Митотический цикл. Митоз

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл. Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G1, синтетического — S, постсинтетического, или премитотического, — G2.

Пресинтетический период (2n 2c, где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.


Синтетический период (2n 4c) — репликация ДНК.

Постсинтетический период (2n 4c) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.


Митотический цикл, митоз: 1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

Мейоз

Мейоз — это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c) образуются две гаплоидные (1n 2c).

Интерфаза 1 (в начале — 2n 2c, в конце — 2n 4c) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.


Профаза 1 (2n 4c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом. Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

Метафаза 1 (2n 4c) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

iv>

Второе мейотическое деление (мейоз 2) называется эквационным.

Интерфаза 2, или интеркинез (1n 2c), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.


Тесты по биологии 11 класс

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

 

Источник: licey.net

Глава 3. КЛЕТОЧНЫЙ УРОВЕНЬ ОРГАНИЗАЦИИ ЖИВОГО

3.4. КЛЕТОЧНЫЙ ЦИКЛ

Увеличение числа клеток происходит путем деления исходной клетки. Обычно делению клеток предшествует редупликация хромосомного аппарата, синтез ДНК.

>

Время существования клетки от деления до следующего деления или смерти называют клеточным (жизненным) циклом.

В течение жизни клетки растут, дифференцируются, выполняют определенные функции, размножаются, гибнут.

В клеточном цикле можно выделить митотический цикл, включающий подготовку клеток к делению и само деление. В жизненном цикле есть периоды, когда клетки выполняют определенные функции (рис. 53).

Период подготовки клетки к делению

Рис. 53. Схема взаимоотношений между митотическим циклом и жизненным циклом клетки (из Цанева и Маркова, 1964). Внутренний круг представляет цикл размножения клеток, начинающих подготовку к новому митотическому циклу сразу после завершения деления. Показан возможный исход митотического цикла; а — образование двух новых (дочерних) клеток; б — деление ядра без разделения клеточного тела — образование многоядерной клетки; в — протекание митоза только до стадии метафазы без расхождения хромосом — полиплоидия; г — редупликация ДНК и увеличение клеточной массы без вступления в митоз — политения. На внешнем круге представлена дифференцирующаяся клетка с возможными исходами дифференцировки. 1 — смерть клетки, 2 — окончательная специализация с потерей способности клетки к митотическому делению, 3 — вступление клетки в цикл деления без дедифференцировки, 4 — дедифференцировка с последующим вступлением клетки в митотический цикл. 2с и 4с — диплоидное и тетраплоидное количество ДНК, 2n и 4n — диплоидный и тетраплоидный набор хромосом.


В, организме высших позвоночных не все клетки постоянно делятся. Есть специализированные клетки, потерявшие способность к делению (нейтрофилы, базофилы, эозинофилы, нервные клетки). Другие клетки способны постоянно делиться. Они обнаружены в обновляющихся тканях (эпителиальных), в кроветворных органах. Например, клетки покровного эпителия, кроветворные клетки костного мозга могут постоянно делиться, заменяя погибшие.

Многие клетки, не размножающиеся в обычных условиях, начинают делиться в процессе восстановления после повреждения органа и репаративной регенерации органов и тканей.

Клетки, находящиеся в клеточном цикле, содержат различное количество ДНК, в зависимости от стадии этого цикла.

Мужские и женские половые клетки имеют гаплоидный набор хромосом (n) и количество ДНК (с). При оплодотворении происходит слияние этих клеток, в результате чего образуется диплоидная клетка с 2n набором хромосом и 4с количеством ДНК.

Удвоение ДНК происходит в синтетическом периоде интерфазы. Клетки к делению приступают только после этого периода.

3.4.1. ПОДГОТОВКА КЛЕТКИ К ДЕЛЕНИЮ

В клеточном цикле можно выделить собственно митоз и интерфазу, включающую пресинтетический (постмитотический) — G1 период, синтетический (S) период и постсинтетический (премитотический) — G2 период (рис. 54).


Период подготовки клетки к делению

Рис. 54. Митотический цикл диплоидной клетки (схема). G0 — период жизнедеятельности клетки без процессов подготовки к делению; G1 — пресинтетический (постмитотический) период. Митоз: П — профаза; М — метафаза, А — анафаза, Т — телофаза; n — гаплоидный набор хромосом; 2n — диплоидный набор хромосом; 4n — тетроидный набор хромосом; c — количество ДНК, соответствующее гаплоидному набору хромосом. Вне круга схематично показаны изменения хромосом в различные периоды жизненного цикла клетки.

Подготовка клетки к делению происходит в интерфазе. Пресинтетический период интерфазы — самый длительный. Он может продолжаться у эукариот от 10 часов до нескольких суток (рис. 55).

Период подготовки клетки к делению

Рис. 55. Клеточный цикл у эукариот.

В пресинтетическом периоде (G1), наступающем сразу после деления, клетки имеют диплоидный (2n) набор хромосом и 2с генетического материала ДНК. В этот период начинается рост клеток, синтез белков, РНК. Происходит подготовка клеток к синтезу ДНК (S-период). Повышается активность ферментов, участвующих в энергетическом обмене (рис. 56).


Период подготовки клетки к делению

Рис. 56. Репликация ДНК и хромосомы. 1 — Двойная спираль раскручивается, и пары оснований разделяются ферментом ДНК — геликазой. 2 — Нуклеотиды располагаются напротив комплементарных им нуклеотидов (А — Т, Г — Ц) на матричной цепи ДНК, создаются водородные связи, и нуклеотиды ковалентно связываются при помощи фермента ДНК — полимеразы. 3 — Две дочерние цепи ДНК синтезируются различными способами — одна сразу создается как непрерывная цепь, а другая синтезируется короткими участками, которые затем связываются воедино ДНК — лигазой. 4 — Приток свободных нуклеотидов для создания новых молекул ДНК вдоль раскрученной матрицы ДНК. 5 — Каждая копия двойной спирали ДНК составляется из одной родительской и одной дочерней цепи — этот процесс называется полуконсервативной репликацией.

В S-периоде (синтетическом) происходит репликация молекул ДНК, синтез белков — гистонов, с которыми связана каждая нить ДНК. Синтез РНК увеличивается соответственно количеству ДНК. При репликации две спирали молекулы ДНК раскручиваются, рвутся водородные связи, и каждая становится матрицей для воспроизводства новых цепей ДНК. Синтез новых молекул ДНК осуществляется при участии ферментов. Каждая из двух дочерних молекул обязательно включает одну старую и одну новую спираль. Новые молекулы идентичны старым. Такой способ репликации называют полуконсервативным. В S-периоде начинается удвоение центриолей.


Каждая хромосома состоит из двух сестринских хроматид, содержит ДНК 4с. Число хромосом не меняется (2n).

Продолжительность синтеза ДНК — S-период митотического цикла — длится 6-12 часов у млекопитающих.

В постсинтетический период (G2) происходит синтез РНК, накапливается энергия АТФ, необходимая для деления клетки, завершается удвоение центриолей, митохондрий, пластид, синтезируются белки, из которых строится ахроматиновое веретено деления, заканчивается рост клетки. Ни содержание ДНК (4с), ни число хромосом (2n) не изменяется (рис. 57).

Период подготовки клетки к делению

Рис. 57. Центросомный цикл. В интерфазной клетке центросома удваивается с образованием двух полюсов митотического веретена. В большинстве животных (но не растительных) клеток пара центриолей (показанных как пара коротких черных отрезков) погружена в материал центросомы (выделен цветом), от которого растут микротрубочки. В определенный момент фазы G1 две центриоли расходятся на несколько микрон. В течение фазы S возле каждой старой центриоли под прямым углом к ней начинает формироваться дочерняя центриоль. Рост дочерних центриолей обычно завершается в фазе G2. Вначале обе пары центриолей остаются погруженными в единую массу центросомного материала, образующего одну центросому. В ранней фазе М каждая пара центриолей становится частью отдельного центра организации микротрубочек, от которого отходит радиальный пучок микротрубочек — звезда. Две звезды, первоначально лежавшие бок о бок около ядерной оболочки, теперь отходят друг от друга. В поздней профазе пучки полюсных микротрубочек, принадлежащие двум звездам и взаимодействующие между собой, избирательно удлиняются, по мере того как два центра расходятся по двум сторонам ядра. Таким способом быстро формируется митотическое веретено.

Продолжительность этого периода — 3-6 часов. Длительность клеточного цикла разная у разных клеток, но постоянна для данной ткани.

Например, в культуре раковых клеток человека длительность G1-периода равна 8,5 часов, S — 6,2 часа, G2 — 4,6 часов. Длительность митоза составляет 0,6 часа. Весь клеточный цикл длится 19,9 часов.

Источник: lifelib.info

Тема: Деление клетки (11 класс)

Цель: актуализировать личностную значимость для учащихся значимость для учащихся вопросов изучаемой темы, показав биологическое значение митоза и мейоза

Задачи:

— создать содержательные и организационные условия для развития самостоятельности в добывании школьниками знаний, скорости восприятия и переработки информации, культуры речи, способность анализировать информацию с позиции логики;

— создать организационные условия для воспитания настойчивости в достижении цели;

— развивать коммуникативные способности через посредство работы в малых группах.

Оборудование: учебник, компьютер (с выходом в Интернет), мультимедиапроектор, диск «Открытая биология», справочная литература по биологии.

Ход урока:

1.  Определение темы урока.

Актуализация знаний

Учащимся выданы карточки с заданием: каждому термину, указанному в левой колонке, подберите соответствующее ему определение, приведённое в правой колонке.

1.  Дифференцировка

2.  Жизненный цикл клетки

3.  Митотический цикл клетки

4.  Интерфаза

5.  Митоз

А. Период подготовки клетки к делению, важнейшим событием которого является редупликация ДНК.

Б. Совокупность процессов, протекающих в клетке в период её подготовки к делению на протяжении митоза.

В. Совокупность процессов, протекающих в клетке с момента её возникновения до гибели или последующего деления.

Г. Процесс специализации клетки на выполнение определённых функций, который заключается в приобретении соответствующего строения и синтезе конкретных белков.

Д. Клетки необратимо дифференцируются в эмбриональном и раннем постэмбриональном периоде и функционируют в течение всей жизни организма.

Е. Форма клеточного размножения, при которой происходит точное и равномерное распределения набора хромосом между дочерними клетками.

Ответ: 1 – Д, Г; 2 – В; 3 – Б; 4 – А; 5 – Е

3.  Изучение нового материала

3.1  Рассказ учителя о митозе (можно использовать модель митоза, которая имеется на диске «Открытая биология»).

3.2  Самостоятельная работа учащихся.

Подготовьте рассказ о мейозе, используя любые источники информации (учебник, справочную литературу, Интернет). Выполняя работу, помните! Древнеримский оратор Цицерон считал, что правильно поостренная речь содержит ответы на семь вопросов: Что? Где, Как?, Когда (при каких условиях), Чем?, Почему?, Зачем? Конечно, не всегда можно подобрать ответ на все вопросы алгоритма, но надо постараться ответить на бОльшую часть вопросов, при этом нужно постараться, чтобы получился относительно связанный текст (учащиеся работают в группах, так как количество компьютеров в кабинете ограничено).

Возможные источники информации:

Книги:

К. Вили Биология. – М.: Мир, 1966, перевод с английского, — 685 с.: ил.

Биология: Большой справочник для школьников и поступающих в вузы /, , и др. – 3-е изд., стереотип. – М.: Дрофа,2000. – 668 с.: ил. – (Большие справочники для школьников и поступающих в вузы).

Биология. Большой энциклопедический словарь / Гл. ред. . – 3-е изд. – М.: Большая Российская энциклопедия, 1999. – 864 с. – ил., 30 л. цв. ил.

Энциклопедия для детей. Т. 2. Биология/Сост. – 3-е изд. Перераб. И доп. – М.: Аванта+, 1996. – 704 с.: ил.

Web – сайты:

http://ru. wikipedia. org/wiki/%D0%9C%D0%B5%D0%B9%D0%BE%D0%B7

http://ru. wikipedia. org/wiki/%D0%9A%D0%BE%D0%BD%D1%8A%D1%8E%D0%B3%D0%B0%D1%86%D0%B8%D1%8F

http://ru. wikipedia. org/wiki/%D0%9C%D0%B8%D1%82%D0%BE%D0%B7

http://ru. wikipedia. org/wiki/%D0%96%D0%B8%D0%B7%D0%BD%D0%B5%D0%BD%D0%BD%D1%8B%D0%B9_%D1%86%D0%B8%D0%BA%D0%BB

http://ru. wikipedia. org/wiki/%D0%9A%D1%80%D0%BE%D1%81%D1%81%D0%B8%D0%BD%D0%B3%D0%BE%D0%B2%D0%B5%D1%80

Диски:

«Открытая биология»

3.3  Взаимопроверка заданий.

4.  Рефлексия

— Учащимся выданы карточки. Заполните таблицу1

Признаки процесса

Процесс

Ответ

Состоит из четырёх фаз: профазы, метафазы, анафазы, телофазы Включает две деления, каждое из которых состоит из четырёх фраз Делению клетки предшествует интерфаза Хромосомы удваиваются в интерфазе В результате образуются две дочерние клетки В результате образуются четыре дочерние клетки Дочерние клетки гаплоидны Дочерние клетки имеют такой же набор хромосом, как и материнская клетка Процесс происходит в соматических клетках Процесс происходит в половых клетках

1. Митоз

2. Мейоз

1, 3, 4, 5, 8, 9

1, 2, 3, 4, 6, 7, 10

— Используя результаты работы, сравните митоз и мейоз

— Подумайте, могут ли условия окружающейся среды повлиять на процессы митоза и мейоза? К каким последствиям для организма это может привести?

— Решение задач2

1. Митоз. Изобразить в виде схемы:

Период подготовки клетки к делениюПериод подготовки клетки к делениюПериод подготовки клетки к делениюПериод подготовки клетки к делению

2n

4c

 

Период подготовки клетки к делениюПериод подготовки клетки к делениюПериод подготовки клетки к делениюПериод подготовки клетки к делению5. Домашнее задание. Учебник, стр. 114-117. Придумать задачи, какой будет результат митотического и мейотического деления клетки, при наличии нарушений в этих процессах.

1 , , , Иванова контроль учащихся по биологии: Пособие для учителя – М.: Просвещение; Учеб. лит., 1997. – 152 с.: ил – ISBN 5-09-006529-2

2 Верёвкина задач по биологии: пособие для учащихся довузовского медицинского колледжа, лицейских классов, слушателей подготовительных РєСѓСЂСЃРѕРІ, абитуриентов. – Владивосток, 1995. С.116. – Зад. № 9. – С. 21 – Зад. № 1 – С. 25. А так же см. раздел «Ответы» данного пособия.

Источник: pandia.ru

3. Жизненный цикл клетки: интерфаза (период подготовки клетки к делению) и митоз (деление).

1) Интерфаза — хромосомы деспирализованы (раскручены). В интерфазе происходит синтез бел­ков, липидов, углеводов, АТФ, самоудвоение моле­кул ДНК и образование в каждой хромосоме двух хроматид;

2) фазы митоза (профаза, метафаза, анафаза, телофаза) — ряд последовательных изменений в клетке: а) спирализация хромосом, растворение ядерной оболочки и ядрышка; б) формирование ве­ретена деления, расположение хромосом в центре клетки, присоединение к ним нитей веретена деле­ния; в) расхождение хроматид к противоположным полюсам клетки (они становятся хромосомами); г) формирование клеточной перегородки, деление цитоплазмы и ее органоидов, образование ядерной оболочки, появление двух клеток из одной с одина­ковым набором хромосом (по 46 в материнской и дочерних клетках человека).

4. Значение митоза — образование из материн­ской двух дочерних клеток с таким же набором хромосом, равномерное распределение между до­черними клетками генетической информации.

2. 1. Антропогенез — длительный исторический процесс становления человека, который происходит под влиянием биологических и социальных факто­ров. Сходство человека с млекопитающими — дока­зательство его происхождения от животных.

2. Биологические факторы эволюции человека — наследственная изменчивость, борьба за существо­вание, естественный отбор. 1) Появление у предков человека S-образного позвоночника, сводчатой сто­пы, расширенного таза, прочного крестца — на­следственные изменения, которые способствовали прямохождению; 2) изменения передних конечно­стей — противопоставление большого пальца осталь­ным пальцам — формирование руки. Усложнение -строения и функций головного мозга, позвоночника,руки, гортани — основа формирования трудовой деятельности, развития речи, мышления.

3. Социальные факторы эволюции — труд, раз­витое сознание, мышление, речь, общественный об­раз жизни. Социальные факторы — основное отли­чие движущих сил антропогенеза от движущих сил эволюции органического мира.

Главный признак трудовой деятельности челове­ка — способность изготавливать орудия труда. Труд — важнейший фактор эволюции человека, его роль в закреплении морфологических и физиологи­ческих изменений у предков человека.

4. Ведущая роль биологических факторов на ранних этапах эволюции человека. Ослабление их роли на современном этапе развития общества, че­ловека и возрастание значения социальных фак­торов.

5. Стадии эволюции человека: древнейшие, древние, первые современные люди. Ранние стадии эволюции — австралопитеки, черты их сходства с человеком и человекообразными обезьянами (стро­ение черепа, зубов, таза). Находки остатков челове­ка умелого, его сходство с австралопитеками.

6. Древнейшие люди — питекантроп, синан­троп, развитие у них лобных и височных долей мозга, связанных с речью, — доказательство ее за­рождения. Находки примитивных орудий труда — доказательство зачатков трудовой деятельности. Черты обезьян в строении черепа, лицевого отдела, позвоночника древнейших людей.

7. Древние люди — неандертальцы, их большее сходство с человеком по сравнению с древнейшими людьми (больший объем мозга, наличие слабораз­витого подбородочного выступа), использование бо­лее сложных орудий труда, огня, коллективная охота.

8. Первые современные люди — кроманьонцы, их сходство с современным человеком. Находки разнообразных орудий труда, наскальных рисун­ков — свидетельство высокого уровня их развития.

3. Надо исходить из того, что каждый сорт имеет свой генотип. Значит, один сорт отличается от дру­гого и по фенотипу (длина колоса, число колосков и зерновок в них, окраска, остистость или ее отсутст­вие). Причины различий по фенотипу: различия в генотипе, в условиях выращивания, вызывающих модификационные изменения.

Билет № 12

1. 1. Гаметы — половые клетки, участие их в опло­дотворении, образовании зиготы (первая клетка нового организма). Результат оплодотворения — удвоение числа хромосом, восстановление их ди-плоидного набора в зиготе. Особенности гамет — одинарный, гаплоидный набор хромосом по сравне­нию с диплоидным набором хромосом в клетках тела.

2. Этапы развития половых клеток: 1) увеличе­ние путем митоза числа первичных половых клеток с диплоидным набором хромосом; 2) рост первич­ных половых клеток; 3) созревание половых кле­ток.

3. Мейоз — особый вид деления первичных по­ловых клеток, в результате которого образуются гаметы с гаплоидным набором хромосом. Мейоз — два последовательных деления первичной половой клетки и одна интерфаза перед первым делением.

4. Интерфаза — период активной жизнедеятель­ности клетки, синтеза белка, липидов, углеводов, АТФ, удвоения молекул ДНК и образования ,гвух хроматид из каждой хромосомы.

5. Первое деление мейоза, его особенности: конъюгация гомологичных хромосом и возможный обмен участками хромосом, расхождение в каждую клетку по одной гомологичной хромосоме, умень­шение их числа вдвое в двух образовавшихся гап-лоидных клетках.

6. Второе деление мейоза — отсутствие интер­фазы перед делением, расхождение в дочерние клетки гомологичных хроматид, образование по­ловых клеток с гаплоидным набором хромосом. Результаты мейоза: образование в семенниках (или других органах) из одной первичной половой клет­ки четырех сперматозоидов, в яичниках из одной первичной половой клетки одной яйцеклетки (три мелкие клетки при этом погибают).

2. 1. Важный признак вида — расселение его группами, популяциями в пределах ареала. Попу­ляция — совокупность свободно скрещивающихся особей вида, которые длительное время существуют относительно обособленно от других популяций на определенной части ареала.

2. Факторы, способствующие объединению осо­бей в популяции, — свободное скрещивание (вза­имоотношения полов), выращивание потомства (ге­нетические связи), совместная защита от врагов, типы взаимоотношений организмов разных вгцов: хищник—жертва, хозяин—паразит, симбиоз, кон­куренция.

3. Популяция — структурная единица вида, ха­рактеризуется определенной численностью особей, ее изменениями, общностью занимаемой террито­рии, определенным соотношением возрастного и

полового состава. Изменение численности популя­ций в определенных пределах, сокращение ее ниже допустимого предела — причина возможной гибели популяции.

4. Изменение численности популяций по сезо­нам и годам (массовое размножение в отдельные го­ды насекомых, грызунов). Устойчивость численно­сти популяций, особи которых имеют большую продолжительность жизни и низкую плодовитость.

5. Причины колебания численности популяций: изменение количества пищи, погодных условий, экстремальные условия (наводнения, пожары и пр.). Резкое изменение численности под влиянием случайных факторов, прегрешение смертности над рождаемостью — возможные причины гибели по­пуляции.

6. Саморегуляция численности популяции. Вслед за возрастанием численности одних видов по­являются факторы, вызывающие ее ограничение. Так, возрастание численности растительноядных животных сопровождается увеличением численно­сти хищников, паразитов. Вследствие этого проис­ходит снижение численности растительноядных животных, а затем и численности хищников. Таков механизм саморегуляции численности всех популя­ций, сохранения ее на определенном уровне.

3. Для составления вариационного ряда надо опре­делить размеры, массу семян фасоли (или листьев) и расположить их в порядке увеличения размеров, массы. Для этого надо измерить длину или взвесить объекты и записать данные в порядке их увеличе­ния. Под цифрами записать число семян каждого ва­рианта. Выяснить, семена каких размеров (или мас­сы) встречаются чаще, а каких — реже. Выявлена закономерность: наиболее часто встречаются семена средних размеров и массы, а крупные и мелкие (лег­кие и тяжелые) — реже. Причины: в природе преоб­ладают средние условия среды, а очень хорошие и очень плохие встречаются реже.

Билет № 13

1. 1. Размножение — воспроизведение организма­ми себе подобных, передача наследственной инфор­мации от родителей потомству. Значение размно­жения — обеспечение преемственности между по­колениями, продолжение жизни вида, увеличение численности особей в популяции и их расселение на новые территории.

2. Особенности полового размножения — воз­никновение нового организма в результате оплодо­творения, слияния мужской и женской гамет с гап-лоидным набором хромосом. Зигота — первая клет­ка дочернего организма с диплоидным набором хромосом. Объединение материнского и отцовского наборов хромосом в зиготе — причина обогащения наследственной информации потомства, появления у него новых признаков, которые могут повысить приспособленность к жизни в определенных услови­ях, возможность выжить и оставить потомство.

3. Оплодотворение у растений. Значение водной среды для процесса оплодотворения у мхов и папо­ротников. Процесс оплодотворения у голосеменных в женских шишках, а у покрытосеменных — в цветке.

4. Оплодотворение у животных. Внешнее опло­дотворение — одна из причин гибели значительной части половых клеток и зигот. Внутреннее оплодо­творение у членистоногих, пресмыкающихся, птиц и млекопитающих — причина наибольшей вероят­ности образования зиготы, защиты зародыша от не­благоприятных условий среды (хищников, колеба­ний температуры и пр.).

5. Эволюция полового размножения по пути возникновения специализированных клеток (га-плоидных гамет), половых желез, половых орга­нов. Пример: у голосеменных на чешуйках шишки располагаются пыльники (место образования муж­ских половых клеток) и семязачатки (место обра­зования яйцеклетки); у покрытосеменных в пыль­никах формируются мужские гаметы, а в семяза-чатке — яйцеклетка; у позвоночных животных и человека в семенниках образуются сперматозоиды, а в яичниках — яйцеклетки.

2. 1. Наследственность — свойство организмов пе­редавать особенности строения и жизнедеятельно­сти от родителей потомству. Наследственность — основа сходства родителей и потомства, особей од­ного вида, сорта, породы.

2. Размножение организмов — основа передачи наследственной информации от родителей потомст­ву. Роль половых клеток и оплодотворения в насле­довании признаков.

3. Хромосомы и гены — материальные основы наследственности, хранения и передачи наследст­венной информации. Постоянство формы, размеров и числа хромосом, хромосомный набор — главный признак вида.

4. Диплоидный набор хромосом в соматических и гаплоидный в половых клетках. Митоз — деле­ние клетки, обеспечивающее постоянство числа хромосом и диплоидный набор в клетках тела, пе­редачу генов от материнской клетки к дочерним. Мейоз — процесс уменьшения вдвое числа хромо­сом в половых клетках; оплодотворение — основа восстановления диплоидного набора хромосом, пе­редачи генов, наследственной информации от роди­телей потомству.

5. Строение хромосомы — комплекс молекулы ДНК с молекулами белка. Расположение хромосом в ядре, в интерфазе в виде тонких деспирализован-ных нитей, а в процессе митоза в виде компактных спирализованных телец. Активность хромосом в деспирализованном виде, образование в этот период хроматид на основе удвоения молекул ДНК, синте­за иРНК, белка. Спирализация хромосом — при­способленность к равномерному распределению их между дочерними клетками в процессе деления.

6. Ген — участок молекулы ДНК, содержащий информацию о первичной структуре одной молеку­лы белка. Линейное расположение сотен и тысяч генов в каждой молекуле ДНК.

7. Гибридологический метод изучения наследст­венности. Его сущность: скрещивание родитель­ских форм, различающихся по определенным при­знакам, изучение наследования признаков в ряду поколений и их точный количественный учет.

8. Скрещивание родительских форм, наследст­венно различающихся по одной паре признаков, — моногибридное, по двум — дигибридное скрещива­ние. Открытие с помощью этих методов правила единообразия гибридов первого поколения, законов расщепления признаков во втором поколении, не­зависимого и сцепленнрго наследования.

3. Надо приготовить микроскоп к работе: положить микропрепарат, осветить поле зрения микроскопа, найти клетку, ее оболочку, цитоплазму, ядро, вакуо­ли, хлоропласты. Оболочка придает клетке форму и защищает ее от внешнего воздействия. Цитоплазма обеспечивает связь между ядром и органоидами, ко­торые в ней располагаются. В хлоропластах на мем­бранах гран расположены молекулы хлорофилла, который поглощает и использует энергию солнечно­го света в процессе фотосинтеза. В ядре находятся хромосомы, с помощью которых осуществляется пе­редача наследственной информации от клетки к клетке. Вакуоли содержат клеточный сок, продукты обмена, способствуют поступлению воды и клетку.

Билет № 14

1. 1. Образование зиготы, ее первые деления — начало индивидуального развития организма при половом размножении. Эмбриональный и постэмб­риональный периоды развития организмов.

2. Эмбриональное развитие — период жизни ор­ганизма с момента образования зиготы до рожде­ния или выхода зародыша из яйца.

3. Стадии эмбрионального развития (на приме­ре ланцетника): 1) дробление — многократное деле­ние зиготы путем митоза. Образование множества мелких клеток (при этом они не растут), а затем шара с полостью внутри — бластулы, равной по размерам зиготе; 2) образование гаструлы — двух­слойного зародыша с наружным слоем клеток (эк­тодермой) и внутренним, выстилающим полость (энтодермой). Кишечнополостные, губки — приме­ры животных, которые в процессе эволюции оста­новились на двухслойной стадии; 3) образование трехслойного зародыша, появление третьего, сред­него слоя клеток — мезодермы, завершение образо­вания трех зародышевых листков; 4) закладка из зародышевых листков различных органов, специ­ализация клеток.

4. Органы, формирующиеся из зародышевых

листков.

Зародышевые листки

Название частей и

органов зародыша

1. Наружный, эк­тодерма

Нервная пластинка, нервная трубка, нару-жный слой кожного покрова, орга­ны зрения и

слуха

2.Внутренний, энтодерма

Кишечник, легкие,

печень, поджелу­дочная

 железа

3. Средний, мезо­дерма

Хорда, хрящевой

 и костный скелет,

мышцы, почки,

кровеносные

сосуды

5. Взаимодействие частей зародыша в процессе эмбрионального развития — основа его целостности. Сходство начальных стадий развития зародышей по­звоночных животных — доказательство их родства.

6. Высокая чувствительность зародыша к воз­действию факторов среды. Вредное влияние алко­голя, наркотиков, курения на развитие зародыша, на подростка и взрослого человека.

2. 1. Г. Мендель — основоположник генетики.

Открытие им законов наследственности на основе применения методов скрещивания и анализа по­томства.

2. Изучение Г. Менделем генотипов и феноти­пов исследуемых организмов. Фенотип — совокуп­ность внешних и внутренних признаков, особенно­стей процессов жизнедеятельности. Генотип — совокупность генов в организме. Доминантный признак — преобладающий, господствующий; ре­цессивный — исчезающий, подавляемый признак. Гомозиготный организм содержит аллельные толь­ко доминантные (АА) или только рецессивные (аа) гены, которые контролируют формирование опре­деленного признака. Гетерозиготный организм со­держит в клетках доминантный и рецессивный ге­ны (Аа). Они контролируют формирование альтер­нативных признаков.

3. Правило единообразия (доминирования) при­знаков у гибридов первого поколения — при скре­щивании двух гомозиготных организмов, различаю­щихся по одной паре признаков (например, желтая и зеленая окраска семян гороха), все потомство гиб­ридов первого поколения будет единообразным, по­хожим на одного из родителей (желтые семена).

Источник: www.KazEdu.kz