Митоз — это наиболее распространенный способ деления эукариотических клеток. При митозе геномы каждой из двух образовавшихся клеток идентичны между собой и совпадают с геномом исходной клетки.

Митоз является последним и обычно самым коротким по времени этапом клеточного цикла. С его окончанием жизненный цикл клетки заканчивается и начинаются циклы двух новообразовавшихся.

Фазы клеточного цикла

Диаграмма иллюстрирует длительность этапов клеточного цикла. Буквой M — обозначен митоз. Наибольшая скорость митоза наблюдается в зародышевых клетках, наименьшая — в тканях с высокой степенью дифференциации, если их клетки вообще делятся.

Хотя митоз рассматривают независимо от интерфазы, состоящей из периодов G1, S и G2, подготовка к нему происходит именно в ней. Самым важным моментом является репликация ДНК, происходящая в синтетическом (S) периоде. После репликации каждая хромосома состоит уже из двух идентичных хроматид. Они сближены по всей своей длине и соединены в области центромеры хромосомы.


В интерфазе хромосомы находятся в ядре и представляют собой клубок тонких очень длинных хроматиновых нитей, которые видны лишь под электронным микроскопом.

В митозе выделяют ряд последовательных фаз, которые также могут называться стадиями или периодами. При классическом упрощенном варианте рассмотрения выделяют четыре фазы. Это профаза, метафаза, анафаза и телофаза. Часто выделяют больше фаз: прометафазу (между профазой и метафазой), препрофазу (характерна для растительных клеток, предшествует профазе).

С митозом связан другой процесс – цитокинез, который протекает в основном в период телофазы. Можно сказать, что цитокинез является как бы составной частью телофазы, или оба процесса идут параллельно. Под цитокинезом понимают разделение цитоплазмы (но не ядра!) родительской клетки. Деление ядра называют кариокинезом, и оно предшествует цитокинезу. Однако при митозе как такового деления ядра не происходит, т. к. сначала распадается одно – родительское, потом образуются два новых – дочерних.

Бывают случаи, когда кариокинез происходит, а цитокинез — нет. В таких случаях образуются многоядерные клетки.

Длительность самого митоза и его фаз индивидуальна, зависит от типа клеток. Обычно профаза и метафаза является самыми длительными периодами.


Длительность фаз митоза

Средняя продолжительность митоза около двух часов. Животные клетки обычно делятся быстрее, чем клетки растений.

При делении клеток эукариот обязательно образуется двухполюсное веретено деления, состоящее из микротрубочек и связанных с ними белков. Благодаря ему происходит равное распределение наследственного материала между дочерними клетками.

Ниже будет дано описание процессов, которые происходят в клетке в различные фазы митоза. Переход в каждую следующую фазу контролируется в клетке специальными биохимическими контрольными точками, в которых «проверяется», все ли необходимые процессы были правильно завершены. В случае наличия ошибок деление может остановиться, а может — и нет. В последнем случае возникают аномальные клетки.

Фазы митоза

Профаза

В профазе происходят следующие процессы (в основном параллельно):

  • Хромосомы конденсируются

  • Ядрышки исчезают

  • Ядерная оболочка распадается

  • Формируются два полюса веретена деления

Митоз начинается с укорочения хромосом. Составляющие их пары хроматид спирализуются, в результате чего хромосомы сильно укорачиваются и утолщаются. К концу профазы их можно увидеть в световой микроскоп.


Ядрышки исчезают, т. к. образующие их части хромосом (ядрышковые организаторы) находятся уже в спирализованном виде, следовательно, неактивны и не взаимодействуют между собой. Кроме того распадаются ядрышковые белки.

В клетках животных и низших растений центриоли клеточного центра расходятся по полюсам клетки и выступают центрами организации микротрубочек. Хотя у высших растений центриолей нет, микротрубочки также образуются.

От каждого центра организации начинают расходиться короткие (астральные) микротрубочки. Формируется структура похожая на звезду. У растений она не образуется. Их полюса деления более широкие, микротрубочки выходят не из малой, а из относительно широкой области.

Распад ядерной оболочки на мелкие вакуоли знаменует конец профазы.

Профаза

Справа на микрофотографии зеленым цветом подсвечены микротрубочки, синим — хромосомы, красным – центромеры хромосом.

Также следует отметить, что в период профазы митоза происходи фрагментация ЭПС, она распадается на мелкие вакуоли; аппарат Гольджи распадается на отдельные диктиосомы.

Прометафаза

Ключевые процессы прометафазы идут большей часть последовательно:

  1. Хаотичное расположение и движение хромосом в цитоплазме.

  2. Соединение их с микротрубочками.

  3. Движение хромосом в экваториальную плоскость клетки.

iv>

Хромосомы оказываются в цитоплазме, они беспорядочно двигаются. Оказавшись на полюсах, у них больше шансов скрепиться с плюс-концом микротрубочки. В конце концов нить прикрепляется к кинетохоре.

Прометафаза

Такая кинетохорная микротрубочка начинает нарастать, чем отдаляют хромосому от полюса. В какой-то момент к кинетохоре сестринской хроматиды крепится другая микротрубочка, нарастающая с другого полюса деления. Она тоже начинает толкать хромосому, но уже в противоположном направлении. В результате хромосома становится на экваторе.

Кинетохоры представляют собой белковые образования на центромерах хромосом. Каждая сестринская хроматида имеет свой кинетохор, который «созревает» в профазе.

Кроме астральных и кинетохорных микротрубочек есть те, которые идут от одного полюса к другому, как бы распирают клетку в перпендикулярном экватору направлении.

Метафаза

Признаком начала метафазы является расположение хромосом по экватору, образуется так называемая метафазная, или экваториальная, пластинка. В метафазу хорошо видны количество хромосом, их отличия и то, что они состоят из двух сестринских хроматид, соединенных в районе центромеры.

Хромосомы удерживаются за счет сбалансированных сил натяжения микротрубочек разных полюсов.

Метафаза

Анафаза


  • Сестринские хроматиды разделяются, каждая двигается к своему полюсу.

  • Полюса удаляются друг от друга.

Анафаза

Анафаза самая короткая фаза митоза. Она начинается, когда центромеры хромосом разделяются на две части. В результате каждая хроматида становится самостоятельной хромосомой и оказывается прикреплена к микротрубочке одного полюса. Нити «тянут» хроматиды к противоположным полюсам. На самом деле микротрубочки разбираются (деполимеризуются), т. е. укорачиваются.

В анафазе животных клеток двигаются не только дочерние хромосомы, но и сами полюса. За счет других микротрубочек они расталкиваются, астральные микротрубочки прикрепляются к мембранам и тоже «тянут».

Телофаза

  • Движение хромосом останавливается

  • Хромосомы деконденсируются

  • Появляются ядрышки

  • Восстанавливается ядерная оболочка

  • Большая часть микротрубочек исчезает

>

Телофаза

Телофаза начинается, когда хромосомы перестают двигаться, остановившись у полюсов. Они деспирализуются, становятся длинными и нитевидными.

Микротрубочки веретена деления разрушаются от полюсов к экватору, т. е. со стороны своих минус-концов.

Вокруг хромосом образуется ядерная оболочка путем слияния мембранных пузырьков, на которые в профазе распалось материнское ядро и ЭПС. На каждом полюсе формируется свое дочернее ядро.

Поскольку хромосомы деспирализуются, ядрышковые организаторы становятся активными и появляются ядрышки.

Возобновляется синтез РНК.

Если на полюсах центриоли еще не парные, то около каждой достраивается парная ей. Таким образом на каждом полюсе воссоздается свой клеточный центр, который отойдет в дочернюю клетку.

Обычно телофаза заканчивается разделением цитоплазмы, т. е. цитокинезом.

Цитокинез

Цитокинез может начаться еще в анафазе. К началу цитокинеза клеточные органеллы распределяются относительно равномерно по полюсам.

Разделение цитоплазмы растительных и животных клеток происходит по-разному.

У животных клеток благодаря эластичности цитоплазматическая мембрана в экваториальной части клетки начинает впячиваться во внутрь. Образуется борозда, которая в конце концов смыкается. Другими словами, материнская клетка делится перешнуровкой.


Цитокинез

В растительных клетках в телофазе нити веретена не исчезают в области экватора. Они сдвигаются ближе к цитоплазматической мембране, их количество увеличивается, и они образуют фрагмопласт. Он состоит из коротких микротрубочек, микрофиламентов, частей ЭПС. Сюда перемещаются рибосомы, митохондрии, комплекс Гольджи. Пузырьки Гольджи и их содержимое на экваторе образуют срединную клеточную пластинку, клеточные стенки и мембрану дочерних клеток.

Значение и функции митоза

Благодаря митозу обеспечивается генетическая стабильность: точное воспроизводство генетического материала в ряду поколений. Ядра новых клеток содержат столько же хромосом, сколько их содержала родительская клетка, и эти хромосомы являются точными копиями родительских (если, конечно, не возникли мутации). Другими словами, дочерние клетки генетически идентичны материнской.

Однако митоз выполняет и ряд других немаловажных функций:

  • рост многоклеточного организма,

  • бесполое размножение,

  • замещение клеток различных тканей у многоклеточных организмов,

  • у некоторых видов может происходить регенерация частей тела.


Источник: biology.su

1. Клетки эпителия пищевода крысы, меченые радиоактивным тимидином в S-фазе клеточного цикла.

В анафазе митоза хромосомыНа рисунке изображены клетки, помеченные радиоактивным веществом. В клетки вводят радиоактивный компонент ДНК, в данном случае это тимидин, меченый тритием. Радиоактивный тимидин, который включился в удваивающиеся хромосомы во время синтеза ДНК, образует темные пятна на фотопластинке. В центре видно большое количество черных точек — это ДНК в удвоенном количестве. На рисунке стадия интерфазы, т.к. видны еще не растворившиеся оболочки ядра. Также можно сказать, что это S-период, т.к. ДНК сконцентрированы в одном месте в большом количестве. Формула клетки к концу S-периода 2n4c

2. Схематическое изображение фаз митотического цикла.

В анафазе митоза хромосомы

1. Интерфаза. Ядерная оболочка еще присутствует, хорошо видны нити хроматина.

2. Профаза. Ядерная оболочка начинает распадаться, хромосомы в клетке расположены беспорядочно (хромосомы спирализованы сильно, но НЕ максимально), веретено деления только начинает образовываться.


3. Метафаза. Заканчивается образование веретена деления, хромосомы (спирализация MAX) выстраиваются в экваториальной плоскости клетки, образуя метафазную пластинку. Каждая хромосома продольно расщепляется на две хроматиды.

4. Анафаза. Хроматиды в виде самостоятельных хромосом перемещаются к полюсам клетки.

5. Телофаза. Конечная стадия митоза, хромосомы деспирализуются, разрушается веретено деления, на экваторе образуется перетяжка, происходит цитокинез – разделение цитоплазмы.

3. Профаза митоза в клетках корня лука.

На рисунке изображена профаза в растительной клетке, т.к. клетки плотно прилегают друг к другу и упорядочены (за счет клеточной стенки, которая состоит из целлюлозы). Видна еще не растворившаяся до конца клеточная оболочка, хромосомы расположены хаотично по всей клетке, еще не максимально конденсированы, но уже приобрели вид нитей.

В анафазе митоза хромосомыВ анафазе митоза хромосомы

4. Анафаза и прометафаза митоза в клетках корня лука.

На рисунке изображена анафаза митоза в растительной клетке, т.к. клетки плотно прилегают друг к другу и упорядочены (за счет клеточной стенки из целлюлозы). Хромосомы конденсированы, расщеплены на хроматиды, которые переместились к полюсам клетки.

Ниже изображена прометафаза митоза – происходит быстрый распад ядерной оболочки, с помощью нитей веретена деления конденсированные хромосомы перетаскиваются в экваториальную плоскость, образуя метафазную пластинку.

5


В анафазе митоза хромосомы. Телофаза митоза в клетках корня лука.

На рисунке изображена телофаза в растительной клетке, т.к. клетки плотно прилегают друг к другу и упорядочены (за счет клеточной стенки). Происходит формирование двух диплоидных клеток (2n2c), веретено деления разрушается, хромосомы деспирализуются, образуется перетяжка в экваториальной области, происходит цитокинез – разделение цитоплазмы.

6. Метафаза и анафаза митоза в клетках печени крысы.

На рисунке изображена метафаза и анафаза митоза в клетках печени крысы. Клетки неплотно прилегают друг к другу, нет упорядоченности (отличие от растительных клеток и клеток эпителия живых организмов). В первой клетке происходит метафаза — хромосомы конденсированы и выстроены по экватору клетки.

Во второй клетке происходит анафаза митоза — хроматиды выстроены у полюсов клетки.

В анафазе митоза хромосомы

7. Телофаза митоза в клетках печени крысы.

На рисунке изображена телофаза митоза в клетках печени крысы. Клетки неплотно прилегают друг к другу, нет упорядоченности. Ядерная оболочка полностью растворена, хромосомы деспирализуются, клетка делится.

В анафазе митоза хромосомы

8. Отставание хромосом в анафазе. Глиома.

Это патология митоза. В центре клеточного поля видна делящаяся клетка в стадии анафазы, отчетливо заметен хроматидный мост, который образуется при растягивании дицентрической хромосомы между противоположными полюсами деления в ходе анафазы. Эта патология приводит к генотипической разнородности дочерних клеток и нарушает завершение деления, задерживая цитокинез.

В анафазе митоза хромосомы

9. «Полая» метафаза. Глиома.

На рисунке изображена «полая» метафаза – это кольцевое скопление хромосом в метафазной пластинке вдоль периферии клетки.

В анафазе митоза хромосомы

10. Колхициновый митоз. Асцитная карцинома Эрлиха.

Патологический митоз. Колхицин вызывает эндомитоз (многократное удвоение молекул ДНК в хромосомах без увеличения числа самих хромосом), парализуя механизм расхождения хромосом к полюсам, разрушая веретено деления. На изображении виден колхициновый митоз: метафазная пластинка состоит из склеенных хромосом, образующих «комки», наблюдается отставание хромосом.

В анафазе митоза хромосомы

11. Колхициновый митоз. Асцитная карцинома Эрлиха.

В анафазе митоза хромосомы

12. Яйцеклетка беззубки.

Яйцеклетка беззубки – очень крупная клетка шарообразной формы, имеет 2 оболочки: тонкая первичная(5.), плотно прилегающая к цитоплазме, и вторичная(1.). Цитоплазма содержит зерна желтка. Ядро (3.) хорошо заметно, ядрышко (4.) двойное, состоит из двух округлых образований, плотно прилегающих друг к другу.

В анафазе митоза хромосомы

13. Сперматозоиды человека.

Это сперматозоид – мужская гамета. На изображении отчетливо видны части сперматозоида: головка (2.) с ядром (1.), шейка (3.) и хвост (4.). Почти вся головка заполнена ядром, которое несет наследственный материал в виде хроматина; на переднем конце головки имеется акросома, которая представляет собой видоизмененный комплекс Гольджи, он необходим для образования фермента, расщепляющего оболочку яйцеклетки для проникновения головки в нее. В шейке сперматозоида расположена митохондрия, необходимая для выработки энергии, которая тратится на активные движения сперматозоида.

В анафазе митоза хромосомы

14. Лептонема в пыльниках лилии Тунберга.

Лептонема – первая стадия профазы 1го мейотического деления, наступает после репликации ДНК; на этой стадии хромосомы выглядят как одиночные, тонкие, нитевидные структуры (спирализация только начинается), еще не нашли гомологичные хромосомы, поэтому хаотично расположены в клетке.

В анафазе митоза хромосомы

15. Диакинез в пыльниках лилии Тунберга.

Диакинез – это заключительная стадия первой профазы мейоза, после которой гомологичные хромосомы, между которыми образуется перекрест, оказываются готовыми к разделению. В диакинезе четко видно, что каждый бивалент (2.) состоит из четырех хроматид. Диакинез характеризуется еще большим укорочением бивалентов, уменьшением числа хиазм (1.) и исчезновением ядрышек, а биваленты приобретают более компактную форму и располагаются по периферии ядра.

В анафазе митоза хромосомы

16. Метафаза редукционного (1) деления мейоза у аскариды (тетрады).

На рисунке изображен мейоз 1, стадия метафазы. Темное плотное образование с краю – биваленты. В середине большое количество рРНК, т.к. ядро растворилось. Вокруг растворенного ядра видны оформленные питательные вещества (желток).

В анафазе митоза хромосомы

17. Анафаза редукционного деления мейоза у аскариды.

Анафаза 1 – к полюсам клетки расходятся хромосомы (не хроматиды). У аскариды есть 4 хромосомы, которые отчетливо видны (2 сверху и 2 снизу).

В анафазе митоза хромосомы

18. Метафаза эквационного деления мейоза у аскариды (диады).

В ходе эквационного деления происходит уменьшение числа хроматид в 2 раза. В эквационное деление вступают две гаплоидные клетки с двухроматидными хромосомами . Метафаза эквационного деления характеризуется выстраиванием хромосом в экваториальной плоскости, хромосомы максимально конденсированы.

В анафазе митоза хромосомы

19. Синкарион у аскариды.

Синкарион – это ядро зиготы, сформированное путем слияния ядер двух гамет при оплодотворении. На изображении видно два ядра, первое темное, крупное – ядро яйцеклетки, другое светлое, небольшое – ядро сперматозоида, которое дожидается созревания яйцеклетки для слияния. По бокам видны темные направительные тельца яйцеклетки.

В анафазе митоза хромосомы

20. Кариогамия у аскариды.

Кариогамия – это слияние ядер при половом процессе. На рисунке изображены 2 ядра – сперматозоида и яйцеклетки в момент кариогамии. Сбоку расположены направительные тельца, выделяемые яйцом перед оплодотворением. Они помогают клетке избавиться от лишней генетической информации (содержащие ядерный материал и небольшое количество цитоплазмы. Направительные тельца отделяются от овоцита животных при первом и втором делениях мейоза, впоследствии дегенерируют.).

В анафазе митоза хромосомы

Источник: StudFiles.net

Помощничек
Главная | Обратная связь

Археология
Архитектура
Астрономия
Аудит
Биология
Ботаника
Бухгалтерский учёт
Войное дело
Генетика
География
Геология
Дизайн
Искусство
История
Кино
Кулинария
Культура
Литература
Математика
Медицина
Металлургия
Мифология
Музыка
Психология
Религия
Спорт
Строительство
Техника
Транспорт
Туризм
Усадьба
Физика
Фотография
Химия
Экология
Электричество
Электроника
Энергетика

Профаза характеризуется морфологическими изменениями ядра и цитоплазмы: в ядре – конденсация хроматина, и образование хромосом, состоящих из хроматид, хромосомы утолщаются, укорачиваются. Ядрышко исчезает из поля зрения, кариолемма распадается на пузырьки. В цитоплазме редупликация центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления.

Метафаза:прикрепление нитей веретена к центромерам хромосом, выстраивание хромосом в плоскости экватора клетки, образование метафазной пластинки или материнской звезды, неполное обособление сестринских хроматид друг от друга

Анафаза:полное обособление хроматид и образование двух равноценных диплоидных наборов хромосом, расхождение хромосомных наборов к полюсам митотического веретена

Телофаза:деконденсация хромосом, формирование ядерной оболочки из пузырьков ЭПС, появление ядрышка в ядрах дочерних клеток, цитотомия – деление с помощью перетяжки двуядерной клетки на две самостоятельные дочерние клетки.

Биологическая роль митоза: Сохранение наследственной информации в ряду поколений без изменений, регенерация тканей, органов, бесполое размножение, размножение клеток многоклеточного организма, рост организмов, поддерживает стабилизирующую форму естественного отбора.

Интерфаза – промежуток, во время которого происходит подготовка клетки к делению или клетки приобретают специализацию, и проходит ее онтогенез.Молодые клетки, образовавшиеся после деления, не могу немедленно приступить к новому делению. В них происходят важные процессы: увеличение объёма, восстановление структурных компонентов ядра и цитоплазмы, связанных с синтезом белка и нуклеиновых кислот, восстановление органоидов клетки.

Периоды интерфазы, их продолжительность, основные процессы:

1) постмитотический (пресинтетический)q 1 (G1) – от 10 часов до нескольких суток. Следует вслед за делением. В молодых дочерних клетках наблюдается высокая интенсивность процессов транскрипции, формирование синтетического аппарата клетки – увеличение рибосом, различных видов РНК, усиление синтеза белка, интенсивный рост клетки, образование и восстановление необходимого числа органоидов

2) синтетический – S — 6 – 10 часов; Значительным событием является удвоение), дупликация ДНК), что приводит к удвоению плоидности), держание ДНК удваивается) диплоидных ядер (хромосомы становятся двухроматидными) и является обязательным условием для последующего митотического деления клеток. Происходит также синтез РНК и белков, продолжается рост клетки.

3) постсинтетический (премитотический) q 2 (G2) – 2 – 5 часов. Продолжается синтез РНК, всех белков, особенно ядерных, а также белка тубулина необходимого для формирования ахроматинового веретена митотического аппарата, образующегося в профазе митоза и мейоза. Репликация центриолей. Происходит накопление питательных веществ, энергии, увеличение энергетических запасов, синтез АТФ. В конце этого периода клетка переходит к профазе митоза.

Главные события митотического цикла:

1) редупликация самоудвоение наследственного материала (синтетический период)

2) равномерное распределение наследственного материала между дочерними клетками (анафаза митоза – распределение хроматид – дочерних хромосом.)

Соотношение количества ДНК (с) и хромосом (n) в митотическом цикле:

МИТОЗ:

1) Профаза 2п 4с, 2) Метафаза 2п 4с, 3) Анафаза 4п 4с (однохроматидные дочерние хромосомы), 4) Телофаза 2п 2с (однохроматидные дочерние хромосомы)

ИНТЕРФАЗА:

1) Постмитотический период 2п 2с (однохроматидные дочерние — сестринские хромосомы)

2) Синтетический период 2п 4с, 3) Постсинтетический период 2п 4с (двухроматидные материнские хромосомы). Обратить внимание, что хроматида содержит одну молекулу ДНК (с).

Жизненный цикл клеток (клеточный цикл) – это период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или смерти.Обязательным компонентом жизненного цикла, является митотический цикл. Многие клетки выходят из митотического цикла на путь специализации, дифференцируются, выполняют определённые функции и их жизнь заканчивается смертью. Однако некоторые дифференцированные клетки (эпителиальные, соединительно-тканные) при определённых условиях переходят к подготовке к митозу и самому митозу. У таких клеток жизненный цикл продолжительнее митотического. Для разных типов клеток жизненный цикл различен.В некоторых клетках отсутствуют те или иные фазы митотического цикла. Часть клеток выходят из митотического цикла на путь дифференцировки и специализации, их пресинтетический период удлиняется. У нервных клеток этот период продолжается в течение всей жизни организма, и они не делятся, поэтому жизненный цикл таких клеток, например, нервных, не совпадает с митотическим циклом.Клетки, образующие обновляющиеся клеточные популяции постоянно делятся, проходя митоз и интерфазу, имеют клеточный цикл, совпадающий с митотическим циклом это, например эмбриональные клетки, ростовые базального слоя кожи, клетки образовательной ткани растений (кончик корня, стебля, камбий), регенерирующие клетки, клетки семенников.

Факторы, влияющие на митотическую активность:

суточная периодизация, факторы внутренней среды (нейрогуморальные влияния),факторы внешней среды (температура, свет, радиация), нарушение ядерно — цитоплазматических отношений, продукты распада и энергии в клетке.

Отдельные ткани характеризуются различной митотической активностью. Все ткани по митотической активности делятся на три группы: стабильные, растущие, обновляющиеся популяции.

СТАБИЛЬНЫЕ КЛЕТОЧНЫЕ ПОПУЛЯЦИИ — это группы клеток, не обнаруживающие митотической активности. Например, это нервные клетки, их характерными особенностями являются увеличение объема и рост.

РАСТУЩИЕ КЛЕТОЧНЫЕ ПОПУЛЯЦИИ — это группа клеток, среди которых беспорядочно встречается митоз. Например, митозы нередко обнаруживаются среди клеток поджелудочной железы, почек, гепатоциты печени. Врачу необходимо помнить о замечательной способности растущих популяций увеличивать митотическую активность при определенных воздействиях. Так, после удаления почки наступает гипертрофия оставшейся.

ОБНОВЛЯЮЩЕЙСЯ КЛЕТОЧНЫЕ ПОПУЛЯЦИИ — это группы клеток, среди которых митотическая активность очень высока (служат незрелые эритроциты, клетки в ходе заживления ран, малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса). Характерной особенностью этих клеток, является уравновешивание избыточного количества клеток их утратой. Нарушение этого состояния приводит к развитию опухолевых процессов.

Источник: studopedya.ru