Фотосинтез происходит в эукариотических клеточных структурах, называемых хлоропластами. Хлоропласт — это тип органеллы растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.

Подобно митохондриям, хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части клетки посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.

Хлоропласт: структура


Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:

  • Мембрана — содержит внутренние и внешние липидные двухслойные оболочки, которые выступают в качестве защитных покрытий и сохраняют замкнутые структуры хлоропластов. Внутренняя мембрана отделяет строму от межмембранного пространства и регулирует прохождение молекул в/из хлоропласта.
  • Межмембранное пространство — пространство между внешней и внутренней мембранами.
  • Тилакоидная система — внутренняя система мембран, состоящая из сплющенных мешкообразных мембранных структур, называемых тилакоидами, которые служат местами преобразования энергии света в химическую энергию.
  • Тилакоид с просветом (люменом) — отсек в каждом тилакоиде.
  • Грана — плотные слоистые стопки тилакоидных мешков (10-20), которые служат местами преобразования энергии света в химическую энергию.
  • Строма — плотная жидкость внутри хлоропласта, содержащая внутри оболочки, но вне тилакоидной мембраны. Здесь происходит конверсия углекислого газа в углеводы (сахара).
  • Хлорофилл — зеленый фотосинтетический пигмент в хлоропласт-гране, поглощающий световую энергию.

Хлоропласт: фотосинтез

Протекает в строме хлоропласта

При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.

Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).

И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.


Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Введение

Солнце было и остается неисчерпаемым источником энергии для нашей планеты. Важнейшим ароморфозом архейской эры было возникновение фотосинтеза, процесса, с помощью которого некоторые живые организмы научились синтезировать органические вещества с использованием солнечного света в качестве основного источника энергии.

Фотосинтез – этот процесс, чрезвычайно важный для всего живого населения нашей планеты. Он происходит в клетках зеленых растений, водорослей и в клетках некоторых бактерий, например цианобактерий, и осуществляется с помощью различных пигментов, в частности, с помощью хлорофилла.

Хлорофилл

Хлорофилл у высших растений сосредоточен в хлоропластах, а основным органом фотосинтеза у высших растений является лист. Хлорофилл обладает особой химической структурой, которая позволяет ему улавливать кванты света (рис. 1).

Протекает в строме хлоропласта

Рис. 1. Спектр поглощения хлорофиллов

Хлорофилл поглощает, главным образом, красный и синий свет. Зеленый свет они отражают, и поэтому придают растениям характерную зеленую окраску, если только её не маскируют другие пигменты. Существуют несколько форм молекул хлорофилла, различающиеся по длине волны улавливаемого света (рис. 2).

iv>
Протекает в строме хлоропласта

Рис. 2. Спектр поглощаемого хлорофиллом света

Хлорофилл у высших растений сосредоточен в хлоропластах, что обусловливает их строение.

Хлоропласт

Структурной и функциональной единицей хлоропластов являются тилакоиды – плоские мембранные мешочки, уложенные в стопки (граны) (рис. 3).

Протекает в строме хлоропласта

Рис. 3. Строение хлоропласта

Отдельные граны соединены друг с другом ламеллами.

В мембранах тилакоидов расположены особые комплексы, в которые входит молекула хлорофилла, а также молекула переносчиков электронов – цитохромов. Мембранная система – это то место, где протекают световые реакции фотосинтеза.

Строма хлоропластов по своему строению напоминает гель – здесь протекают темновые реакции.

Избыток углеводов, образовавшихся в процессе фотосинтеза, запасается в виде зерен крахмала.

Фотосинтетические пигменты


Фотосинтетические пигменты бывают двух типов: главные и вспомогательные. Пигменты второго типа передают испускаемые ими электроны главному пигменту. Электроны, испускаемые главным пигментом, непосредственно доставляют энергию для реакции фотосинтеза. Основными ловцами световых частиц являются две формы хлорофилла а, которые обозначают как П700 и П680 (П – пигмент, 680 – 700 это максимум поглощения в нм). Другие пигменты выполняют вспомогательную роль.

В настоящее время принято считать, что существуют две фотосинтетические единицы, которые называют фотосистема 1 и фотосистема 2. Каждая их этих единиц состоит из набора вспомогательных пигментов, которые передают энергию на молекулу главного пигмента, а именно на молекулу хлорофилла а (рис. 4).

Протекает в строме хлоропласта

Рис. 4. Строение фотосистемы и антенного комплекса собирающих свет пигментов

Эта молекула называется реакционным центром. В реакционном центре энергия используется для осуществления химической реакции.

Протекает в строме хлоропласта

Рис. 5. Перемещение электронов к реакционному центру

Именно здесь происходит преобразование световой энергии в энергию химических связей, что является центральным событием фотосинтеза (рис. 5).

Фазы фотосинтеза

>

Фотосинтез происходит в две фазы, а именно в световую фазу и темновую фазу.

Во время световой фазы происходит образование энергии, которая затем расходуется на темновые реакции. Процесс световой фазы фотосинтеза включает в себя нециклическое фотофосфорилирование и фотолиз воды. В качестве побочного продукта реакции в результате фотолиза воды выделяется кислород. Реакция происходит на мембранах тилакоидов.

Квант красного света, поглощенный хлорофиллом П680 (фотосистема ІІ), переводит электрон в возбужденное состояние (рис. 6). Возбужденный светом электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Такой электрон захватывается акцептором электронов Х, перемещаясь с одной ступени на другую, то есть от одного акцептора к другому, он теряет энергию, которая используется для синтеза АТФ.

Протекает в строме хлоропласта

Рис. 6. Схема процессов световой фазы фотосинтеза

Место вышедших электронов молекулы хлорофилла П680, занимают электроны воды, так как вода под действием света подвергается фотолизу, где в качестве побочного продукта образуется кислород. Фотолиз происходит в полости тилакоида (рис. 7).


Протекает в строме хлоропласта

Рис. 7. Фотолиз воды

В фотосистеме І возбужденные электроны под действием фотона света также переходят на более высокий уровень и захватываются акцептором Y. В конце концов, электроны доходят от Y до переносчика – НАДФ, и, взаимодействуя с ионами водорода, выделенными при фотолизе воды, образуют восстановленный НАДФН. НАДФ расшифровывается как – никотинамидадениндинуклеотидфосфат.

Протекает в строме хлоропласта

Рис. 8. Взаимодействие фотосистемы I и фотосистемы II

Место вышедших электронов в молекуле П700 занимают электроны, полученные от фотосистемы II П680 (рис. 8). Таким образом, на свету электроны перемещаются от воды к фотосистемам II и I, и затем к НАДФ. Такой однонаправленный поток электронов носит название нециклического потока электронов, а образование АТФ, которое при этом происходит, носит название нециклического фотофосфорилирования. Таким образом, в световой фазе образуются АТФ и восстановленный НАДФ, богатые энергией, и в качестве побочного продукта реакции выделяется кислород.


Темновая фаза фотосинтеза. Если световая фаза протекает только на свету, то темновая фаза не зависит от света. Темновая фаза протекает в строме хлоропластов, куда переносятся богатые энергией соединения, а именно АТФ и восстановленный НАДФ, кроме этого, туда же поступает углекислый газ в качестве источника углеводов, который берется из воздуха и поступает в растения через устьица. В реакциях темновой фазы углекислый газ восстанавливается до глюкозы с помощью энергии, запасенной молекулами АТФ и НАДФ.

Превращение углекислого газа в глюкозу в ходе темновой фазы фотосинтеза получило название цикла Кальвина – по имени его первооткрывателя.

Первая стадия фотосинтеза – световая – происходит на мембранах хлоропласта в тилакоидах.

Вторая стадия фотосинтеза – темновая – протекает внутри хлоропласта, в строме.

Суммарное уравнение фотосинтеза выглядит следующим образом. При взаимодействии 6 молекул углекислого газа и 6 молекул воды образуется одна молекула глюкозы и выделяется шесть молекул кислорода. Этот процесс протекает на свету в хлоропластах у высших растений.


Протекает в строме хлоропласта

Таким образом, фотосинтез – процесс превращения вещества и энергии.

Источник: interneturok.ru

Фо­то­син­тез про­ис­хо­дит в две фазы, а имен­но в све­то­вую фазу и тем­но­вую фазу.

Во время све­то­вой фазы про­ис­хо­дит об­ра­зо­ва­ние энер­гии, ко­то­рая затем рас­хо­ду­ет­ся на тем­но­вые ре­ак­ции. Про­цесс све­то­вой фазы фо­то­син­те­за вклю­ча­ет в себя нецик­ли­че­ское фо­то­фос­фо­ри­ли­ро­ва­ние и фо­то­лиз воды. В ка­че­стве по­боч­но­го про­дук­та ре­ак­ции в ре­зуль­та­те фо­то­ли­за воды вы­де­ля­ет­ся кис­ло­род. Ре­ак­ция про­ис­хо­дит на мем­бра­нах ти­ла­ко­и­дов.

Квант крас­но­го света, по­гло­щен­ный хло­ро­фил­лом П680 (фо­то­си­сте­ма ІІ), пе­ре­во­дит элек­трон в воз­буж­ден­ное со­сто­я­ние (рис. 6). Воз­буж­ден­ный све­том элек­трон при­об­ре­та­ет боль­шой запас энер­гии, вслед­ствие чего пе­ре­ме­ща­ет­ся на более вы­со­кий энер­ге­ти­че­ский уро­вень. Такой элек­трон за­хва­ты­ва­ет­ся ак­цеп­то­ром элек­тро­нов Х, пе­ре­ме­ща­ясь с одной сту­пе­ни на дру­гую, то есть от од­но­го ак­цеп­то­ра к дру­го­му, он те­ря­ет энер­гию, ко­то­рая ис­поль­зу­ет­ся для син­те­за АТФ.


Протекает в строме хлоропласта

Рис. 6. Схема про­цес­сов све­то­вой фазы фо­то­син­те­за

Место вы­шед­ших элек­тро­нов мо­ле­ку­лы хло­ро­фил­ла П680, за­ни­ма­ют элек­тро­ны воды, так как вода под дей­стви­ем света под­вер­га­ет­ся фо­то­ли­зу, где в ка­че­стве по­боч­но­го про­дук­та об­ра­зу­ет­ся кис­ло­род. Фо­то­лиз про­ис­хо­дит в по­ло­сти ти­ла­ко­и­да (рис. 7).

Протекает в строме хлоропласта

Рис. 7. Фо­то­лиз воды

В фо­то­си­сте­ме І воз­буж­ден­ные элек­тро­ны под дей­стви­ем фо­то­на света также пе­ре­хо­дят на более вы­со­кий уро­вень и за­хва­ты­ва­ют­ся ак­цеп­то­ром Y. В конце кон­цов, элек­тро­ны до­хо­дят от Y до пе­ре­нос­чи­ка – НАДФ, и, вза­и­мо­дей­ствуя с иона­ми во­до­ро­да, вы­де­лен­ны­ми при фо­то­ли­зе воды, об­ра­зу­ют вос­ста­нов­лен­ный НАДФН. НАДФ рас­шиф­ро­вы­ва­ет­ся как – ни­ко­ти­на­ми­да­де­нин­ди­нук­лео­ти­дфос­фат.

Протекает в строме хлоропласта

Рис. 8. Вза­и­мо­дей­ствие фо­то­си­сте­мы I и фо­то­си­сте­мы II

Место вы­шед­ших элек­тро­нов в мо­ле­ку­ле П700 за­ни­ма­ют элек­тро­ны, по­лу­чен­ные от фо­то­си­сте­мы II П680 (рис. 8). Таким об­ра­зом, на свету элек­тро­ны пе­ре­ме­ща­ют­ся от воды к фо­то­си­сте­мам II и I, и затем к НАДФ. Такой од­но­на­прав­лен­ный поток элек­тро­нов носит на­зва­ние нецик­ли­че­ско­го по­то­ка элек­тро­нов, а об­ра­зо­ва­ние АТФ, ко­то­рое при этом про­ис­хо­дит, носит на­зва­ние нецик­ли­че­ско­го фо­то­фос­фо­ри­ли­ро­ва­ния. Таким об­ра­зом, в све­то­вой фазе об­ра­зу­ют­ся АТФ и вос­ста­нов­лен­ный НАДФ, бо­га­тые энер­ги­ей, и в ка­че­стве по­боч­но­го про­дук­та ре­ак­ции вы­де­ля­ет­ся кис­ло­род.

Тем­но­вая фаза фо­то­син­те­за. Если све­то­вая фаза про­те­ка­ет толь­ко на свету, то тем­но­вая фаза не за­ви­сит от света. Тем­но­вая фаза про­те­ка­ет в стро­ме хло­ро­пла­стов, куда пе­ре­но­сят­ся бо­га­тые энер­ги­ей со­еди­не­ния, а имен­но АТФ и вос­ста­нов­лен­ный НАДФ, кроме этого, туда же по­сту­па­ет уг­ле­кис­лый газ в ка­че­стве ис­точ­ни­ка уг­ле­во­дов, ко­то­рый бе­рет­ся из воз­ду­ха и по­сту­па­ет в рас­те­ния через устьи­ца. В ре­ак­ци­ях тем­но­вой фазы уг­ле­кис­лый газ вос­ста­нав­ли­ва­ет­ся до глю­ко­зы с по­мо­щью энер­гии, за­па­сен­ной мо­ле­ку­ла­ми АТФ и НАДФ.

Пре­вра­ще­ние уг­ле­кис­ло­го газа в глю­ко­зу в ходе тем­но­вой фазы фо­то­син­те­за по­лу­чи­ло на­зва­ние цикла Каль­ви­на – по имени его пер­во­от­кры­ва­те­ля.

Пер­вая ста­дия фо­то­син­те­за – све­то­вая – про­ис­хо­дит на мем­бра­нах хло­ро­пла­ста в ти­ла­ко­и­дах.

Вто­рая ста­дия фо­то­син­те­за – тем­но­вая – про­те­ка­ет внут­ри хло­ро­пла­ста, в стро­ме.

Сум­мар­ное урав­не­ние фо­то­син­те­за вы­гля­дит сле­ду­ю­щим об­ра­зом. При вза­и­мо­дей­ствии 6 мо­ле­кул уг­ле­кис­ло­го газа и 6 мо­ле­кул воды об­ра­зу­ет­ся одна мо­ле­ку­ла глю­ко­зы и вы­де­ля­ет­ся шесть мо­ле­кул кис­ло­ро­да. Этот про­цесс про­те­ка­ет на свету в хло­ро­пла­стах у выс­ших рас­те­ний.

Протекает в строме хлоропласта

Таким об­ра­зом, фо­то­син­тез – про­цесс пре­вра­ще­ния ве­ще­ства и энер­гии.

Источник: www.sites.google.com



Всего: 127    1–20 | 21–40 | 41–60 | 61–80 …

Добавить в вариант



















Источник: bio-ege.sdamgia.ru