У современных и ископаемых организмов известны два типа клеток: прокариотическая и эукариотическая. Они столь резко различаются по особенностям строения, что это послужило для выделения двух надцарств живого мира — прокариот, т.е. доядерных, и эукариот, т.е. настоящих ядерных организмов. Промежуточные формы между этими крупнейшими таксонами живого пока неизвестны.
 

Основные признаки и отличия прокариотических и эукариотических клеток (таблица):


Признаки

Прокариоты

Эукариоты

ЯДЕРНАЯ МЕМБРАНА

Отсутствует

Имеется

ПЛАЗМАТИЧЕСКАЯ МЕМБРАНА

Имеется

Имеется

МИТОХОНДРИИ

Отсутствуют

Имеются

ЭПС

Отсутствует

Имеется

РИБОСОМЫ

Имеются

Имеются

ВАКУОЛИ

Отсутствуют

Имеются (особенно характерны для растений)

ЛИЗОСОМЫ

Отсутствуют

Имеются

КЛЕТОЧНАЯ СТЕНКА

Имеется, состоит из сложного гетерополимерного вещества

Отсутствует в животных клетках, в растительных состоит из целлюлозы

КАПСУЛА

Если имеется, то состоит из соединений белка и сахара

Отсутствует

КОМПЛЕКС ГОЛЬДЖИ

Отсутствует

Имеется

ДЕЛЕНИЕ

Простое

Митоз, амитоз, мейоз

Основное отличие прокариотических клеток от эукариотических заключается в том, что их ДНК не организована в хромосомы и не окружена ядерной оболочкой. Эукариотические клетки устроены значительно сложнее. Их ДНК, связанная с белком, организована в хромосомы, которые располагаются в особом образовании, по сути самом крупном органоиде клетки — ядре. Кроме того, внеядерное активное содержимое такой клетки разделено на отдельные отсеки с помощью эндоплазматической сети, образованной элементарной мембраной.


кариотические клетки обычно крупнее прокариотических. Их размеры варьируют от 10 до 100 мкм, тогда как размеры клеток прокариот (различных бактерий, цианобактерий — сине- зеленых водорослей и некоторых других организмов), как правило, не превышают 10 мкм, часто составляя 2-3 мкм. В эукариотической клетке носители генов — хромосомы — находятся в морфологически оформленном ядре, отграниченном от остальной клетки мембраной. В исключительно тонких, прозрачных препаратах живые хромосомы можно видеть с помощью светового микроскопа. Чаще же их изучают на фиксированных и окрашенных препаратах.

Хромосомы состоят из ДНК, которая находится в комплексе с белками- гистонами, богатыми аминокислотами аргинином и лизином. Гистоны составляют значительную часть массы хромосом.

Эукариотическая клетка имеет разнообразные постоянные внутриклеточные структуры — органоиды (органеллы), отсутствующие в прокариотической клетке.

Прокариотические клетки могут делиться на равные части перетяжкой или почковаться, т.е. образовывать дочернюю клетку меньшего размера, чем материнская, но никогда не делятся путем митоза. Клетки эукариотических организмов, напротив, делятся путем митоза (исключая некоторые очень архаичные группы). Хромосомы при этом "расщепляются" продольно (точнее, каждая нить ДНК воспроизводит около себя свое подобие), и их "половинки" — хроматиды (полноценные копии нити ДНК) расходятся группами к противоположным полюсам клетки. Каждая из образующихся затем клеток получает одинаковый набор хромосом.


Рибосомы прокариотической клетки резко отличаются от рибосом эукариот по величине. Ряд процессов, свойственных цитоплазме многих эукариотических клеток, — фагоцитоз, пиноцитоз и циклоз (вращательное движение цитоплазмы) — у прокариот не обнаружен. Прокариотической клетке в процессе обмена веществ не требуется аскорбиновая кислота, но эукариотические не могут без нее обходиться.

Существенно различаются подвижные формы прокариотических и эукариотических клеток. Прокариоты имеют двигательные приспособления в виде жгутиков или ресничек, состоящих из белка флагеллина. Двигательные приспособления подвижных эукариотических клеток получили название ундулиподиев, закрепляющихся в клетке с помощью особых телец кинетосом. Электронная микроскопия выявила структурное сходство всех ундулиподиев эукариотических организмов и резкие их отличия от жгутиков прокариот

1. Строение эукариотической клетки.

Клетки, образующие ткани животных и растений, значительно различаются по форме, размерам и внутреннему строению. Однако все они обнаруживают сходство в главных чертах процессов жизнедеятельности, обмена веществ, в раздражимости, росте, развитии, способности к изменчивости.
Клетки всех типов содержат два основных компонента, тесно связанных между собой, — цитоплазму и ядро. Ядро отделено от цитоплазмы пористой мембраной и содержит ядерный сок, хроматин и ядрышко.

iv>
лужидкая цитоплазма заполняет всю клетку и пронизана многочисленными канальцами. Снаружи она покрыта цитоплазматической мембраной. В ней имеются специализированные структуры-органоиды, присутствующие в клетке постоянно, и временные образования — включения. Мембранные органоиды: наружная цитоплазматическая мембрана (HЦM), эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, митохондрии и пластиды. В основе строения всех мембранных органоидов лежит биологическая мембрана. Все мембраны имеют принципиально единый план строения и состоят из двойного слоя фосфолипидов, в который с различных сторон ива разную глубину погружены белковые молекулы. Мембраны органоидов отличаются друг от друга лишь наборами входящих в них белков.

Цитоплазматическая мембрана. У всех клеток растений, многоклеточных животных, у простейших и бактерий клеточная мембрана трехслойна: наружный и внутренний слои состоят из молекул белков, средний — из молекул липидов. Она ограничивает цитоплазму от внешней среды, окружает все органоиды клетки и представляет собой универсальную биологическую структуру. В некоторых клетках наружная оболочка образована несколькими мембранами, плотно прилегающими друг к другу. В таких случаях клеточная оболочка становится плотной и упругой и позволяет сохранить форму клетки, как, например, у эвглены и инфузории туфельки. У большинства растительных клеток, помимо мембраны, снаружи имеется еще толстая целлюлозная оболочка — клеточная стенка.


а хорошо различима в обычном световом микроскопе и выполняет опорную функцию за счет жесткого наружного слоя, придающего клеткам четкую форму.
На поверхности клеток мембрана образует удлиненные выросты — микроворсинки, складки, впячивания и выпячивания, что во много раз увеличивает всасывающую или выделительную поверхность. С помощью мембранных выростов клетки соединяются друг с другом в тканях и органах многоклеточных организмов, на складках мембран располагаются разнообразные ферменты, участвующие в обмене веществ. Отграничивая клетку от окружающей среды, мембрана регулирует направление диффузии веществ и одновременно осуществляет активный перенос их внутрь клетки (накопление) или наружу (выделение). За счет этих свойств мембраны концентрация ионов калия, кальция, магния, фосфора в цитоплазме выше, а концентрация натрия и хлора ниже, чем в окружающей среде. Через поры наружной мембраны из внешней среды внутрь клетки проникают ионы, вода и мелкие молекулы других веществ. Проникновение в клетку относительно крупных твердых частиц осуществляется путем фагоцитоза (от греч. "фаго” — пожираю, "питое” — клетка)[2]. При этом наружная мембрана в месте контакта с частицей прогибается внутрь клетки, увлекая частицу в глубь цитоплазмы, где она подвергается ферментативному расщеплению. Аналогичным путем в клетку попадают и капли жидких веществ; их поглощение называется пиноцитозом (от греч.
>
uot;пино” — пью, "цитос” — клетка). Наружная клеточная мембрана выполняет и другие важные биологические функции.
  Цитоплазма на 85 % состоит из воды, на 10 % — из белков, остальной объем приходится на долю липидов, углеводов, нуклеиновых кислот и минеральных соединений; все эти вещества образуют коллоидный раствор, близкий по консистенции глицерину. Коллоидное вещество клетки в зависимости от ее физиологического состояния и характера воздействия внешней среды имеет свойства и жидкости, и упругого, более плотного тела. Цитоплазма пронизана каналами различной формы и величины, которые получили название эндоплазматической сети. Их стенки представляют собой мембраны, тесно контактирующие со всеми органоидами клетки и составляющие вместе с ними единую функционально-структурную систему для осуществления обмена веществ и энергии и перемещения веществ внутри клетки.

В стенках канальцев располагаются мельчайшие зернышки—гранулы, называемые рибосомами. Такая сеть канальцев называется гранулярной. Рибосомы могут располагаться на поверхности канальцев разрозненно или образуют комплексы из пяти-семи и более рибосом, называемые полисомами. Другие канальцы гранул не содержат, они составляют гладкую эндоплазматическую сеть. На стенках располагаются ферменты, участвующие в синтезе жиров и углеводов.

Внутренняя полость канальцев заполнена продуктами жизнедеятельности клетки. Внутриклеточные канальцы, образуя сложную ветвящуюся систему, регулируют перемещение и концентрацию веществ, разделяют различные молекулы органических веществ и этапы их, синтеза. На внутренней и внешней поверхности мембран, богатых ферментами, осуществляется синтез белков, жиров и углеводов, которые либо используются в обмене веществ, либо накапливаются в цитоплазме в качестве включений, либо выводятся наружу.


Рибосомы встречаются во всех типах клеток — от бактерий до клеток многоклеточных организмов. Это округлые тельца, состоящие из рибонуклеиновой кислоты (РНК) и белков почти в равном соотношении. В их состав непременно входит магний, присутствие которого поддерживает структуру рибосом. Рибосомы могут быть связаны с мембранами эндоплазматической сети, с наружной клеточной мембраной или свободно лежать в цитоплазме. В них осуществляется синтез белков. Рибосомы кроме цитоплазмы встречаются в ядре клетки. Они образуются в ядрышке и затем поступают в цитоплазму.

Комплекс Гольджи в растительных клетках имеет вид отдельных телец, окруженных мембранами. В животных клетках этот органоид представлен цистернами, канальцами и пузырьками. В мембранные трубки комплекса Гольджи из канальцев эндоплазматической сети поступают продукты секреции клетки, где они химически перестраиваются, уплотняются, а затем переходят в цитоплазму и либо используются самой клеткой, либо выводятся из нее. В цистернах комплекса Гольджи происходит синтез полисахаридов и их объединение с белками, в результате чего образуются гликопротеиды.


Митохондрии — небольшие тельца палочковидной формы, ограниченные двумя мембранами. От внутренней мембраны митохондрии отходят многочисленные складки — кристы, на их стенках располагаются разнообразные ферменты, с помощью которых осуществляется синтез высокоэнергетического вещества — аденозинтрифосфорной кислоты (АТФ). В зависимости от активности клетки и внешних воздействий митохондрии могут перемещаться, изменять свои размеры, форму. В митохондриях найдены рибосомы, фосфолипиды, РНК и ДНК. С присутствием ДНК в митохондриях связывают способность этих органоидов к размножению путем образования перетяжки или почкованием в период деления клетки, а также синтез части митохондриальных белков.

Лизосомы — мелкие овальные образования, ограниченные мембраной и рассеянные по всей цитоплазме. Встречаются во всех клетках животных и растений. Они возникают в расширениях эндоплазматической сети и в комплексе Гольджи, здесь заполняются гидролитическими ферментами, а затем обособляются и поступают в цитоплазму. В обычных" условиях лизосомы переваривают частицы, попадающие в клетку путем фагоцитоза, и органоиды отмирающих клеток. Продукты лизиса выводятся через мембрану лизосомы в цитоплазму, где они включаются в состав новых молекул. При разрыве лизоеомной мембраны ферменты поступают в цитоплазму и переваривают ее содержимое, вызывая гибель клетки.
Пластиды есть только в растительных клетках и встречаются, у большинства зеленых растений. В пластидах синтезируются и накапливаются органические вещества. Различают пластиды трех видов: хлоропласты, хромопласты и лейкопласты.


Хлоропласты — зеленые пластиды, содержащие зеленый пигмент хлорофилл. Они находятся в листьях, молодых стеблях, незрелых плодах. Хлоропласты окружены двойной мембраной. У высших растений внутренняя часть хлоропластов заполнена полужидким веществом, в котором параллельно друг другу уложены пластинки. Парные мембраны пластинок, сливаясь, образуют стопки, содержащие хлорофилл. В каждой стопке хлоропластов высших растений чередуются слои молекул белка и молекул липидов, а между ними располагаются молекулы хлорофилла. Такая слоистая структура обеспечивает максимум свободных поверхностей и облегчает захват и перенос энергии в процессе фотосинтеза.
Хромопласты — пластиды, в которых содержатся растительные пигменты (красный или бурый, желтый, оранжевый). Они сосредоточены в цитоплазме клеток цветков, стеблей, плодов, листьев растений и придают им соответствующую окраску. Хромопласты образуются из лейкопластов или хлоропластов в результате накопления пигментов каротиноидов.

Лейкопласты—бесцветные пластиды, располагающиеся в неокрашенных частях растений: в стеблях, корнях, луковицах и др. В лейкопластах одних клеток накапливаются зерна крахмала, в лейкопластах других клеток — масла, белки.


Все пластиды возникают из своих предшественников — пропластид. В них выявлена ДНК, которая контролирует размножение этих органоидов.

Клеточный центр, или центросома, играет важную роль при делении, клетки и состоит из двух центриолей. Он встречается у всех клеток животных и растений, кроме цветковых, низших грибов и некоторых, простейших. Центриоли в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В делящейся клетке первым делится клеточный центр, одновременно образуется ахроматиновое веретено, ориентирующее хромосомы при расхождении их к полюсам. В дочерние клетки отходит по одной центриоле.
 У многих растительных и животных клеток имеются органоиды специального назначения: реснички, выполняющие функцию движения (инфузории, клетки дыхательных путей), жгутики (простейшие одноклеточные, мужские половые клетки у животных и растений и др.).

 Включения — временные элемеаты, возникающие в клетке на определенной стадии ее жизнедеятельности в результате синтетической функции. Они либо используются, либо выводятся из клетки. Включениями являются также запасные питательные вещества: в растительных клетках—крахмал, капельки жира, белки, эфирные масла, многие органические кислоты, соли органических и неорганических кислот; в животных клетках — гликоген (в клетках печени и мышцах), капли жира (в подкожной клетчатке); Некоторые включения накапливаются в клетках как отбросы — в виде кристаллов, пигментов и др.

Вакуоли — это полости, ограниченные мембраной; хорошо выражены в клетках растений и имеются у простейших. Возникают в разных участках расширений эндоплазматической сети. И постепенно отделяются от нее. Вакуоли поддерживают тургорное давление, в них сосредоточен клеточный или вакуолярный сок, молекулы которого определяют его осмотическую концентрацию. Считается, что первоначальные продукты синтеза — растворимые углеводы, белки, пектины и др. — накапливаются в цистернах эндоплазматической сети. Эти скопления и представляют собой зачатки будущих вакуолей.
Цитоскелет. Одной из отличительных особенностей эукариотической клетки является развитие в ее цитоплазме скелетных образований в виде микротрубочек и пучков белковых волокон. Элементы цитоскелета тесно связаны с наружной цитоплазматической мембраной и ядерной оболочкой, образуют сложные переплетения в цитоплазме. Опорные элемеиты цитоплазмы определяют форму клетки, обеспечивают движение внутриклеточных структур и перемещение всей клетки.

Ядро клетки играет основную роль в ее жизнедеятельности, с его удалением клетка прекращает свои функции и гибнет. В большинстве животных клеток одно ядро, но встречаются и многоядерные клетки (печень и мышцы человека, грибы, инфузории, зеленые водоросли). Эритроциты млекопитающих развиваются из клеток-предшественников, содержащих ядро, но зрелые эритроциты утрачивают его и живут недолго.
Ядро окружено двойной мембраной, пронизанной порами, посредством которых оно тесно связано с каналами эндоплазматической сети и цитоплазмой. Внутри ядра находится хроматин — спирализованные участки хромосом. В период деления клетки они превращаются в палочковидные структуры, хорошо различимые в световой микроскоп. Хромосомы — это сложный комплекс белков с ДНК, называемый нуклеопротеидом.

Функции ядра состоят в регуляции всех жизненных отправлений клетки, которую оно осуществляет при помощи ДНК и РНК-материальных носителей наследственной информации. В ходе подготовки к делению клетки ДНК удваивается, в процессе митоза хромосомы расходятся и передаются дочерним клеткам, обеспечивая преемственность наследственной информации у каждого вида организмов.

Кариоплазма — жидкая фаза ядра, в которой в растворенном виде находятся продукты жизнедеятельности ядерных структур.

Ядрышко — обособленная, наиболее плотная часть ядра.

В состав ядрышка входят сложные белки и РНК, свободные или связанные фосфаты калия, магния, кальция, железа, цинка, а также рибосомы. Ядрышко исчезает перед началом деления клетки и вновь формируется в последней фазе деления.

Таким образом, клетка обладает тонкой и весьма сложной организацией. Обширная сеть цитоплазматических мембран и мембранный принцип строения органоидов позволяют разграничить множество одновременно протекающих в клетке химических реакций. Каждое из внутриклеточных образований имеет свою структуру и специфическую функцию, но только при их взаимодействии возможна гармоничная жизнедеятельность клетки.На основе такого взаимодействия вещества из окружающей среды поступают в клетку, а отработанные продукты выводятся из нее во внешнюю среду — так совершается обмен веществ. Совершенство структурной организации клетки могло возникнуть только в результате длительной биологической эволюции, в процессе которой выполняемые ею функции постепенно усложнялись.
Простейшие одноклеточные формы представляют собой и клетку, и организм со всеми его жизненными проявлениями. В многоклеточных организмах клетки образуют однородные группы — ткани. В свою очередь ткани формируют органы, системы, и их функции определяются общей жизнедеятельностью целостного организма.

Помимо организмов с типичной клеточной организацией {эукариотические клетки) существуют относительно простые, доядерные, или прокариотические, клетки — бактерии и синезеленые, у которых отсутствуют оформленное ядро, окруженное ядерной мембраной, и высокоспециализированные внутриклеточные органоиды. Особую форму организации живого представляют вирусы и бактериофаги (фаги). Их строение крайне упрощено: они состоят из ДНК (либо РНК) и белкового футляра. Свои функции обмена веществ и размножения вирусы и фаги осуществляют только внутри клеток другого организма: вирусы — внутри клеток растений и животных, фаги — в бактериальных клетках как паразиты на, генетическом уровне.

К прокариотам относят бактерии и сине-зелёные водоросли (цианеи). Наследственный аппарат прокариот представлен одной кольцевой молекулой ДНК, не образующей связей с белками и содержащей по одной копии каждого гена — гаплоидные организмы. В цитоплазме имеется большое количество мелких рибосом; отсутствуют или слабо выражены внутренние мембраны. Ферменты пластического обмена расположены диффузно. Аппарат Гольджи представлен отдельными пузырьками. Ферментные системы энергетического обмена упорядоченно расположены на внутренней поверхности наружной цитоплазматической мембраны. Снаружи клетка окружена толстой клеточной стенкой. Многие прокариоты способны к спорообразованию в неблагоприятных условиях существования; при этом выделяется небольшой участок цитоплазмы содержащий ДНК, и окружается толстой многослойной капсулой. Процессы метаболизма внутри споры практически прекращаются. Попадая в благоприятные условия, спора преобразуется в активную клеточную форму. Размножение прокариот происходит простым делением надвое.

Средняя величина прокариотических клеток 5 мкм. У них нет никаких внутренних мембран, кроме впячиваний плазматической мембраны. Пласты отсутствуют. Вместо клеточного ядра имеется его эквивалент (нуклеоид), лишенный оболочки и состоящий из одной-единственной молекулы ДНК. Кроме того бактерии могут содержать ДНК в форме крошечных плазмид, сходных с внеядерными ДНК эукариот.
   В прокариотических клетках, способных к фотосинтезу (сине-зеленые водоросли, зеленые и пурпурные бактерии) имеются различно структурированные крупные впячивания мембраны – тилакоиды, по своей функции соответствующие пластидам эукариот. Эти же тилакоиды или – в бесцветных клетках – более мелкие впячивания мембраны (а иногда даже сама плазматическая мембрана) в функциональном отношении заменяют митохондрии. Другие, сложно дифференцированные впячивания мембраны называют мезасомами; их функция не ясна.
   Только некоторые органеллы прокариотической клетки гомологичны соответствующим органеллам эукариот. Для прокариот характерно наличие муреинового мешка – механически прочного элемента клеточной стенки

Источник: krasgmu.net

Ответ от Невролог[гуру]
Все организмы, имеющие клеточное строение, делятся на две группы: предъядерные (прокариоты) и ядерные (эукариоты) .
Клетки прокариот, к которым относятся бактерии, в отличие от эукариот, имеют относительно простое строение. В про-кариотической клетке нет организованного ядра, в ней содержится только одна хромосома, которая не отделена от остальной части клетки мембраной, а лежит непосредственно в цитоплазме. Однако в ней также записана вся наследственная информация бактериальной клетки.
Цитоплазма прокариот по сравнению с цитоплазмой эука-риотических клеток значительно беднее по составу структур. Там находятся многочисленные более мелкие, чем в клетках эукариот, рибосомы. Функциональную роль митохондрий и хло-ропластов в клетках прокариот выполняют специальные, довольно просто организованные мембранные складки.
Клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной, поверх которой располагается клеточная оболочка или слизистая капсула. Несмотря на относительную простоту, прокариоты являются типичными независимыми клетками.
Сравнительная характеристика клеток эукариот. По строению различные эукариотические клетки сходны. Но наряду со сходством между клетками организмов различных царств живой природы имеются заметные отличия. Они касаются как структурных, так и биохимических особенностей.
Для растительной клетки характерно наличие различных пластид, крупной центральной вакуоли, которая иногда отодвигает ядро к периферии, а также расположенной снаружи плазматической мембраны клеточной стенки, состоящей из целлюлозы. В клетках высших растений в клеточном центре отсутствует центриоль, встречающаяся только у водорослей. Резервным питательным углеводом в клетках растений является крахмал.
В клетках представителей царства грибов клеточная стенка обычно состоит из хитина — вещества, из которого построен наружный скелет членистоногих животных. Имеется центральная вакуоль, отсутствуют пластиды. Только у некоторых грибов в клеточном центре встречается центриоль. Запасным углеводом в клетках грибов является гликоген.
В клетках животных отсутствует плотная клеточная стенка, нет пластид. Нет в животной клетке и центральной вакуоли. Центриоль характерна для клеточного центра животных клеток. Резервным углеводом в клетках животных также является гликоген.

Источник: 22oa.ru

1. Вспомните примеры многоядерных клеток.

Ответ. Многоядерная клетка, тип клетки, имеющей много ядер. Ядра образуются в том случае, когда в клетке неоднократно делится только ядро, а клетка в целом и ее оболочка остаются прежними. Из таких клеток состоят, например, волокна поперечно-полосатой мускулатуры; они образуют ткань, известную под названием синцитий (соклетие). Многоядерные клетки имеются также у некоторых водорослей и грибов.

2. Какую форму могут иметь бактерии?

Ответ. По особенностям морфологии выделяют следующие группы бактерий: кокки (более или менее сферические), бациллы (палочки или цилиндры с закругленными концами), спириллы (жесткие спирали) и спирохеты (тонкие и гибкие волосовидные формы). Некоторые авторы склонны объединять две последние группы в одну – спириллы.

Вопросы после §18

1. Какую форму имеет ДНК у бактерий?

Ответ. Единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не окружена мембраной и располагается непосредственно в цитоплазме в виде туго скрученных спиралей

2. Могут ли бактерии размножаться половым путём?

Ответ. Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК – плазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

3. Когда у бактерий образуются споры и какова их функция?

Ответ. В неблагоприятных условиях (холод, жара, засуха и т. д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает. Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из неё снова прорастает активная бактерия. Недавно немецкие исследователи сообщили, что им удалось «оживить» споры бактерий, которые образовались 180 млн лет назад при высыхании древних морей!

4. Что такое мезосомы и какие функции они выполняют?

Ответ. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки – мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке.

► Рассмотрите таблицу 3. Выделите основные отличия прокариотических и эукариотических клеток.

Ответ. Эукариоты представляют собой надцарство живых организмов. В переводе с греческого языка «эукариот» обозначает «владеющий ядром» . Соответственно эти организмы в своем составе имеют ядро, в котором закодирована вся генетическая информация. К ним относятся грибы, растения и животные.

Прокариоты – это живые организмы, в клетках которых ядро отсутствует. Характерными представителями прокариот являются бактерии и цианобактерии.

Эукариоты и прокариоты сильно отличаются по размеру друг от друга. Так средний диаметр эукариотической клетки — до 40 мкм и более, а прокариотической – 0,3-5,0 мкм мм.

Прокариоты имеют кольцевую ДНК, которая располагается в нуклеоиде. Эта клеточная область отделена от остальной цитоплазмы при помощи мембраны. ДНК никак не связана с РНК и белками, отсутствуют хромосомы.

ДНК эукариотических клеток линейная, располагается в ядре, в котором имеются хромосомы.

Прокариоты размножаются в основном простым делением пополам, в то время как эукариоты делятся при помощи митоза, мейоза или сочетанием этих двух способов.

У эукариотических клеток имеются органеллы, характеризующиеся наличием собственного генетического аппарата: митохондрии и пластиды. Они окружены мембраной и имеют способность к размножению посредством деления.

В прокариотических клетках также встречаются органеллы, но в меньшем количестве и не ограниченные мембраной.

Жгутики эукариот имеют достаточно сложное строение. Некоторые прокариоты также имеют жгутики, они разнообразны и имеют простое строение.

Источник: resheba.me

Что такое прокариоты и эукариоты

Известно, что все живые организмы по своей природе делятся на клеточные и неклеточные (вирусы). Причем первые тоже подразделяются на 2 категории: прокариоты (надцарство «Доядерные») и эукариоты (надцарство «Ядерные»).

Прокариоты и эукариоты сходства и различия таблица

К прокариотам относятся:

  • бактерии;
  • водоросли.

К эукариотам:

  • грибы;
  • растения;
  • животные.

Чем же они отличаются? Рассмотрим ниже.

Признаки эукариотической клетки

Считается, что ядерные клеточные организмы появились около 1,5 миллиардов лет назад. Хотя в прошлые времена ученые слабо понимали суть явлений на клеточном уровне, но в своих трудах у них часто стали появляться приблизительные рисунки этой единицы организма.

Прокариоты и эукариоты сходства и различия таблица

Подписи в каждом утверждают об одной отличительной особенности клеток данного типа – наличие ядра, покрытого двойным слоем мембраны.

Именно в ядре хранится основной генетический материал этих организмов. Кроме того в нем есть несколько ядрышек с большей частью объема всех типов РНК.

Также в такой клетке есть другие образования – органеллы, которые находятся в ее цитоплазме. К ним относят:

  • митохондрии – напоминают своей структурой белки, также содержат ДНК;
  • лизосомы – являются пузырьками, помогающими общему метаболизму этой клетки;
  • хлоропласты.

Эти соединения также разделены мембранами, основная роль которых является связь различных элементов единицы организма с внешней средой. Чтобы все элементы состава хорошо функционировали, для полного «скелета» в этой клетке есть нити и микротрубочки.

Процесс дыхания более распространен среди живых организмов, образованных этими клетками.

Строение клеток прокариотов

В отличие от предыдущего надцарства, у простейших отсутствует ядро в клетке.

Прокариоты и эукариоты сходства и различия таблица

В ней вместо ядра находится одна хромосома в цитоплазме, передающая генетический материал.

Прокариоты и эукариоты сходства и различия таблица

Размножаются просто – делением клетки. В клеточной жидкости очень мало различных видов структур. Они также покрыты мембраной. В их состав входят рибосомы.

Рассмотрим основных представителей этого надцарства.

Бактерии и циано-бактерии

Под первыми понимают одноклеточные микроорганизмы. С помощью жгутиков они очень подвижны.

Прокариоты и эукариоты сходства и различия таблица

Обитают во всех сферах жизни. От внешней среды они защищены муреином и особой оболочкой.

Второй вид представлен простейшими клетками с маленькими рибосомами и одной наследственной хромосомой.

Водоросли

Обитают в основном в водной среде и на почве. У них автотрофное питание. Их плавучесть обуславливают вакуоли. Кроме того, для них, как и для представителей царства растений, характерен фотосинтез.

Прокариоты и эукариоты сходства и различия таблица

Примеры представлены зелеными водорослями. Размножаются также простым делением. При очень неблагоприятных условиях для движения могут использовать споры.

Сходства и различия прокариот и эукариот

Сравнительная таблица «Характеристика надцарств» показывает признаки, по которым нетрудно выявить основные отличия.

Признаки Надцарство Прокариоты Надцарство Эукариоты
Размер D = 0,5 – 5 мкм D = 40 мкм
Наследственность ДНК в цитоплазме ДНК в ядре
Структура Мало образований, мембран практически нет. Есть внешние и внутренние мембраны, различные структуры, позволяющие проводить реакции пищеварения, дыхания и размножения.
Оболочка В состав входят полисахариды, аминокислоты и муреин. Основой оболочки растений является целлюлоза, а у грибов – хитин.
Фотосинтез Нет хлоропластов, но он протекает в мембранах. Протекает в специальных образованиях – пластидах.
Обмен азота У некоторых он есть. Он не происходит.

Заключение

Итак, без представителей этих двух надцарств невозможно представить жизнь на земле. Какова же их роль в природе? Все просто: простейшие являются организмами, без которых невозможны практически все биохимические процессы в биосистеме. Кроме того, многие участвуют в процессе фотосинтеза, служат источником питания и дыхания растений.

Эукариоты не только являются для других питанием, но и являются основной регулирующей силой популяции разных видов, т. е одним из механизмов естественного отбора.

Источник: 1001student.ru

Гипермаркет знаний>>Биология>>Биология 10 класс>> Сходства и различия в строении прокариотических и эукариотических клеток

Сходства и различия в строении прокариотических и эукариотических клеток


1.    Вспомните примеры многоядерных клеток.
2.    Какую форму могут иметь бактерии?

Прокариоты.

Древнейшие на Земле организмы не имеют клеточного ядра и называются прокариотами, т. е, доядерными. Они объединяются в отдельное царство — Дробянки, к которому относятся бактерии и сине-зеленые водоросли.

Каковы же отличительные признаки прокариотических клеток по сравнению с эукариотическими?

Строение прокариотических клеток

Клетки прокариот, как правило, значительно меньше, чем у эукариот — их размеры редко превышают 10 мкм, а бывают клетки размером даже 0,3 X 0,2 мкм. Правда, есть и исключения — описана огромная бактериальная клетка размером 100 х 10 мкм.

Строение и обмен веществ прокариот. Прокариоты, как следует из их названия, не имеют оформленного ядра.

Единственная кольцевая молекула ДНК, находящаяся в клетках прокариот и условно называемая бактериальной хромосомой, находится в центре клетки, однако эта молекула ДНК не имеет оболочки и располагается непосредственно в цитоплазме (рис. 36).

Снаружи клетки прокариот, так же как и эукариотические клетки, покрыты плазматической мембраной. Строение мембран у двух этих групп организмов одинаковое. Клеточная мембрана прокариот образует многочисленные впячивания внутрь клетки — мезосомы. На них располагаются ферменты, обеспечивающие реакции обмена веществ в прокариотической клетке. Поверх плазматической мембраны клетки прокариот покрыты оболочкой, состоящей из углеводов, напоминающей клеточную стенку растительных клеток. Однако эта стенка образована не клетчаткой, как у растений, а другими полисахаридами — пектином и муреином.

Образование спор

В цитоплазме прокариотических клеток нет мембранных органоидов: митохондрий, пластидов, ЭПС, комплекса Гольджи, лизосом. Их функции выполняют складки и впячивания наружной мембраны — мезосомы. В цитоплазме прокариот беспорядочно располагаются мелкие рибосомы. Цитоскелета в прокариотических клетках тоже нет, но иногда встречаются жгутики.

Большинство эукариот являются аэробами, т. е. используют в энергетическом обмене кислород воздуха.

Напротив, многие прокариоты являются анаэробами, и кислород для них вреден. Некоторые бактерии, называемые азотфиксирующими, способны усваивать азот воздуха, чего эукариоты делать не могут.

Те виды прокариот, которые получают энергию благодаря фотосинтезу, содержат особую разновидность хлорофилла, который может располагаться на мезосомах.

Образование спор.

В неблагоприятных условиях (холод, жара, засуха и т, д.) многие бактерии способны образовывать споры. При спорообразовании вокруг бактериальной хромосомы образуется особая плотная оболочка, а остальное содержимое клетки отмирает (рис. 37). Спора может десятилетиями находиться в неактивном состоянии, а в благоприятных условиях из нее снова прорастает активная бактерия. Недавно немецкие исследователи сообщили, что им удалось «оживить» споры бактерий, которые образовались 180 млн лет назад при высыхании древних морей!

Размножение прокариот.

Чаще всего прокариоты размножаются бесполым путем: ДНК удваивается, и далее клетка делится в поперечной плоскости пополам. В благоприятных условиях бактерии способны делиться каждые 20 минут; при этом потомство от одной клетки через трое суток теоретически имело бы массу 7500 тонн! К счастью, таких условий в принципе быть не может.

Половое размножение у прокариот наблюдается гораздо реже, чем бесполое, однако оно очень важно, так как при обмене генетической информацией бактерии передают друг другу устойчивость к неблагоприятным воздействиям (например, к лекарствам). При половом процессе бактерии могут обмениваться как участками бактериальной хромосомы, так и особыми маленькими кольцевыми двуцепочечными молекулами ДНК — лазмидами. Обмен может происходить через цитоплазматический мостик между двумя бактериями или с помощью вирусов, усваивающих участки ДНК одной бактерии и переносящих их в другие бактериальные клетки, которые они заражают.

Основные различия между прокариотической и эукариотической клетками приведены в таблице 3.

Сравнение прокариотических и эукариотических клеток

Мезосома. Аэробы. Анаэробы. Споры. Плазмиды.

1.    Какую форму имеет ДНК у бактерий?
2.    Могут ли бактерии размножаться половым путем?
3.    Когда у бактерий образуются споры и какова их функция?
4.    Что такое мезосомы и какие функции они выполняют?

Рассмотрите таблицу 3. Выделите основные отличия прокариотических и эукариотических клеток.

По-видимому, прокариоты были первыми живыми существами на Земле, и возникли они миллиарды лет тому назад. Однако, несмотря на свои кажущиеся простоту и примитивность, прокариоты прекрасно приспосабливаются к изменениям в окружающей среде, заселив все оболочки Земли. Жизнеспособные споры бактерий были обнаружены во льдах Антарктиды на глубине 30 м, в атмосфере на высоте 41 км. Бактерии обитают в воде, охлаждающей ядерные реакторы, а один из «рекордсменов» выдерживает дозу облучения 6,5 млн рентген, что в 10 ООО раз больше дозы, cmертельной для человека.

Hекоторые бактерии могут активно двигаться, вращаясь вокруг своей оси с огромной скоростью. При этом они преодолевают за секунду расстояние в 100 мкм, тогда kak длина их не превышает 2 мкм. Если бы человек мог так двигаться, он развивал бы скорость до 350 км/ч!

Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 10 класс
Отправлено читателями с интернет-сайта

Онлайн библиотека с учениками и книгами, плани-конспекти уроков с Биологии 10 класса, книги и учебники согласно календарного плана планирование Биологии 10 класса

Содержание урока 1236084776 kr.jpg конспект уроку и опорный каркас  1236084776 kr.jpg презентация урока  1236084776 kr.jpg акселеративные методы и интерактивные технологии 1236084776 kr.jpg закрытые упражнения (только для использования учителями) 1236084776 kr.jpg оценивание   Практика 1236084776 kr.jpg задачи и упражнения,самопроверка  1236084776 kr.jpg практикумы, лабораторные, кейсы 1236084776 kr.jpg уровень сложности задач: обычный, высокий, олимпиадный 1236084776 kr.jpg домашнее задание   Иллюстрации 1236084776 kr.jpg иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа 1236084776 kr.jpg рефераты 1236084776 kr.jpg фишки для любознательных 1236084776 kr.jpg шпаргалки 1236084776 kr.jpg юмор, притчи, приколы, присказки, кроссворды, цитаты  Дополнения 1236084776 kr.jpg внешнее независимое тестирование (ВНТ) 1236084776 kr.jpg учебники основные и дополнительные  1236084776 kr.jpg тематические праздники, слоганы  1236084776 kr.jpg статьи  1236084776 kr.jpg национальные особенности 1236084776 kr.jpg словарь терминов  1236084776 kr.jpg прочие   Только для учителей 1236084776 kr.jpg идеальные уроки  1236084776 kr.jpg календарный план на год  1236084776 kr.jpg методические рекомендации  1236084776 kr.jpg программы 1236084776 kr.jpg обсуждения  

Если у вас есть исправления или предложения к данному уроку, напишите нам.

Если вы хотите увидеть другие корректировки и пожелания к урокам, смотрите здесь — Образовательный форум.

Источник: edufuture.biz