетки животных и растений. В ходе развития зародыша они делятся и передаются другим клеткам. Это легко проверить: генетические признаки, которые так или иначе связаны с пластидами, передаются только по материнской линии.


Внутренняя мембрана протопластиды за время развития выпячивается внутрь органоида. Из этих структур вырастают мембраны тилакоидов, которые отвечают за образование гран и ламелл стромы органоида. В полной темноте протопастида начинает преобразовываться в предшественник хлоропласта (этиопласта). Этот первичный органоид характерен тем, что внутри него располагается довольно сложная кристаллическая структура. Как только на лист растения попадет свет, она полностью разрушается. После этого происходит образование «традиционной» внутренней структуры хлоропласта, которая образована как раз-таки тилакоидами и ламеллами.

Отличия растений, запасающих крахмал

В каждой меристемальной клетке содержится несколько таких пропластид (их количество разнится в зависимости от вида растения и прочих факторов). Как только эта первичная ткань начинает преобразовываться в лист, предшественники органоидов превращаются в хлоропласты. Так, закончившие свой рост молодые листья пшеницы имеют хлоропласты в количестве 100-150 штук. Чуть сложнее обстоят дела в отношении тех растений, которые способны к накоплению крахмала.

Они скапливают запас этого углевода в пластидах, которые именуются амилопластами. Но какое отношение эти органоиды имеют к теме нашей статьи? Ведь клубни картофеля не участвуют в фотосинтезе! Позвольте разъяснить этот вопрос более подробно.

Мы выяснили, что такое хлоропласт, попутно выявив связь этого органоида со структурами прокариотических организмов. Здесь ситуация схожа: ученые давно выяснили, что амилопласты, как и хлоропласты, содержат точно такую же ДНК и образуются из точно тех же протопластид. Следовательно, и рассматривать их следует в том же аспекте. Фактически амилопласты следует рассматривать в качестве особой разновидности хлоропласта.

Как образуются амилопласты?


Можно провести аналогию между протопластидами и стволовыми клетками. Проще говоря, амилопласты с какого-то момента начинают развиваться по несколько иному пути. Ученые, впрочем, узнали кое-что любопытное: им удалось добиться взаимного превращения хлоропластов из листьев картофеля в амилопласты (и наоборот). Каноничный пример, известный каждому школьнику – клубни картофеля на свету зеленеют.

Прочие сведения о путях дифференцирования этих органоидов

Мы знаем, что в процессе созревания плодов томата, яблок и некоторых других растений (и в листьях деревьев, трав и кустарников в осенний период) происходит процесс «деградации», когда хлоропласты в растительной клетке превращаются в хромопласты. Эти органоиды содержат в своем составе красящие пигменты, каротиноиды.

Превращение это связано с тем, что в определенных условиях происходит полное разрушение тилакоидов, после чего органелла приобретает иную внутреннюю организацию. Вот здесь-то мы снова возвращаемся к тому вопросу, который начали обсуждать в самом начале статьи: влияние ядра на развитие хлоропластов. Именно оно, посредством особых белков, которые синтезируются в цитоплазме клеток, инициирует процесс перестройки органоида.

Строение хлоропласта


Поговорив о вопросах происхождения и развития хлоропластов, следует подробнее остановиться на их строении. Тем более что оно весьма интересно и заслуживает отдельного обсуждения.

Основная структура хлоропластов состоит из двух липопротеиновых мембран, внутренней и внешней. Толщина каждой составляет порядка 7 нм, расстояние между ними — 20-30 нм. Как и в случае других пластид, внутренний слой образует особые структуры, выпячивающиеся внутрь органоида. У зрелых хлоропластов существует сразу два типа таких «извилистых» мембран. Первые образуют ламеллы стромы, вторые – мембраны тилакоидов.

Ламеллы и тилакоиды

Нужно заметить, что прослеживается четкая связь, которую имеет мембрана хлоропластов с аналогичными образованиями, находящимися внутри органоида. Дело в том, что некоторые ее складки могут простираться от одной стенки до другой (как у митохондрий). Так что ламеллы могут образовывать либо своеобразный «мешок», либо разветвленную сеть. Впрочем, чаще всего эти структуры располагаются параллельно друг другу и никак не связаны между собой.

Не стоит забывать, что внутри хлоропласта находятся еще и мембранные тилакоиды. Это замкнутые «мешки», которые располагаются в виде стопки. Как и в предыдущем случае, между двумя стенками полости имеется расстояние в 20-30 нм. Столбики из этих «мешков» называются гранами. В каждом столбике может находиться до 50 тилакоидов, а в некоторых случаях их бывает еще больше. Так как общие «габариты» таких стопок могут достигать 0,5 мкм, иногда они могут быть обнаружены при помощи обыкновенного светового микроскопа.


Общее количество гран, которые содержатся в хлоропластах высших растений, может доходить до 40-60. Каждый тилакоид так плотно прилегает к другому, что их внешние мембраны образуют единую плоскость. Толщина слоя в месте соединения может доходить до 2 нм. Заметим, что подобные структуры, которые образованы прилегающими друг к другу тилакоидами и ламеллами, совсем нередки.

В местах их соприкосновения также имеется слой, достигающий порой тех же самых 2 нм. Таким образом, хлоропласты (строение и функции которых весьма сложны) представляют собой не единую монолитную структуру, а своеобразное «государство внутри государства». В некоторых аспектах строение этих органоидов не менее сложно, чем вся клеточная структура!

Граны связываются между собой именно при помощи ламелл. Но полости тилакоидов, которые образуют стопки, всегда замкнуты и никак не сообщаются с межмембранным пространством. Как видите, структура хлоропластов достаточно сложна.

Какие пигменты могут содержаться в хлоропластах?

Что может содержаться в строме каждого хлоропласта? Там имеются отдельные молекулы ДНК и немало рибосом. У амилопластов именно в строме откладываются крахмальные зерна. Соответственно, у хромопластов там имеются красящие пигменты. Разумеется, встречаются различные пигменты хлоропластов, но наиболее распространенным является хлорофилл. Он подразделяется сразу на несколько видов:


  • Группа А (сине-зеленый). Встречается в 70% случаев, содержится в хлоропластах всех высших растений и водорослей.
  • Группа В (желто-зеленый). В остальных 30% также обнаруживается у растений и водорослей высших видов.
  • Группы С, D и Е встречаются намного реже. Имеются в хлоропластах некоторых видов низших водорослей и растений.

У красных и бурых морских водорослей в хлоропластах не так уж и редко могут иметься совершенно другие виды органических красителей. В некоторых же водорослях вообще содержатся едва ли не все существующие пигменты хлоропластов.

Функции хлоропластов

Разумеется, основной их функцией является преобразование световой энергии в органические компоненты. Сам фотосинтез происходит в гранах при непосредственном участии хлорофилла. Он поглощает энергию солнечного света, переводя ее в энергию возбужденных электронов. Последние, обладая избыточным ее запасом, отдают излишки энергии, которая используется для разложения воды и синтеза АТФ. При распаде воды образуется кислород и водород. Первый, как мы уже писали выше, является побочным продуктом и выделяется в окружающее пространство, а водород связывается с особым белком, ферредоксином.

Он снова окисляется, передавая водород восстановителю, который в биохимии обозначается аббревиатурой НАДФ. Соответственно, его восстановленная форма — НАДФ-H2. Проще говоря, в процессе фотосинтеза происходит выделение следующих веществ: АТФ, НАДФ-H2 и побочного продукта в виде кислорода.

Энергетическая роль АТФ

Образующаяся АТФ крайне важна, так как является основным «аккумулятором» энергии, которая идет на различные нужды клетки. НАДФ-H2 содержит восстановитель, водород, причем это соединение способно легко его отдавать в случае необходимости. Проще говоря, это эффективный химический восстановитель: в процессе фотосинтеза происходит множество реакций, которые без него попросту не смогут протекать.

Далее в дело вступают ферменты хлоропластов, которые действуют в темноте и вне гран: водород из восстановителя и энергия АТФ используются хлоропластом для того, чтобы начать синтез ряда органических веществ. Так как фотосинтез происходит в условиях хорошей освещенности, накопленные соединения в темное время суток используются для нужд самих растений.

Вы справедливо можете заметить, что этот процесс в некоторых аспектах подозрительно похож на дыхание. Чем отличается от него фотосинтез? Таблица поможет вам разобраться в этом вопросе.

Пункты сравнения

Фотосинтез

Дыхание

Когда происходит

Только днем, при солнечном свете

В любое время

Где протекает

Клетки, содержащие хлорофилл

Все живые клетки

Кислород

Выделение

Поглощение

СО2

Поглощение

Выделение

Органические вещества

Синтез, частичное расщепление

Только расщепление

Энергия

Поглощается

Выделяется

Вот чем отличается от дыхания фотосинтез. Таблица наглядно показывает основные их различия.

Некоторые «парадоксы»

Большая часть дальнейших реакций протекает тут же, в строме хлоропласта. Дальнейший путь синтезированных веществ различен. Так, простые сахара сразу выходят за пределы органоида, накапливаясь в других частях клетки в виде полисахаров, прежде всего — крахмала. В хлоропластах происходит как отложение жиров, так и предварительное накопление их предшественников, которые затем выводятся в другие области клетки.

Следует четко понимать, что все реакции синтеза требуют колоссального количества энергии. Единственным ее источником является все тот же фотосинтез. Это процесс, который зачастую требует столько энергии, что ее приходится получать, разрушая вещества, образованные в результате предыдущего синтеза! Таким образом, большая часть энергии, которая получается в его ходе, затрачивается на проведение множества химических реакций внутри самой растительной клетки.

Лишь некоторая ее доля используется для непосредственного получения тех органических веществ, которые растение берет для собственного роста и развития либо откладывает в форме жиров или углеводов.

Статичны ли хлоропласты?

Принято считать, что клеточные органоиды, в том числе и хлоропласты (строение и функции которых нами подробно расписаны), находятся строго в одном месте. Это не так. Хлоропласты могут перемещаться по клетке. Так, на слабом свету они стремятся занять положение близ наиболее освещенной стороны клетки, в условиях средней и слабой освещенности могут выбирать некие промежуточные положения, при которых удается «поймать» больше всего солнечного света. Это явление получило название «фототаксис».

Как и митохондрии, хлоропласты являются довольно-таки автономными органоидами. У них имеются собственные рибосомы, они синтезируют ряд высокоспецифичных белков, которые используются только ими. Есть даже специфичные ферментные комплексы, при работе которых вырабатываются особые липиды, требуемые для построения оболочек ламелл. Мы уже говорили о прокариотическом происхождении этих органоидов, но следует добавить, что некоторые ученые считают хлоропласты давними потомками каких-то паразитических организмов, которые сперва стали симбионтами, а затем и вовсе превратились в неотъемлемую часть клетки.

Значение хлоропластов

Для растений оно очевидно – это синтез энергии и веществ, которые используются растительными клетками. Но фотосинтез — это процесс, который обеспечивает постоянное накопление органического вещества в масштабах всей планеты. Из углекислого газа, воды и солнечного света хлоропласты могут синтезировать огромное количество сложнейших высокомолекулярных соединений. Эта способность характерна только для них, и человек пока далек от повторения этого процесса в искусственных условиях.

Вся биомасса на поверхности нашей планеты обязана своим существованием этим мельчайшим органоидам, которые находятся в глубинах растительных клеток. Без них, без проводимого ими процесса фотосинтеза на Земле не было бы жизни в ее современных проявлениях.

Надеемся, вы узнали из этой статьи о том, что такое хлоропласт и какова его роль в растительном организме.

Источник: FB.ru

Строение

Главная функция пластид – синтез органических веществ, благодаря наличию собственных ДНК и РНК и структур белкового синтеза. В пластидах также содержатся пигменты, обусловливающие их цвет. Все виды данных органелл имеют сложное внутреннее строение. Снаружи пластиду покрывают две элементарные мембраны, имеется система внутренних мембран, погруженных в строму или матрикс.

Классификация пластид по окраске и выполняемой функции подразумевает деление этих органоидов на три типа: хлоропласты, лейкопласты и хромопласты. Пластиды водорослей именуются хроматофорами.

Хлоропласты

Хлоропласты – это зеленые пластиды высших растений, содержащие хлорофилл – фотосинтезирующий пигмент. Представляют собой тельца округлой формы размерами от 4 до 10 мкм.

Химический состав хлоропласта: примерно 50% белка, 35% жиров, 7% пигментов, малое количество ДНК и РНК.

У представителей разных групп растений комплекс пигментов, определяющих окраску и принимающих участие в фотосинтезе, отличается. Это подтипы хлорофилла и каротиноиды (ксантофилл и каротин). При рассматривании под световым микроскопом видна зернистая структура пластид – это граны.

Под электронным микроскопом наблюдаются небольшие прозрачные уплощенные мешочки (цистерны, или граны), образованные белково-липидной мембраной и располагающиеся в непосредственно в строме. Причем некоторые из них сгруппированы в пачки, похожие на столбики монет (тилакоиды гран), другие, более крупные находятся между тилакоидами. Благодаря такому строению, увеличивается активная синтезирующая поверхность липидно-белково-пигментного комплекса гран, в котором на свету происходит фотосинтез.

Хромопласты

Хромопласты – пластиды, окраска которых бывает желтого, оранжевого или красного цвета, что обусловлено накоплением в них каротиноидов. Благодаря наличию хромопластов, характерную окраску имеют осенние листья, лепестки цветов, созревшие плоды (помидоры, яблоки). Данные органоиды могут быть различной формы – округлой, многоугольной, иногда игольчатой.

Лейкопласты

Лейкопласты представляют собой бесцветные пластиды, основная функция которых обычно запасающая. Размеры этих органелл относительно небольшие. Они округлой либо слегка продолговатой формы, характерны для всех живых клеток растений. В лейкопластах осуществляется синтез из простых соединений более сложных – крахмала, жиров, белков, которые сохраняются про запас в клубнях, корнях, семенах, плодах. Под электронным микроскопом заметно, что каждый лейкопласт покрыт двухслойной мембраной, в строме есть только один или небольшое число выростов мембраны, основное пространство заполнено органическими веществами. В зависимости от того, какие вещества накапливаются в строме, лейкопласты делят на амилопласты, протеинопласты и элеопласты.

Все виды пластид имеют общее происхождение и способны переходить из одного вида в другой. Так, превращение лейкопластов в хлоропласты наблюдается при позеленении картофельных клубней на свету, а в осенний период в хлоропластах зеленых листьев разрушается хлорофилл, и они трансформируются в хромопласты, что проявляется пожелтением листьев. В каждой определенной клетке растения может быть только один вид пластид.

Источник: zen.yandex.ru

Строение хлоропласта

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами. Граны связаны между собой удлиненными тилакоидами — ламеллами.

Полужидкое содержимое хлоропласта называется стромой. В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. Симбиогенез).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов — это фотосинтез — синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.

Источник: biology.su

Хлоропласт: структура

Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

  • Мембрана — содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
  • Межмембранное пространство — пространство между внешней и внутренней мембранами.
  • Тилакоидная система — внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
  • Тилакоид с просветом (люменом) — отсек в каждом тилакоиде.
  • Грана — плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
  • Строма — плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
  • Хлорофилл — зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

Хлоропласт: фотосинтез

Хлоропласты картинки

При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.

Источник: NatWorld.info