Немного истории

Клетка считается наименьшей структурной единицей любого организма, однако и она также из чего-то состоит. Одним из её компонентов и является эндоплазматическая сеть. Более того, ЭПС является обязательной составляющей любой клетки в принципе (кроме некоторых вирусов и бактерий). Открыта она американским учёным К. Портером ещё в 1945 году. Именно он заметил системы канальцев и вакуолей, которые как бы скопились вокруг ядра. Также Портером было замечено, что размеры ЭПС в клетках разных существ и даже органов и тканей одного организма не аналогичны друг другу. Он пришёл к выводу о том, что это связано с функциями той или иной клетки, степенью её развития, а также стадией дифференцировки. Например, у человека очень хорошо развита ЭПС в клетках кишечника, слизистых и надпочечников.

Понятие

ЭПС — система канальцев, трубочек, пузырьков и мембран, которые расположены в цитоплазме клетки.

Эндоплазматическая сеть: строение и функции


Строение

Функции

Во-первых, это транспортная функция. Как и цитоплазма, эндоплазматическая сеть обеспечивает обмен веществ между органоидами. Во-вторых, ЭПС совершает структурирование и группировку содержимого клетки, разбивая его на определённые секции. В-третьих, важнейшей функцией является синтез белка, который осуществляется в рибосомах шероховатой эндоплазматической сети, а также синтез углеводов и липидов, который происходит на мембранах гладкой ЭПС.

Строение ЭПС

Всего существует 2 типа эндоплазматической сети: зернистая (шероховатая) и гладкая. Функции, выполняемые данной составляющей, зависят именно от типа самой клетки. На мембранах гладкой сети находятся отделы, вырабатывающие ферменты, которые затем участвуют в обмене веществ. Шероховатая эндоплазматическая сеть содержит на своих мембранах рибосомы.

Краткая информация о других наиболее важных составляющих клетки

Цитоплазма: строение и функции


Изображение Строение Функции
Является жидкостью в клетке. Именно в ней находятся все органоиды (в том числе и аппарат Гольджи, и эндоплазматическая сеть, и многие другие) и ядро с его содержимым. Относится к обязательным компонентам и не является органоидом как таковым. Основной функцией является транспортная. Именно благодаря цитоплазме происходит взаимодействие всех органоидов, их упорядочение (складываются в единую систему) и протекание всех химических процессов.

Клеточная мембрана: строение и функции

Изображение Строение Функции

Молекулы фосфолипидов и белков, образуя два слоя, составляют  мембрану. Она представляет собой тончайшую плёнку, окутывающую всю клетку. Неотъемлемым ее компонентом также являются полисахариды. А у растений снаружи она ещё покрыта тонким слоем клетчатки.

Основной функцией клеточной мембраны является ограничение внутреннего содержимого клетки (цитоплазмы и всех органоидов). Поскольку в ней содержатся мельчайшие поры, она обеспечивает транспорт и обмен веществ. Может также являться катализатором при осуществлении каких-то химических процессов и рецептором при возникновении внешней опасности.

Ядро: строение и функции


Изображение Строение Функции
Имеет либо овальную, либо шаровидную форму. Содержит в себе особые молекулы ДНК, которые в свою очередь несут наследственную информацию всего организма. Само ядро снаружи покрыто особой оболочкой, в которой есть поры. Содержит также ядрышки (небольшие тельца) и жидкость (сок). Вокруг этого центра и располагается эндоплазматическая сеть.

Именно ядром регулируются абсолютно все процессы, происходящие в клетке (обмен веществ, синтез  и т.д.). И именно этот компонент является основным носителем наследственной информации всего организма.

В ядрышках происходит синтез белка и молекул РНК.

Рибосомы

Являются органоидами, обеспечивающими основной синтез белка. Могут находиться как в свободном пространстве цитоплазмы клетки, так и в комплексе с другими органоидами (эндоплазматическая сеть, например). Если рибосомы расположены на мембранах шероховатой ЭПС (находясь на наружных стенках мембран, рибосомы создают шероховатости), эффективность синтеза белка возрастает в несколько раз. Это было доказано многочисленными научными экспериментами.

Комплекс Гольджи

Органоид, состоящий из некоторых полостей, постоянно выделяющих различных размеров пузырьки. Накопленные вещества также использует для нужд клетки и организма. Комплекс Гольджи и эндоплазматическая сеть нередко расположены рядом.


Лизосомы

Органоиды, окружённые специальной мембраной и выполняющие пищеварительную функцию клетки, называются лизосомами.

Митохондрии

Органоиды, окружённые несколькими мембранами и выполняющие энергетическую функцию, то есть обеспечивающие синтез молекул АТФ и распределяющие полученную энергию по клетке.

Пластиды. Виды пластидов

— хлоропласты (функция фотосинтеза);

— хромопласты (накапливание и сохранение каротиноидов);

— лейкопласты (накапливание и хранение крахмала).

Органоиды, предназначенные для передвижения

Они также совершают какие-то движения (жгутики, реснички, длинные отростки и т.п.).

 Клеточный центр: строение и функции

Изображение Строение Функции
Клеточный центр состоит из мельчайших трубочек и центриолей. Нередко рядом с этим органоидом находится эндоплазматическая сеть. Функции при этом не меняются. Отвечает за деление клетки, а также участвует в формировании цитоскелета (при делении).

Источник: www.syl.ru

Строение и расположение ЭПР


Важная клеточная структура была открыта ученым-биологом К. Портером. Эндоплазматическая сеть, расположенная в цитоплазме, может занимать до 30% всей площади клетки. В её состав входит большое количество полостей разного размера. Чем интенсивнее обмен веществ в клетке, тем больше каналов, трубочек и цистерн в этом органоиде.

Полости ЭПР заполнены однородным веществом — матриксом. Эта субстанция связывает систему с:

  • цитоплазмой;
  • остальными компонентами клетки;
  • ядром;
  • мембраной.

Оболочка ЭПР идентична основной мембране. Она также состоит из фосфолипидов, холестерина, белков и различных ферментов. Полости, покрытые мембраной, образуют систему параллельно расположенным каналам. При изучении органоида электронным микроскопом можно увидеть структуру, напоминающую лабиринт с отростками и обособленными частями.

К стенке сети могут крепиться рибосомы. Именно количество этих структур, соединённых с мембраной, определяют вид ЭПС.

Типы эндоплазматического комплекса

Классификация ЭПР проводится по единственному критерию — наличию рибосом на поверхности мембраны. Рибосома — это шарообразная молекула, которая образована специфическими рибонуклеиновыми кислотами. Большинство биологов выделяют 2 вида ЭПС:

  1. Гладкую.
  2. Шероховатую (гранулярную).

Рисунок гранулярной ЭПР выглядит неоднородно, такому виду эндоплазматической сети дали определение шероховатой. Этот органоид отсутствует только в клетках мужских половых органов. Наиболее развита шероховатая ЭПС в клетках, продуцирующих железы.

На поверхности гладкого эндоплазматического ретикулума нет рибосом. Эта структура есть во всех клетках живых организмов. Уровень развития этого комплекса зависит от функций определённой клетки. Такая сеть образуется за счёт освобождения или сброса рибосом с поверхности оболочки. Подробная информация представлена в таблице.

Тип ЭПС Клетки с наиболее развитой сетью
гладкая
  • клетки коры надпочечников;
  • мышечные;
  • клетки желудочных желёз.
шероховатая
  • клетки печени;
  • соединительная ткань, продуцирующая коллаген;
  • клетки плазмы.

Некоторые учёные выделяют третий тип органоида — переходный. К этому классу относят ЭПС с небольшим количеством рибосом на поверхности.

Роль органоида

ЭПС является уникальной транспортной системой. Однако именно тип эндоплазматического ретикулума определяет перечень функций органеллы в жизнедеятельности клетки.

Общие функции

Эндоплазматическая сеть за счёт её уникального строения выполняет 2 основные функции: транспорт и синтез веществ. При помощи мембранной оболочки, каналов и трубочек питательные вещества переносятся из одной части клетки в другую. Таким образом поддерживается связь между всеми органеллами. Ряд важнейших элементов переносится через оболочку против градиента концентрации.

Ферменты, входящие в состав стенки ЭПС, синтезируют липиды. Образованные элементы позволяют:

  • формировать мембрану клетки, обеспечивая защитную функцию;
  • самовоспроизводиться ЭПС;
  • участвовать в создании новой оболочки ядра после деления клетки.

Снаружи и внутри оболочки комплекса образуется разница потенциалов. Это позволяет проводить импульсы возбуждения. ЭПС является накопителем кальция, который играет важную роль в сокращении мышечной ткани.

Другой важнейшей функцией ЭПР является структурирование. Полости и мембраны, которые пронизывают цитоплазму, не позволяют смешиваться веществам и смещаться органоидам в клетке. Специфические функции определяются видом ЭПР.


Значение гладкой ЭПС

Агранулярная (гладкая) сеть задействована во всех процессах обмена веществ в клетке. Несмотря на то что на поверхности стенки ЭПС нет большого количества рибосом, она активно участвует в образовании гормонов. Например, гладкая сеть особенно развита в органах, продуцирующих половые и стероидные гормоны, в коре надпочечников.

Кроме этого, эндоплазматический ретикулум выполняет ключевую роль в росте и развитии всех растений. Сеть участвует в синтезе особых структур — провакуолей. Этот органоид позволяет накапливать питательные вещества, необходимые для роста. Кроме ЭПС, он может быть синтезирован только аппаратом Гольджи.

В этом органоиде накапливаются углеводы, а затем синтезируются в более простые части. В том числе в ЭПР происходит распад сложных углеводов до глюкозы. Это позволяет регулировать уровень сахара в крови.

В полостях комплекса накапливаются не только углеводы, но и продукты гидролиза. Особенное значение имеет накопление кальция в каналах ЭПС. Это вещество играет ключевую роль в функционировании мышечной ткани. Поэтому в клетках мышц ЭПС развита настолько, что её выделяют в отдельный тип — саркоплазматический ретикулум. За счёт выброса кальция в межклеточное и внутриклеточное пространство происходит сокращение ткани.


Вредные вещества и яды, попадающие в организм из внешней среды, нейтрализуются эндоплазматической сетью. К частицам токсина присоединяется свободный радикал, который обеспечивает растворение вредного вещества в воде. После этого процесса яд выводится из организма вместе с жидкостью. Учёными доказано, что в клетках некоторых тканей ЭПС может нейтрализовать вредное действие таких сильных веществ, как фенобарбитал.

Если токсичные вещества поступают в организм регулярно и в больших количествах, эндоплазматический ретикулум начинает активно развиваться в клетках, выделяя большее количество радикалов. Это объясняет некоторые явления из повседневной жизни. Например, человеку, регулярно употребляющему алкоголь или наркотические средства, со временем приходится увеличивать дозу, так как свободных радикалов, нейтрализующих яды, выделяется намного больше.

Гладкая сеть наиболее уязвима по отношению к факторам внешней среды. Поэтому довольно часто наблюдаются её повреждения. Это приводит к ослаблению клетки и всего организма, может способствовать развитию различных заболеваний.


Особенности шероховатой сети

В связи со сложным строением этот вид комплекса выполняет не только функции, перечисленные выше, но и ряд других специфических.

Рибосомы на поверхности эндоплазматического ретикулума обуславливают основную функцию этого органоида. Именно в ЭПС происходит образование почти всех видов белков. Синтез протекает в несколько сложных этапов:

  1. Рибосомы образуют сложные полипептидные нити.
  2. Они располагаются в полости ЭПР.
  3. Начинается процесс преобразования полипептидных цепочек при помощи сложных химических процессов.
  4. В результате реакции белковая цепочка обрезается и скручивается.
  5. Образуется трёхмерная молекула белка правильной формы.
  6. Синтезированный белок транспортируется в аппарат Гольджи, а затем выводится из клетки или доставляется к другим органеллам.

Кроме этого, шероховатая ЭПС выполняет структурную функцию. Такой органоид, как аппарат Гольджи, полностью формируется при помощи ЭПР.

Из-за своего сложного строения эндоплазматическая сеть до сих пор до конца не изучена. Даже в XXI веке учёные продолжают оценивать роль этого важного клеточного органоида.

Источник: nauka.club

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая.

На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. ЭПС выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. ЭПС связывает между собой основные органоиды клетки(рис. 2.13).

Функции эпс в растительной клетке

Рис. 2.13. Строение эндоплазматической сети (ЭПС) или ретикулума

Д) Аппарат Гольджи

Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы. Выполняет много важных функций.

Одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи). Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПС, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации.

Все эти вещества сначала накапливаются, химически усложняются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме (рис. 2.14-2.15).

Функции эпс в растительной клетке

Рис. 2.14. Строение аппарата Гольджи

Функции:

— накопление белков, липидов, углеводов;

— модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов;

— место образования лизосом.

— секреторная функция, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Функции эпс в растительной клетке

Рис. 2.15. Комплекс Гольджи

Е) Лизосомы

Представляют собой небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.

Одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом. Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Функции лизосом:

— переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток),

— аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки,

— автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток) (рис. 2.16-2.17).

Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Функции эпс в растительной клетке

Рис. 2.16. Образование лизосом

Функции эпс в растительной клетке

Рис. 2.17. Функционирование лизосом

Источник: studopedia.ru

Эндоплазматическая сеть

Эндоплазматическая сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), — одномембранный органоид. Представляет собой систему мембран, формирующих «цистерны» и каналы, соединенных друг с другом и ограничивающих единое внутреннее пространство — полости ЭПС. Мембраны с одной стороны связаны с цитоплазматической мембраной, с другой — с наружной ядерной мембраной. Различают два вида ЭПС: 1) шероховатая (гранулярная), содержащая на своей поверхности рибосомы, и 2) гладкая (агранулярная), мембраны которой рибосом не несут.

Функции: 1) транспорт веществ из одной части клетки в другую, 2) разделение цитоплазмы клетки на компартменты ( «отсеки»), 3) синтез углеводов и липидов (гладкая ЭПС), 4) синтез белка (шероховатая ЭПС), 5) место образования аппарата Гольджи.

Аппарат Гольджи

Аппарат Гольджи, или комплекс Гольджи, — одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями. С ними связана система мелких одномембранных пузырьков (пузырьки Гольджи). Каждая стопка обычно состоит из 4-х–6-ти «цистерн», является структурно-функциональной единицей аппарата Гольджи и называется диктиосомой. Число диктиосом в клетке колеблется от одной до нескольких сотен. В растительных клетках диктиосомы обособлены.

Аппарат Гольджи

Аппарат Гольджи обычно расположен около клеточного ядра (в животных клетках часто вблизи клеточного центра).

Функции аппарата Гольджи: 1) накопление белков, липидов, углеводов, 2) модификация поступивших органических веществ, 3) «упаковка» в мембранные пузырьки белков, липидов, углеводов, 4) секреция белков, липидов, углеводов, 5) синтез углеводов и липидов, 6) место образования лизосом. Секреторная функция является важнейшей, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Лизосомы

Лизосомы — одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,2 до 0,8 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки, которые после отделения от аппарата Гольджи становятся собственно лизосомами. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом.

Различают: 1) первичные лизосомы, 2) вторичные лизосомы. Первичными называются лизосомы, отшнуровавшиеся от аппарата Гольджи. Первичные лизосомы являются фактором, обеспечивающим экзоцитоз ферментов из клетки.

Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.

Автофагия — процесс уничтожения ненужных клетке структур. Сначала подлежащая уничтожению структура окружается одинарной мембраной, затем образовавшаяся мембранная капсула сливается с первичной лизосомой, в результате также образуется вторичная лизосома (автофагическая вакуоль), в которой эта структура переваривается. Продукты переваривания усваиваются цитоплазмой клетки, но часть материала так и остается непереваренной. Вторичная лизосома, содержащая этот непереваренный материал, называется остаточным тельцем. Путем экзоцитоза непереваренные частицы удаляются из клетки.

Автолиз — саморазрушение клетки, наступающее вследствие высвобождения содержимого лизосом. В норме автолиз имеет место при метаморфозах (исчезновение хвоста у головастика лягушек), инволюции матки после родов, в очагах омертвления тканей.

Функции лизосом: 1) внутриклеточное переваривание органических веществ, 2) уничтожение ненужных клеточных и неклеточных структур, 3) участие в процессах реорганизации клеток.

Вакуоли

Вакуоли — одномембранные органоиды, представляют собой «емкости», заполненные водными растворами органических и неорганических веществ. В образовании вакуолей принимают участие ЭПС и аппарат Гольджи. Молодые растительные клетки содержат много мелких вакуолей, которые затем по мере роста и дифференцировки клетки сливаются друг с другом и образуют одну большую центральную вакуоль. Центральная вакуоль может занимать до 95% объема зрелой клетки, ядро и органоиды оттесняются при этом к клеточной оболочке. Мембрана, ограничивающая растительную вакуоль, называется тонопластом. Жидкость, заполняющая растительную вакуоль, называется клеточным соком. В состав клеточного сока входят водорастворимые органические и неорганические соли, моносахариды, дисахариды, аминокислоты, конечные или токсические продукты обмена веществ (гликозиды, алкалоиды), некоторые пигменты (антоцианы).

В животных клетках имеются мелкие пищеварительные и автофагические вакуоли, относящиеся к группе вторичных лизосом и содержащие гидролитические ферменты. У одноклеточных животных есть еще сократительные вакуоли, выполняющие функцию осморегуляции и выделения.

Функции вакуоли: 1) накопление и хранение воды, 2) регуляция водно-солевого обмена, 3) поддержание тургорного давления, 4) накопление водорастворимых метаболитов, запасных питательных веществ, 5) окрашивание цветов и плодов и привлечение тем самым опылителей и распространителей семян, 6) см. функции лизосом.

Эндоплазматическая сеть, аппарат Гольджи, лизосомы и вакуоли образуют единую вакуолярную сеть клетки, отдельные элементы которой могут переходить друг в друга.

Митохондрии

Форма, размеры и количество митохондрий чрезвычайно варьируют. По форме митохондрии могут быть палочковидными, округлыми, спиральными, чашевидными, разветвленными. Длина митохондрий колеблется в пределах от 1,5 до 10 мкм, диаметр — от 0,25 до 1,00 мкм. Количество митохондрий в клетке может достигать нескольких тысяч и зависит от метаболической активности клетки.

Митохондрия ограничена двумя мембранами. Наружная мембрана митохондрий (1) гладкая, внутренняя (2) образует многочисленные складки — кристы (4). Кристы увеличивают площадь поверхности внутренней мембраны, на которой размещаются мультиферментные системы (5), участвующие в процессах синтеза молекул АТФ. Внутреннее пространство митохондрий заполнено матриксом (3). В матриксе содержатся кольцевая ДНК (6), специфические иРНК, рибосомы прокариотического типа (70S-типа), ферменты цикла Кребса.

Митохондриальная ДНК не связана с белками («голая»), прикреплена к внутренней мембране митохондрии и несет информацию о строении примерно 30 белков. Для построения митохондрии требуется гораздо больше белков, поэтому информация о большинстве митохондриальных белков содержится в ядерной ДНК, и эти белки синтезируются в цитоплазме клетки. Митохондрии способны автономно размножаться путем деления надвое. Между наружной и внутренней мембранами находится протонный резервуар, где происходит накопление Н+.

Функции митохондрий: 1) синтез АТФ, 2) кислородное расщепление органических веществ.

Согласно одной из гипотез (теория симбиогенеза) митохондрии произошли от древних свободноживущих аэробных прокариотических организмов, которые, случайно проникнув в клетку-хозяина, затем образовали с ней взаимовыгодный симбиотический комплекс. В пользу этой гипотезы свидетельствуют следующие данные. Во-первых, митохондриальная ДНК имеет такие же особенности строения как и ДНК современных бактерий (замкнута в кольцо, не связана с белками). Во-вторых, митохондриальные рибосомы и рибосомы бактерий относятся к одному типу — 70S-типу. В-третьих, механизм деления митохондрий сходен с таковым бактерий. В-четвертых, синтез митохондриальных и бактериальных белков подавляется одинаковыми антибиотиками.

Пластиды

Пластиды характерны только для растительных клеток. Различают три основных типа пластид: лейкопласты — бесцветные пластиды в клетках неокрашенных частей растений, хромопласты — окрашенные пластиды обычно желтого, красного и оранжевого цветов, хлоропласты — зеленые пластиды.

Хлоропласты. В клетках высших растений хлоропласты имеют форму двояковыпуклой линзы. Длина хлоропластов колеблется в пределах от 5 до 10 мкм, диаметр — от 2 до 4 мкм. Хлоропласты ограничены двумя мембранами. Наружная мембрана (1) гладкая, внутренняя (2) имеет сложную складчатую структуру. Наименьшая складка называется тилакоидом (4). Группа тилакоидов, уложенных наподобие стопки монет, называется граной (5). В хлоропласте содержится в среднем 40–60 гран, расположенных в шахматном порядке. Граны связываются друг с другом уплощенными каналами — ламеллами (6). В мембраны тилакоидов встроены фотосинтетические пигменты и ферменты, обеспечивающие синтез АТФ. Главным фотосинтетическим пигментом является хлорофилл, который и обусловливает зеленый цвет хлоропластов.

Внутреннее пространство хлоропластов заполнено стромой (3). В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты цикла Кальвина, зерна крахмала (7). Внутри каждого тилакоида находится протонный резервуар, происходит накопление Н+. Хлоропласты, также как митохондрии, способны к автономному размножению путем деления надвое. Они содержатся в клетках зеленых частей высших растений, особенно много хлоропластов в листьях и зеленых плодах. Хлоропласты низших растений называют хроматофорами.

Функция хлоропластов: фотосинтез. Полагают, что хлоропласты произошли от древних эндосимбиотических цианобактерий (теория симбиогенеза). Основанием для такого предположения является сходство хлоропластов и современных бактерий по ряду признаков (кольцевая, «голая» ДНК, рибосомы 70S-типа, способ размножения).

Лейкопласты. Форма варьирует (шаровидные, округлые, чашевидные и др.). Лейкопласты ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя образует малочисленные тилакоиды. В строме имеются кольцевая «голая» ДНК, рибосомы 70S-типа, ферменты синтеза и гидролиза запасных питательных веществ. Пигменты отсутствуют. Особенно много лейкопластов имеют клетки подземных органов растения (корни, клубни, корневища и др.). Функция лейкопластов: синтез, накопление и хранение запасных питательных веществ. Амилопласты — лейкопласты, которые синтезируют и накапливают крахмал, элайопласты — масла, протеинопласты — белки. В одном и том же лейкопласте могут накапливаться разные вещества.

Хромопласты. Ограничены двумя мембранами. Наружная мембрана гладкая, внутренняя или также гладкая, или образует единичные тилакоиды. В строме имеются кольцевая ДНК и пигменты — каротиноиды, придающие хромопластам желтую, красную или оранжевую окраску. Форма накопления пигментов различная: в виде кристаллов, растворены в липидных каплях (8) и др. Содержатся в клетках зрелых плодов, лепестков, осенних листьев, редко — корнеплодов. Хромопласты считаются конечной стадией развития пластид.

Функция хромопластов: окрашивание цветов и плодов и тем самым привлечение опылителей и распространителей семян.

Все виды пластид могут образовываться из пропластид. Пропластиды — мелкие органоиды, содержащиеся в меристематических тканях. Поскольку пластиды имеют общее происхождение, между ними возможны взаимопревращения. Лейкопласты могут превращаться в хлоропласты (позеленение клубней картофеля на свету), хлоропласты — в хромопласты (пожелтение листьев и покраснение плодов). Превращение хромопластов в лейкопласты или хлоропласты считается невозможным.

Рибосомы

Рибосомы — немембранные органоиды, диаметр примерно 20 нм. Рибосомы состоят из двух субъединиц — большой и малой, на которые могут диссоциировать. Химический состав рибосом — белки и рРНК. Молекулы рРНК составляют 50–63% массы рибосомы и образуют ее структурный каркас. Различают два типа рибосом: 1) эукариотические (с константами седиментации целой рибосомы — 80S, малой субъединицы — 40S, большой — 60S) и 2) прокариотические (соответственно 70S, 30S, 50S).

В составе рибосом эукариотического типа 4 молекулы рРНК и около 100 молекул белка, прокариотического типа — 3 молекулы рРНК и около 55 молекул белка. Во время биосинтеза белка рибосомы могут «работать» поодиночке или объединяться в комплексы — полирибосомы (полисомы). В таких комплексах они связаны друг с другом одной молекулой иРНК. Прокариотические клетки имеют рибосомы только 70S-типа. Эукариотические клетки имеют рибосомы как 80S-типа (шероховатые мембраны ЭПС, цитоплазма), так и 70S-типа (митохондрии, хлоропласты).

 

Субъединицы рибосомы эукариот образуются в ядрышке. Объединение субъединиц в целую рибосому происходит в цитоплазме, как правило, во время биосинтеза белка.

Функция рибосом: сборка полипептидной цепочки (синтез белка).

Цитоскелет

Цитоскелет образован микротрубочками и микрофиламентами. Микротрубочки — цилиндрические неразветвленные структуры. Длина микротрубочек колеблется от 100 мкм до 1 мм, диаметр составляет примерно 24 нм, толщина стенки — 5 нм. Основной химический компонент — белок тубулин. Микротрубочки разрушаются под воздействием колхицина. Микрофиламенты — нити диаметром 5–7 нм, состоят из белка актина. Микротрубочки и микрофиламенты образуют в цитоплазме сложные переплетения. Функции цитоскелета: 1) определение формы клетки, 2) опора для органоидов, 3) образование веретена деления, 4) участие в движениях клетки, 5) организация тока цитоплазмы.

Клеточный центр

Клеточный центр

Клеточный центр включает в себя две центриоли и центросферу. Центриоль представляет собой цилиндр, стенка которого образована девятью группами из трех слившихся микротрубочек (9 триплетов), соединенных между собой через определенные интервалы поперечными сшивками. Центриоли объединены в пары, где они расположены под прямым углом друг к другу. Перед делением клетки центриоли расходятся к противоположным полюсам, и возле каждой из них возникает дочерняя центриоль. Они формируют веретено деления, способствующее равномерному распределению генетического материала между дочерними клетками. В клетках высших растений (голосеменные, покрытосеменные) клеточный центр центриолей не имеет. Центриоли относятся к самовоспроизводящимся органоидам цитоплазмы, они возникают в результате дупликации уже имеющихся центриолей. Функции: 1) обеспечение расхождения хромосом к полюсам клетки во время митоза или мейоза, 2) центр организации цитоскелета.

Органоиды движения

Присутствуют не во всех клетках. К органоидам движения относятся реснички (инфузории, эпителий дыхательных путей), жгутики (жгутиконосцы, сперматозоиды), ложноножки (корненожки, лейкоциты), миофибриллы (мышечные клетки) и др.

Жгутики и реснички — органоиды нитевидной формы, представляют собой аксонему, ограниченную мембраной. Аксонема — цилиндрическая структура; стенка цилиндра образована девятью парами микротрубочек, в его центре находятся две одиночные микротрубочки. В основании аксонемы находятся базальные тельца, представленные двумя взаимно перпендикулярными центриолями (каждое базальное тельце состоит из девяти триплетов микротрубочек, в его центре микротрубочек нет). Длина жгутика достигает 150 мкм, реснички в несколько раз короче.

Миофибриллы состоят из актиновых и миозиновых миофиламентов, обеспечивающих сокращение мышечных клеток.

 

Источник: licey.net