РИБОСОМА (от «рибонуклеиновая кислота» и греч. «сома» – тело), органоид, синтезирующий белки. Присутствует в клетках всех организмов, как эукариот, так и прокариот. Представляет собой сферическую частицу диаметром ок. 20 нм, состоящую из двух субчастиц, которые могут разъединяться и вновь объединяться. Структурный каркас рибосомы образован молекулами рибосомальной РНК (р-РНК) и связанными с ними белками. В клетках эукариот рибосомы формируются в ядрышке, где на ДНК синтезируется р-РНК, к которой затем присоединяются белки. Субчастицы рибосомы выходят из ядра в цитоплазму, и здесь завершается формирование полноценных рибосом. В цитоплазме рибосомы свободно находятся в цитоплазматическом матриксе (гиалоплазме) или прикрепляются к внешним мембранам ядра и эндоплазматической сети. Свободные рибосомы синтезируют белки для внутренних нужд клетки. Рибосомы на мембранах образуют комплексы – полирибосомы, которые синтезируют белки, поступающие через эндоплазматическую сеть в аппарат Гольджи и затем секретируемые клеткой. Количество рибосом в клетке зависит от интенсивности биосинтеза белка – их больше в клетках активно растущих тканей (меристем растений, зародышей и т. п.). В хлоропластах и митохондриях есть свои собственные мелкие рибосомы, они обеспечивают этим органоидам автономный (независимый от ядра) биосинтез белков (см. Трансляция).

Схема строения рибосомы
Схема строения рибосомы, сидящей на мембране эндоплазматнческой сети:
1 — малая субъединица;
2 — иРНК;
3 — аминоацил — тРНК;
4 — аминокислота;
5 — большая субъединица;
6 — мембрана эндоплазматической сети;
7 — синтезируемая полипептидная цепь.

Каждая рибосома состоит из двух субчастиц-большой и малой. Рибосомы состоят из примерно равных (по массе) количеств РНК и белка (т.е. представляют собой рибонуклеопротеиновые частицы). Входящая в их состав РНК, называемая рибосомной РНК (рРНК), синтезируется в ядрышке. Вместе те и другие образуют сложную трехмерную структуру, обладающую способностью к самосборке.
Во время синтеза белка на рибосомах аминокислоты, из которых строится полипептидная цепь, последовательно одна за другой присоединяются к растущей цепи. Рибосома служит местом связывания для молекул, участвующих в синтезе, т.
таким местом, где эти молекулы могут занять по отношению друг к другу совершенно определенное положение. В синтезе участвуют: матричная РНК (мРНК), несущая генетические инструкции от ядра клетки, транспортная РНК (тРНК), доставляющая к рибосоме требуемые аминокислоты, растущая полипептидная цепь, а также ряд факторов, ответственные за инициацию, элонгацию и терминацию цепи.
В эукариотических клетках отчетливо видны две популяции рибосом — свободные рибосомы и рибосомы, присоединенные к эндоплазматическому ретикулуму. Строение тех и других идентично, но часть рибосом связана с эндоплазматическим ретикулоумом через белки, которые они синтезируют. Такие белки обычно секретируются. Примером белка, синтезируемого свободными рибосомами, может служить гемоглобин, образующийся в молодых эритроцитах.
В процессе синтеза белка рибосома перемещается вдоль нитевидной молекулы мРНК. Процесс идет более эффективно, когда вдоль мРНК перемещается не одна рибосома, а одновременно много рибосом, напоминающих в этом случае бусины на нитке. Такие цепи рибосом называются полирибосомами или полисомами. На эндоплазматическом ретикулуме полисомы обнаруживаются в виде характерных завитков.

Рибосомный синтез белка-многоэтапный процесс. Первая стадия (инициация) начинается с присоединения матричной РНК (мРНК) к малой рибосомной субчастице, не связанной с большой субчастицей. Характерно, что для начала процесса необходима именно диссоциированная рибосома.
образовавшемуся т. наз. инициаторному комплексу присоединяется большая рибосомная субчастица. В стадии инициации участвуют спец. инициирующий кодон (см. Генетический код), инициаторная транспортная РНК (тРНК) и специфич. белки (т. наз. факторы инициации). Пройдя стадию инициации, рибосома переходит к последоват. считыванию кодонов мРНК по направлению от 5′- к 3′-концу, что сопровождается синтезом полипептидной цепи белка, кодируемого этой мРНК (подробнее о механизме синтеза полипептидов см. в ст. Трансляция). В этом процессе рибосома функционирует как циклически работающая мол. машина. Рабочий цикл рибосомы при элонгации состоит из трех тактов: 1) кодонзависимого связывания аминоацил-тРНК (поставляет аминокислоты в рибосому), 2) транспептидации-переноса С-конца растущего пептида на аминоацил-тРНК, т.е. удлинения строящейся белковой цепи на одно звено, 3) транслокации-перемещения матрицы (мРНК) и пептидил-тРНК относительно рибосомы и переход рибосомы в исходное состояние, когда она может воспринять след. аминоацил-тРНК. Когда рибосома достигнет специального терминирующего кодона мРНК, синтез полипептида прекращается. При участии специфич. белков (т. наз. факторов терминации) синтезир. полипептид освобождается из рибосомы. После терминации рибосома может повторить весь цикл с др. цепью мРНК или др. кодирующей последовательностью той же цепи.

Схема строения рибосомы


Схема синтеза полипептидной цепи полирибосомой: I-начал о синтеза, II-окончание синтеза; а-мРНК, б-рибосома, в-большая субъединица рибосомы, г-малая субъединица рибосомы.

В клетках с интенсивной секрецией белка и развитым эндоплазматич. ретикулумом значит. часть цитоплазматической рибосомы прикреплена к его мембране на пов-сти, обращенной к цитоплазме. Эти рибосомы синтезируют полипептиды, к-рые непосредственно транспортируются через мембрану для дальнейшей секреции. Синтез полипептидов для внутриклеточных нужд происходит в осн. на свободных (не связанных с мембраной) рибосомах цитоплазмы. При этом транслирующие рибосомы не равномерно диспергированы в цитоплазме, а собраны в группы. Такие агрегаты рибосом представляют собой структуры, где мРНК ассоциирована со многими рибосомами, находящимися в процессе трансляции; эти структуры получили назв. полирибосом или полисом.

При интенсивном синтезе белка расстояние между рибосомами вдоль цепи мРНК в полирибосоме м. б. предельно коротким, т.е. рибосомы находятся почти вплотную друг к другу. Рибосомы, входящие в полирибосомы, работают независимо и каждая из них синтезирует полную полипептидную цепь.
Схема строения рибосомы
Рибосома – это тот самый рабочий, который претворяет генеральный план в жизнь, изготовляя по лекалам ДНК соответствующие белки.

Источник: biology623.blogspot.com

Химический состав


Рибосома напоминает эллипс или сферу, диаметром от пятнадцати до двадцати нанометров у прокариот и от двадцати пяти до тридцати у эукариот. Органелла состоит из маленькой и большой субъединиц.

В клетках с ядром органеллы находятся на мембране эндоплазматической сети, но могут располагаться и в отдельной форме в цитоплазме. Часто с молекулой м-РНК связано больше одной органеллы, подобная структура получила название полисомы (полирибосомы). Нужно понять, где образуются рибосомы у эукариотов. Это осуществляется в специальной структуре внутри ядра — ядрышке.

Рибосомы являются нуклеопротеидом, в котором пропорция белок/рибонуклеиновая кислота равна 50:50 у высших организмов и 65:40 у бактерий. РНК органеллы занимает почти 70% от общей РНК клетки. Органеллы эукариот содержат 4 молекулы р-РHК, из них 18 S (единица измерения Сведберга), 5 S и 28 S р-РНК синтезируются в ядрышке. Практически полностью р-РHК имеет вид магниевой соли. Это обязательное условие для стабильности структуры. Если убрать ионы магния, то органелла расщепляется на субъединицы.

Реакция оседания в центрифуге (постоянная седиментации) у органелл цитоплазмы клеток с выраженным ядром равна 80 S (маленькая и крупная частицы 40 S и 60 S, соответственно), у клеточных рибосом бактерий — 70 (для частиц 30 S и 50 S).


Строение рибосомы

В состав рибосомы входят особые РНК (рибосомные). А также своеобразные белки и малочисленные низкомолекулярные составляющие.

РНК органеллы

За структуру и работоспособность рибосомы в первую очередь отвечает её РHК. Рибонуклеиновая кислота органеллы или р-РНК в составе органеллы весьма компактна, обладает сложной третичной конструкцией и часто усыпана молекулами разных белков органеллы. Освобождённые от белковых соединений высокомолекулярные р-РHК в особых условиях самостоятельно скручиваются в мелкие частицы, по своей морфологии очень похожие на субчастицы рибосомы, основой которых они и являются.

Исходя из этого, общая схема структурной организации органеллы определяется свойствами р-РHК. Третичное устройство р-РНК служит каркасом для позиционирования рибосомных белков, которые в определённом понимании выполняют лишь второстепенную задачу в образовании и сохранении структуры рибосомы и её жизнедеятельности.

Есть предположение, что развитие органеллы началось ещё в добелковый период, и предшественниками рибосом были своеобразные древнейшие рибозимы. Предполагают, что в процессе эволюции (появление более сложной ступени организации живых организмов) рибозимы, способные к катализации появления амидных соединений тоже поддавались прогрессу (дополнялись различными аппаратами, а со временем и образованными ими полипептидами), вплоть до появления нынешнего модуля для синтеза белка, принимая во внимание рибосому.


Нынешняя органелла по своему содержанию до сих пор остаётся рибозимом, так как главная структурно-функциональная деятельность принадлежит её собственной кислоте, а не белкам, как считалось раньше.

В состав пептидилтрансферазного центра входит только кислота. То обстоятельство, что в то время, как почти во всех процессах жизненного функционала главную задачу выполняют белки, в образовании их самих основная роль принадлежит РНК, обеспечивает весомый аргумент в защиту гипотезы о пространстве РНК как о древнейшем добелковом периоде развития живой ткани.

РНК малой субъединицы

Рибосомная рибонуклеиновая кислота маленькой частицы органоида имеет маркировку 16 S р-РHК в случае органелл бактерий и 16 S -подобная р-РHК в других ситуациях. Чаще всего р-РНК маленькой субъединицы образована из одной ковалентно непрерывной полирибонуклеотидной цепочки.


Число звеньев нуклеотидов, как и постоянной величины седиментации, для экземпляров 16 S-подобных р-РHК из разных источников могут серьёзно отличаться. В рибосомах бактерий и пластидов высших представителей растительного мира эти частицы обладают размером порядка 1500 нуклеотидных остатков.

Для 16 S-подобных р-РНК цитоплазменных рибосом клеток с выраженным ядром, а также для митохондриальных рибосом высших растений и грибов типична длина до 2 тыс. нуклеотидных остатков (18 S р-РHК). Органеллы митохондрий млекопитающих животных содержат довольно короткие 16 S-подобные р-РНК (9 — 12 S), состоящие из 950 нуклеотидных остатков.

Рибонуклеиновая кислота большой частицы

Высокомолекулярная рибонуклеиновая кислота, представляющая основу конструкции большой субъединицы рибосомы, имеет обозначение 23 S р-РHК (для бактерий) и 23 S-подобная р-РНК (для иных случаев). Бактериальная 23 S р-РНК, точно также как и 16 S р-РHК имеет вид полирибонуклеотидной ковалентно непрерывной цепочки.

Вместе с этим 23 S-подобная р-РНК органеллы цитоплазмы эукариотических клеток включает в себя две прочно сгруппированных полирибонуклеотидных цепочек — 28 S и 5,8 S р-РHК. Таким же образом 23 S-подобная р-РHК рибосом пластидов растительных видов состоит из двух крепко соединённых полирибонуклеотидных цепей и включает 4,5 S р-РНК.


Белки органоида

Кроме р-РНК, в состав органеллы входят порядка пятидесяти (прокариоты) или восьмидесяти (эукариоты) разных белков. Почти каждый из них имеет один лишь экземпляр на отдельную рибосому. Доминируют умеренно-осно̀вные белки. Бо̀льшая часть белков органоида эволюционно консервативна, а белки от разных ресурсов могут соотноситься как подобные. Это учитывается в нынешнем универсальном перечне рибосомных белков. Сама органелла состоит почти на 50% из белка.

Помимо биополимеров (белки, рибонуклеиновая кислота) составными частями рибосом являются отдельные низкомолекулярные составляющие. Это частицы воды, ионы металлов (в основном Mg2+), поли- и диамины, которые могут составлять до 2,5% сухой массы рибосомы.

Механизм трансляции

Трансляция — это процесс образования белка из аминокислот на матрице информационной (матричной) кислоты (и-РНК, м-РHК), приводимый в действие рибосомой.

Основной задачей функционирования живой клетки считается биосинтез белка. Для воспроизведения этой операции абсолютно во всех клеточных организмах находятся рибосомы. Они являются рибонуклеопротеидными комплексами, в которых участвуют малая и большая субъединицы. Роль рибосомы состоит:

  • в распознавании трехнуклеотидных кодонов м-РНК;
  • в соотношении соответствующих им антикодонов т-РНК, переносящих аминокислоты;
  • во включении этого груза в увеличивающуюся белковую цепь.

Продвигаясь вдоль молекулы м-РНК, органелла образует белок согласно информации, имеющейся в молекуле м-РНК. Для различия аминокислот в клетке существуют особые «адаптеры», молекулы транспортной рибонуклеиновой кислоты (т-РHК). Они напоминают форму листа клевера, имеющего область (антикодон), соответствующую кодону м-РНК, и ещё один участок для присоединения аминокислоты, комплиментарной этому кодону.

Прикрепление аминокислот к т-РНК происходит в энергозависимой реакции с помощью ферментов аминоацил-т-РHК-синтетаз, а образованная молекула носит название аминоацил-т-РНК. Следовательно, вся специфика трансляции может быть определена взаимосвязью кодона м-РНК и антикодона т-РНК, а также характерной особенностью аминоацил-т-РНК-синтетаз, прикрепляющим аминокислоты точно к соответствующим т-РНК.

Механизмы трансляции эукариотических и прокариотических клеток имеют серьезное отличие, из-за этого множество соединений, угнетающих трансляцию прокариот, в меньшей мере оказывает влияние на трансляцию высших особей. Такая особенность позволяет применять их в медицине в виде противобактериальных средств, не приносящих вред организму млекопитающих. Если кратко, то вся процедура трансляции подразделяется на три основных этапа:

  • инициация — распознавание рибосомой стартового кодона и начало синтеза;
  • элонгация — сама операция образования белка;
  • терминация — опознавание терминирующего кодона и отделение продукта.

История исследований

Органеллы изначально были определены как уплотнённые частички. Это сделал уроженец Румынии, гражданин Америки и клеточный биолог Джордж Паладе в 50-х гг. XIX в. В 1974 г. ему и Кристиану Де Дюву вручили Нобелевскую премию по медицине и физиологии за прорыв в знаниях о структурной и функциональной деятельности клетки.

В 1958 г. проходил симпозиум, посвящённый органеллам и их участию в белковом синтезе. В рамках этого мероприятия Ричард Робертс предложил сменить название «рибонуклеопротеидная частица микросомальной фракции» на менее ёмкое «рибосома». В 60-х гг. началось мутационное и биохимическое изучение органеллы, которое впоследствии помогло точно расписать большинство структурных и функциональных отличительных черт рибосомы.

В начале 2000-х гг. были созданы модели с атомным разрешением (до 2,4 А) конструкций отдельных субъединиц, а также полной рибосомы прокариот, связанной с разными субстратами, позволившими осознать устройство декодинга (узнавание антикода т-РНК, соответствующего кодону м-РНК) и подробности взаимосвязи рибосомы, т-РНК, м-РНК, причины трансляции и разных антибиотиков.

Это крупное достижение в молекулярной биологии было заслуженно отмечено Нобелевской премией по химии в 2009 г. «За исследования структуры и функций рибосомы». Лауреатами стали:

  • американец Томас Стейц.
  • британец уроженец Индии Венкатраман Рамакришнан.
  • гражданка Израиля Ада Йонат.

В 2010 г. в лаборантской Марата Юсупова была открыта трёхмерная конструкция рибосомы эукариот.

В 2009 г. биохимики из Канады Сергей Штейнберг и Константин Боков из университета Монреаля, изучив третичную структуру кислоты рибосомы бактерии Escherichia coli, выдвинули обоснованную гипотезу о том, что органелла могла зародиться в результате постепенного эволюционного развития из простейшей малой молекулы РНК — проторибосомы, способной к катализации реакции соединения двух аминокислот.

Все оставшиеся конструктивные блоки рибосомы постепенно добавлялись к проторибосоме, не изменяя её строение и планомерно увеличивая продуктивность её деятельности.

Еще в школе детей начинают знакомить с рибосомой. Ее функционал перестал оставаться тайной для человека. Может показаться, что все загадки относительно этого органоида разгаданы. Однако за последние десятилетия в области исследования рибосом происходит значительный переворот.

Источник: nauka.club

Основные группы органелл. Органеллы — постоянные внутриклеточные структуры, имеющие определенное строение и выполняющие соответствующие функции. Органеллы делятся на две группы: мембранные и немембранные. Мембранные органеллы представлены двумя вариантами: двумембранным и одномем-бранным. Двумембранными компонентами являются пластиды, митохондрии и клеточное ядро. К одномембранным относятся органеллы вакуолярной системы — эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоли растительных и грибных клеток, пульсирующие вакуоли и др. К немембранным органеллам принадлежат рибосомы и клеточный центр, постоянно присутствующие в клетке. Выраженность элементов цитоскелета (постоянного компонента клетки) может значительно меняться в течение клеточного цикла — от полного исчезновения одного компонента (например, цитоплазматических трубочек во время деления клетки) до появления новых структур (веретена деления).

Общим свойством мембранных органелл является то, что все они построены из липопротеидных пленок (биологических мембран), замыкающихся сами на себя так, что образуются замкнутые полости, или отсеки. Внутреннее содержимое этих отсеков всегда отличается от гиалоплазмы.

Двумембранные органеллы. К двумебранным органеллам относятся пластиды и митохондрии. Пластиды —характерные органеллы клеток автотрофных эукариотических организмов. Их окраска, форма и размеры весьма разнообразны. Различают хло-ропласты, хромопласты и лейкопласты.

Хлоропласты имеют зеленый цвет, обусловленный присутствием основного пигмента — хлорофилла. Хлоропласты содержат также вспомогательные пигменты — каротиноиды (оранжевого цвета). По форме хлоропласты — это овальные линзовидные тельца размером (5—10) х (2—4) мкм. В одной клетке листа может находиться 15—20 и более хлоропластов, а у некоторых водорослей — лишь 1 -2 гигантских хлоропласта (хроматофора) различной формы.

Хлоропласты ограничены двумя мембранами — наружной и внутренней (рис. 1.8).

Схема строения рибосомы

Рис. 1.8. Схема строения хлоропласта: Iнаружная мембрана; 2рибосомы; 3пластоглобулы; 4 — граны; 5 — тилакоиды; 6матрице; 7ДНК; 8 — внутренняя мембрана; 9межмембранное пространство.

Наружная мембрана отграничивает жидкую внутреннюю гомогенную среду хлоропласта — строму (матрикс). В строме содержатся белки, липиды, ДНК (кольцевая молекула), РНК, рибосомы и запасные вещества (липиды, крахмальные и белковые зерна) а также ферменты, участвующие в фиксации углекислого газа.

Внутренняя мембрана хлоропласта образует впячивания внутрь стромы —тилакоиды, или ламеллы, которые имеют форму уплощенных мешочков (цистерн). Несколько таких тилакои-дов, лежащих друг над другом, образуют грану, и в этом случае они называются тилакоидами граны. Именно в мембранах тила-коидов локализованы светочувствительные пигменты, а также переносчики электронов и протонов, которые участвуют в поглощении и преобразовании энергии света.

Хлоропласты в клетке осуществляют процесс фотосинтеза.

Лейкопласты — мелкие бесцветные пластиды различной формы. Они бывают шаровидными, эллипсоидными, гантелевид-ными, чашевидными и т. д. По сравнению с хлоропластами у них слабо развита внутренняя мембранная система.

Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков.

Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ром-

бической и др.) и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу. Внутренняя мембранная структура их слабо выражена.

Хромопласты присутствуют в клетках лепестков многих растений (лютиков, калужниц, нарциссов, одуванчиков и др.), зрелых плодов (томаты, рябина, ландыш, шиповник) и корнеплодов (морковь, свекла), а также листьев в осеннюю пору. Яркий цвет этих органов обусловлен различными пигментами, относящимися к группе каргиноидов, которые сосредоточены в хромопластах.

Все типы пластид генетически родственны друг другу, и одни их виды могут превращаться в другие:

Схема строения рибосомы

Таким образом, весь процесс взаимопревращений пластид можно представить в виде ряда изменений, идущих в одном направлении — от пропластид до хромопластов.

Митохондрии—неотъемлемые компоненты всех эукариоти-ческих клеток. Они представляют собой гранулярные или нитепо-добные структуры толщиной 0,5 мкм и длиной до 7—10 мкм.

Митохондрии ограничены двумя мембранами — наружной и внутренней (рис. 1.9). Между внешней и внутренней мембранами имеется так называемое перимитохондриалъное пространство, которое является местом скопления ионов водорода Н+ Наружная митохондриальная мембрана отделяет ее от гиало-плазмы. Внутренняя мембрана образует множество впячиваний внутрь митохондрий — так называемых крист. На мембране крист или внутри нее располагаются ферменты, в том числе переносчики электронов и ионов водорода Н+, которые участвуют в кислородном дыхании. Наружная мембрана отличается высокой проницаемостью, и многие соединения легко проходят через нее. Внутренняя мембрана менее проницаема. Ограниченное ею внутреннее содержимое митохондрии {матрикс) по составу близко к цитоплазме. Матрикс содержит различные белки, в том числе ферменты, ДНК (кольцевая молекула), все типы РНК, аминокислоты, рибосомы, ряд витаминов. ДНК обеспечивает некоторую генетическую автономность митохондрий, хотя в целом их работа координируется ДНК ядра.

Схема строения рибосомы

Рис. 1.9. Схема строения митохондрии: а — продольный разрез; 6схема трехмерного строения; 1внешняя мембрана; 2матрикс; 3межмембранное пространство; 4гранула; 5ДНК; 6внутренняя мембрана; 7рибосомы.

В митохондриях осуществляется кислородный этап клеточного дыхания.

Одномембранные органеллы. В клетке синтезируется огромное количество различных веществ. Часть из них потребляется на собственные нужды (синтез АТФ, построение органелл, накопление питательных веществ), часть выводится из клетки и используется на построение оболочки (клетки растений и грибов), глико-каликса (животные клетки). Клеточными секретами являются также ферменты, гормоны, коллаген, кератин и т. д. Накопление этих веществ и перемещение их из одной части клетки в другую либо выведение за ее пределы происходит в системе замкнутых цитоплазматических мембран — эндоплазматической сети, или эндоплазматическом ретикулуме, и комплексе Гольджи, составляющих транспортную систему клеток.

Эндоплазматический ретикулум был открыт с помощью электронного микроскопа в 1945 г. Он представляет собой систему разветвленных каналов, цистерн (вакуолей), пузырьков, создающих подобие рыхлой сети в цитоплазме (рис. 1.10). Стенки каналов и полостей образованы элементарными мембранами.

В клетке существует два типа эндоплазматического ретикулу-ма: гранулярный (шероховатый) и агранулярный (гладкий). Гранулярный эндоплазматический ретикулум густо усеян рибосомами, на которых осуществляется биосинтез белка. Синтезируемые белки проходят через мембрану в каналы и полости эндоплазматического ретикулума, изолируются от цитоплазмы, накапливаются там, дозревают и перемещаются в другие части клетки либо в комплекс Гольджи в специальных мембранных пузырьках, которые отшнуровываются от цистерн эндоплазмати-ческого ретикулума.

Схема строения рибосомы

Рис. 1.10. Схема строения шероховатого (1) и гладкого (2) эндоплазматического ретикулума.

Функции эндоплазматического ретикулума следующие:

  1. В мембранах гранулярного эндоплазматического ретикулума накапливаются и изолируются белки, которые после их синтеза могли оказаться вредными для клетки. Например, синтез гидролитических ферментов и их свободный выход в цитоплазму привел бы к самоперевариванию клетки и ее гибели. Однако этого не происходит, потому что подобные белки надежно изолированы в полостях эндоплазматического ретикулума.
  2. На рибосомах гранулярного эндоплазматического ретикулума синтезируются также интегральные и периферические белки мембран клетки и некоторая часть белков цитоплазмы.
  3. Цистерны шероховатого эндоплазматического ретикулума связаны с ядерной оболочкой, причем некоторые из них являются прямым продолжением последней. Считается, что после деления клетки оболочки новых ядер образуются из цистерн эндоплазматического ретикулума.
  4. На мембранах гладкого эндоплазматического ретикулума протекают процессы синтеза липидов и некоторых углеводов (например, гликогена).

Комплекс (аппарат) Голъджи открыт в 1898 г. итальянским ученым К. Гольджи. Он представляет собой систему плоских дисковидных замкнутых цистерн, которые располагаются одна над другой в виде стопки и образуют диктиосому. От цистерн отходят во все стороны мембранные трубочки и пузырьки (рис. 1.11). Число диктиосом в клетках варьирует от одной до нескольких десятков в зависимости от типа клеток и фазы их развития.

Схема строения рибосомы

Рис 1.11. Схема строения аппарата Голъджи: 1пузырьки; 2цистерны.

К комплексу Гольджи доставляются вещества, синтезируемые в эндоплазматическом ретикулуме. От цистерн эндоплазматического ретикулума отшнуровываются пузырьки, которые соединяются с цистернами комплекса Гольджи, где эти вещества модифицируются и дозревают.

Пузырьки комплекса Гольджи участвуют в формировании цитоплазматической мембраны и стенок клеток растений после деления, а также в образовании вакуолей и первичных лизосом.

Зрелые цистерны диктиосомы отшнуровывают пузырьки или вакуоли Гольджи, заполненные секретом. Содержимое таких пузырьков либо используется самой клеткой, либо выводится за ее пределы. В последнем случае пузырьки Гольджи подходят к плазматической мембране, соединяются с ней и изливают свое содержимое наружу, а их мембрана включается в плазматическую мембрану и таким образом происходит ее обновление.

Цистерны комплекса Гольджи активно извлекают моносахариды из цитоплазмы и синтезируют из них более сложные олиго- и полисахариды. У растений в результате этого образуются пектиновые вещества, гемицеллюлоза и целлюлоза, используемые для построения клеточной стенки, слизь корневого чехлика. У животных подобным образом синтезируются гликопротеины и гликолипиды гликокаликса, вырабатываются секрет поджелудочной железы, амилаза слюны, пептидные гормоны гипофиза, коллаген.

Комплекс Гольджи участвует в образовании лизосом, белков молока в молочных железах, желчи в печени, веществ хрусталика, зубной эмали и г. п.

Комплекс Гольджи и эндоплазматический ретикулум тесно связаны между собой; их совместная деятельность обеспечивает синтез и преобразование веществ в клетке, их изоляцию, накопление и транспорт.

Лизосомы — это мембранные пузырьки величиной до 2 мкм. Внутри лизосом содержатся гидролитические ферменты, способные переваривать белки, липиды, углеводы, нуклеиновые кислоты. Лизосомы образуются из пузырьков, отделяющихся от комплекса Гольджи, причем предварительно на шероховатом эн до плазматическом ретикулуме синтезируются гидролитические ферменты.

Сливаясь с эндоцитозными пузырьками, лизосомы образуют пищеварительную вакуоль (вторичная лизосома), где происходит расщепление органических веществ до составляющих их мономеров. Последние через мембрану пищеварительной вакуоли поступают в цитоплазму клетки. Именно так происходит, например, обезвреживание бактерий в клетках крови — нейтрофилах.

Вторичные лизосомы, в которых закончился процесс переваривания, практически не содержат ферментов. В них находятся лишь непереваренные остатки, т. е. негидролизуемый материал, который либо выводится за пределы клетки, либо накапливается в цитоплазме.

Расщепление лизосомами чужеродного, поступившего путем эндоцитоза материала называетсягетерофагией. Лизосомы участвуют также в разрушении материалов клетки, например запасных питательных веществ, а также макромолекул и целых орга-нелл, утративших функциональную активность (аутофагия). При патологических изменениях в клетке или ее старении мембраны лизосом могут разрушаться: ферменты выходят в цитоплазму, и осуществляется самопереваривание клетки —автолиз. Иногда с помощью лизосом уничтожаются целые комплексы клеток и органы. Например, когда головастик превращается в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Вакуоли — крупные мембранные пузырьки или полости в цитоплазме, заполненные клеточным соком. Вакуоли образуются в клетках растений и грибов из пузыревидных расширений эндоплазматического ретикулума или из пузырьков комплекса Гольджи. В меристематических клетках растений вначале возникает много мелких вакуолей. Увеличиваясь, они сливаются в центральную вакуоль, которая занимает до 70—90% объема клетки и может быть пронизана тяжами цитоплазмы (рис. 1.12).

Схема строения рибосомы

Рис. 1.12. Вакуоль в растительной клетке: 1вакуоль; 2цитопяаз-матические тяжи; 3ядро; 4хлоропласты.

Содержимое вакуолей —клеточный сок. Он представляет собой водный раствор различных неорганических и органических веществ. Большинство из них являются продуктами метаболизма протопласта, которые могут появляться и исчезать в различные периоды жизни клетки. Химический состав и концентрация клеточного сока очень изменчивы и зависят от вида растений, органа, ткани и состояния клетки. В клеточном соке содержатся соли, сахара (прежде всего сахароза, глюкоза, фруктоза), органические кислоты (яблочная, лимонная, щавелевая, уксусная и др.), аминокислоты, белки. Эти вещества являются промежуточными продуктами метаболизма, временно выведенными из обмена веществ клетки в вакуоль. Они являются запасными веществами клетки.

Помимо запасных веществ, которые могут вторично использоваться в метаболизме, клеточный сок содержит фенолы, танины (дубильные вещества), алкалоиды, антоцианы, которые выводятся из обмена в вакуоль и таким путем изолируются от цитоплазмы.

Танины особенно часто встречаются в клеточном соке (а также в цитоплазме и оболочках) клеток листьев, коры, древесины, незрелых плодов и семенных оболочек. Алкалоиды присутствуют, например, в семенах кофе (кофеин), плодах мака (морфин) и белены (атропин), стеблях и листьях люпина (люпинин) и др. Считается, что танины с их вяжущим вкусом, алкалоиды и токсичные полифенолы выполняют защитную функцию: их ядовитый (чаще горький) вкус и неприятный запах отталкивают растительноядных животных, что предотвращает поедание этих растений.

В вакуолях также часто накапливаются конечные продукты жизнедеятельности клеток (отходы). Таким веществом для клеток растений является щавелевокислый кальций, который откладывается в вакуолях в виде кристаллов различной формы.

В клеточном соке многих растений содержатся пигменты, придающие клеточному соку разнообразную окраску. Пигменты и определяют окраску венчиков цветков, плодов, почек и листьев, а также корнеплодов некоторых растений (например, свеклы).

Клеточный сок некоторых растений содержит физиологически активные вещества — фитогормоны (регуляторы роста), фитонциды, ферменты. В последнем случае вакуоли действуют как лизосомы. После гибели клетки мембрана вакуоли теряет избирательную проницаемость, и ферменты, высвобождаясь из нее, вызывают автолиз клетки.

Функции вакуолей следующие:

  1. Вакуоли играют главную роль в поглощении воды растительными клетками. Вода путем осмоса через ее мембрану поступает в вакуоль, клеточный сок которой является более концентрированным, чем цитоплазма, и оказывает давление на цитоплазму, а следовательно, и на оболочку клетки. В результате в клетке развивается тургорное давление, определяющее относительную жесткость растительных клеток и обусловливающее растяжение клеток во время их роста.
  2. В запасающих тканях растений вместо одной центральной часто бывает несколько вакуолей, в которых скапливаются запасные питательные вещества (жиры, белки). Сократительные (пульсирующие) вакуоли служат для осмотической регуляции, прежде всего, у пресноводных простейших, так как в их клетки путем осмоса непрерывно поступает вода из окружающего гипотонического раствора (концентрация веществ в речной или озерной воде значительно ниже, чем концентрация веществ в клетках простейших). Сократительные вакуоли поглощают избыток воды и затем выводят ее наружу путем сокращений.

Немембранные органеллы. Клеточный центр. В клетках большинства животных, а также некоторых грибов, водорослей, мхов и папоротников имеются центриоли. Расположены они обычно в центре клетки, что и определило их название (рис .1.13).

Схема строения рибосомы

Центриоли представляют собой полые цилиндры длиной не более 0,5 мкм. Они располагаются парами перпендикулярно одна к другой (рис. 1.14). Каждая центриоль построена из девяти триплетов микротрубочек.

Основная функция центриолей — организация микротрубочек веретена деления клетки.

Центриолям по структуре идентичны базальные тельца, которые всегда обнаруживаются в основании жгутиков и ресничек. По всей вероятности, базальные тельца образуются путем удвоения цен-триолей. Базальные тельца, как и центриоли, являются центрами организации микротрубочек, входящих в состав жгутиков и ресничек.

Жгутики и реснички — органеллы движения у клеток многих видов живых существ. Они представляют собой подвижные цитоплазм этические отростки, служащие либо для передвижения всего организма (многие бактерии, простейшие, ресничные черви) или репродуктивных клеток (сперматозоидов, зооспор), либо для транспорта частиц и жидкостей (например, реснички мерцательных клеток слизистой оболочки носовых полостей и трахеи, яйцеводов и т. д.).

Жгутики эукариотических клеток по всей длине содержат 20 микротрубочек: 9 периферических дуплетов и 2 центральные одиночные. У основания жгутика в цитоплазме располагается ба-зальное тельце.

Жгутики имеют длину около 100 мкм и более. Короткие жгутики (10—20 мкм), которых бывает много на одной клетке, называются ресничками.

Скольжение микротрубочек, входящих в состав жгутиков или ресничек, вызывает их биение, что обеспечивает перемещение клетки либо продвижение частиц.

Рибосомы — это мельчайшие сферические гранулы диаметром 15—35 нм, являющиеся местом синтеза белка из аминокислот. Они обнаружены в клетках всех организмов, в том числе про-кариотических. В отличие от других органелл цитоплазмы (пластид, митохондрий, клеточного центра и др.) рибосомы представлены в клетке огромным числом: за клеточный цикл их образуется около 10 млн. штук.

В состав рибосом входит множество молекул различных белков и несколько молекул рРНК. Полная работающая рибосома состоит из двух неравных субъединиц (рис. 1.15). Малая субъедин ица имеет палочковидную форму с несколькими выступами. Большая субь-единица похожа на полусферу с тремя торчащими выступами. При объединении в рибосому малая субъединица ложится одним концом на один из выступов большой субъединицы. В состав малой субъединицы входит одна молекула РНК, в состав большой — три.

Схема строения рибосомы

Рис. 1.15, Схема строения рибосомы: 1малая субъединица; 2иРНК; 3тРИК; 4аминокислота; 5большая субьединица; бмембрана эндоплазматической сети; 7синтезируемая полипептид-ная цепь.

В цитоплазме десятки тысяч рибосом расположены свободно (поодиночке или группами) или прикреплены к нитям микротрабекуляр-ной системы, наружной поверхности мембраны ядра и эндоплазматической сети. Они имеются также в митохондриях и хлоропластах.

В процессе синтеза белка рибосома защищает синтезируемый белок от разрушающего действия клеточных ферментов. Механизм защитного действия заключается в том, что часть вновь синтезируемого белка находится в каналоподобной структуре большой субъединицы.

Источник : Н.А. Лемеза Л.В.Камлюк Н.Д. Лисов «Пособие по биологии для поступающих в ВУЗы»

Источник: sbio.info

Строение

Важнейшей органеллой клетки является ядро. Оно содержит генетическую информацию и ядрышко, где образуются рибосомы. Синтезированные рибосомы через поры ядерной мембраны попадают либо на эндоплазматическую сеть, либо в цитоплазму. В зависимости от расположения в эукариотической клетке выделяют два вида рибосом:

  • связанные – располагаются на эндоплазматической сети (шероховатый вид);
  • свободные – располагаются в цитозоле.

Гладкая ЭПС образуется после освобождения от рибосом. В растительных клетках гладкая ЭПС формирует провакуоли, из которых затем образуются вакуоли.

Рис. 1. Расположение рибосом в клетке.

Рибосомы – немембранные органеллы, имеющие округлую форму и состоящие из двух частей – субъединиц (большой и малой), каждая из которых представляет собой смесь рибосомальной РНК (рРНК) и белков. С химической точки зрения рибосома – нуклеопротеид, состоящий из нуклеиновых кислот и протеинов.

Схема строения рибосомы

Рис. 2. Строение рибосом.

Различают четыре разновидности молекул РНК рибосомы:

  • 18S-РНК – содержит 1900 нуклеотидов;
  • 5S-РНК – содержит 120 нуклеотидов;
  • 5,8S-РНК – состоит из 160 нуклеотидов;
  • 28S-РНК – состоит из 4800 нуклеотидов.

Малая частица рибосомы образована 30-35 белками и 18S-РНК. В большую субчастицу входит 45-50 белков и 5S-, 5,8S-, 28S-РНК.

В нерабочем состоянии части рибосом разъединены. Они соединяются с помощью информационной (матричной) РНК, обхватывая её с двух сторон. При синтезе белка рибосомы объединяются, образуя комплексы – полисомы или полирибосомы, связанные мРНК и напоминающие бусины на нитке.

Синтез белка

Главная функция рРНК – синтез белка и аминокислот.
Биосинтез белков включает два процесса:

  • транскрипцию;
  • трансляцию.

Транскрипция происходит с участием ДНК. Генетическую информацию считывает фермент РНК-полимераза, образуя мРНК. Далее начинается процесс трансляции, происходящий на рибосомах.
Этот процесс разделяется на три этапа:

  • инициацию – начало синтеза;
  • элонгацию – биосинтез;
  • терминацию – завершение синтеза, отделение рибосомы.

При инициации происходит сборка рибосомы. Контактные части субъединиц называются активными центрами, между которыми располагается:

  • мРНК в качестве «шаблона» синтеза;
  • тРНК, осуществляющая перенос аминокислот на синтезируемую цепь;
  • синтезируемый пептид, состоящий из аминокислот.

В процессе элонгации происходит удлинение полипептидной цепи за счёт присоединения аминокислот. Цепь отсоединяется от рибосомы на стадии терминации благодаря стоп-кодону – единицы генетического кода, шифрующего прекращение синтеза белка.

Рис. 3. Общая схема синтеза белка на рибосоме.

Биосинтез требует энергетических затрат. При присоединении одной аминокислоты расходуется по две молекулы АТФ (аденозинтрифосфата) и ГТФ (гуанозинтрифосфата). Кроме того, ГТФ тратится на процессы инициации и терминации.

Источник: obrazovaka.ru

Оглавление

1. Введение
2. Информационная РНК
3. Генетический код
4. Транспортные РНК и аминоацил-тРНК-синтетазы
5. Рибосомы
6. Трансляция
7. Сворачивание и транспорт белков
8. Заключение
9. Список литературы

1. Введение

Жизнь есть способ существования белковых тел. Это определение, данное Фридрихом Энгельсом, указывает на исключительную роль белков в функционировании организмов. Биосинтез белка – чрезвычайно сложный и энергозатратный процесс. Он является основой жизнедеятельности клетки.
Синтез белка осуществляется в рибосомах и проходит в несколько этапов по схеме ДНК→РНК→белок. Двухцепочечная молекула ДНК на основе принципа комплементарности транскрибируется в одноцепочечную молекулу РНК. В результате получается матричная РНК, которая содержит информацию об аминокислотной последовательности белка. Далее мРНК поступает в рибосому и по ней, как по матрице, синтезируется белок, путем перевода генетической информации с языка нуклеотидной последовательности на язык аминокислотной последовательности. Шаг за шагом строится полипептидная цепь, которая в процессе синтеза и после него модифицируется в биологически активный протеин. Синтезированный белок транспортируется в разные участки клетки для выполнения своих функций.
Кодирование аминокислотной последовательности белков осуществляется по определенным правилам, называемых генетическим кодом. Расшифровка генетического кода – очень значимое достижение науки. Код объясняет механизм синтеза белка, происхождение мутаций и другие биологические явления.
Рентгеноструктурный анализ и другие современные методы исследования позволили далеко продвинутся в изучении биосинтеза белка и других аспектов молекулярной биологии. Но тем не менее все еще не установлены пространственные структуры некоторых жизненно важных макромолекул. Науке предстоит ответить на многие вопросы, касающиеся белкового синтеза.

Общая схема биосинтеза белка

Общая схема биосинтеза белков в клетке: ДНК→РНК→белок (Рисунок 1).

protein synthesis, рибосома, рнк, синтез белка, трансляция

Рисунок 1. Общая схема биосинтеза белков в клетке

Транскрипция. Отдельные участки двухцепочечной ДНК (гены) служат матрицами для синтеза на них однотяжевых цепей РНК по принципу комплементарности. Транскрипция проходит в три стадии: инициация, элонгация, терминация.

Процессинг и транспорт. В процессе синтеза РНК подвергается изменениям, в результате которых превращается в зрелую молекулу, пригодную для синтеза белка. Получающаяся информационная (матричная) РНК (мРНК) затем поступает к рибосомам в качестве программы, определяющей аминокислотную последовательность в синтезируемом белке.

Активация и акцептирование аминокислот. Белки состоят из аминокислот, но свободные аминокислоты клетки не могут быть непосредственно использованы рибосомой. Каждая аминокислота сначала активируется с помощью АТФ, а затем присоединяется к специальной молекуле РНК – трансферной (транспортной) РНК (тРНК) вне рибосомы. Получающаяся аминоацил-тРНК поступает в рибосому в качестве субстрата для синтеза белка.

Трансляция. Поток информации в виде мРНК и поток материала в виде аминоацил-тРНК поступают в рибосомы, которые осуществляют перевод (трансляцию) генетической информации с языка нуклеотидной последовательности мРНК на язык аминокислотной. Каждая рибосома движется вдоль мРНК от одного конца к другому и соответственно выбирает из среды те аминоацил-тРНК, которые соответствуют (комплементарны) триплетным комбинациям нуклеотидов, находящимся в данный момент в рибосоме. Аминокислотный остаток выбранной аминоацил-тРНК каждый раз ковалентно присоединяется рибосомой к растущей полипептидной цепи, а деацилированная тРНК освобождается из рибосомы в раствор. Так последовательно строится полипептидная цепь.

Формирование функционального белка. По ходу синтеза полипептидная цепь высвобождается из рибосомы и сворачиваться в глобулу. Сворачивание и транспорт белка сопровождаются ферментативными модификациями (процессинг белка).

Несмотря на большую сложность аппарата биосинтеза белков, он протекает с чрезвычайно высокой скоростью. Синтез тысяч различных белков в каждой клетке строго упорядочен – при данных условиях метаболизма синтезируется лишь необходимое число молекул каждого белка.

2. Информационная РНК

Информационная (матричная) РНК (мРНК) – РНК, являющаяся комплементарной копией участков значащих цепей генов ДНК, содержащих информацию об аминокислотных последовательностях полипептидных цепей белков.

Структура мРНК

Первичная структура

protein synthesis, рибосома, рнк, синтез белка, трансляция

Рисунок 2. Химическое строение полинуклеотида РНК

Матричная РНК — одноцепочечный полинуклеотид (Рисунок 2). Он состоит из четырех нуклеотидов. Нуклеотид ы состоят из азотистого основания (аденин – А, гуанин – G, цитозин – C и урацил – U), сахара рибозы и фосфатной группы. 5'-гидроксил концевого нуклеозида (молекула, содержащая азотистое основание, связанное с сахаром) не образует связи между нуклеотидами. Он обозначается как 5'-конец РНК, а другой концевой нуклеозид со свободным З'-гидроксилом называют З'-концом РНК. мРНК читается рибосомой в направлении от 5'-конца к З'-концу .
В природных мРНК 5'-концевой гидроксил всегда замещен. мРНК эукариотов в большинстве случаев несут на 5'-конце специальную группу – кэп (Рисунок 3). Кэп представляет собой остаток 7-метилгуанозина (Рисунок 4).

 

cap, protein synthesis, кэп, кэпированная мрнк, рибосома, рнк, синтез белка, трансляция

Рисунок 3. Строение 5'-конца кэпированной мРНК

methylguanosine, protein synthesis, метилгуанозин, рибосома, рнк, синтез белка, трансляция

Рисунок 4. Модель молекулы 7-метилгуанозина

Функциональные участки мРНК

Чаще всего началом (инициаторным кодоном) кодирующей части мРНК яв¬ляется AUG. Не любой триплет может стать инициаторным. Это определяется собственной структурой кодона и положением в структуре мРНК.
мРНК может содержать нуклеотидные последовательности для кодирования нескольких белков. Это характерно для прокариот. Такие мРНК называются полицистронными. У эукариот мРНК обычно кодируют одну полипептидную цепь (моноцистронные мРНК).

Пространственная структура

protein synthesis, рибосома, рнк, синтез белка, трансляция

Рисунок 5. Вторичная структура РНК

Трехмерная структура мРНК еще не установлена. Измерения физических параметров мРНК свидетельствуют о том, что они являются сильно свернутыми структурами, с внутрицепными взаимодействиями между азотистыми основаниями. Вторичная структура мРНК образована благодаря комплементарному спариванию отдельных участков одной и той же цепи друг с другом, с образованием большого набора относительно коротких двуспиральных участков (Рисунок 5).
Вторичная и третичная структуры мРНК играют определенную роль в трансляции. Однако роль вторичной и третичной структуры мРНК в скорости считывания цепи не установлена.
Некодирующие последовательности мРНК участвуют в определении специальных пространственных структур, ответственных за регулирование инициации трансляции, элонгации и других процессов.

3. Генетический код

Так как существует только 4 нуклеотида в мРНК и 20 аминокислот в белке, то трансляция не может быть осуществляется на основе прямого соотношения между нуклеотидами РНК и аминокислотами в белке. Нуклеотидная последовательность гена через посредничество мРНК транслируется в аминокислотную последовательность по правилам, известным как генетический код.
Генетический код – способ сохранения наследственной информации в виде последовательности нуклеотидов в молекулах нуклеиновых кислот. Этот код был расшифрован в 1960-ых. Генетический код, основан на использовании алфавита, состоящего из четырех букв: А, Г, Ц и Т. Эти буквы соответствуют нуклеотидам, найденным в ДНК: аденин, гуанин, цитозин, тимин.
Последовательность нуклеотидов в молекуле мРНК читается непрерывными группами из трех нуклеотидов, называемых триплетами или кодонами. РНК представляет собой линейные полимер, состоящий из четырех разных нуклеотидов, поэтому возможны 4•4•4=64 комбинации трех нуклеотидов. Белки состоят из 20 аминокислот. Поэтому либо некоторые триплеты не используются, либо некоторые аминокислоты кодируются более, чем одним триплетом.
Различают два типа кодонов— смысловые, или значащие кодоны, и бессмысленные кодоны, или нонсенс-кодоны. Большинство (61) кодонов — значащие и только 3 (UAA, UAG, UGA) – нонсенс-кодоны. Смысловые кодоны соответствуют аминокислотам, а кодон AUG, помимо кодирования митионина, является инициирующим, или стартовым кодоном. Нонсенс-кодоны являются терминирующими кодонами, или стоп-кодонами.

Свойства генетического кода

Генетический код является неперекрываемым, непрерывным, специфичным, универсальным и вырожденным.

Неперекрываемость кода означает, что каждый нуклеотид входит только в один кодон, и поэтому изменения любого нуклеотида изменяют смысл только одного кодона.

Генетический код непрерывен. Он имеет линейный непрерывающийся порядок считывания. Кодоны транслируются всегда целиком. Расположение остатков аминокислот в синтезируемом полипептиде определяется антикодоном тРНК (триплет нуклеотидов, комплементарный одному из кодонов) .

Специфичность кода означает, что код является однозначным, поскольку каждый кодонный триплет кодирует только одну аминокислоту, и с одной мРНК можно синтезировать только одинаковые пептиды,

Генетический код универсален для всех живых существ – у всех живых организмов, включая вирусы и бактерии, одинаковые кодоны (триплеты нуклеотидов) кодируют одинаковые аминокислоты. Исключение составляют 4 кодона митохондрий грибов и животных, имеющих информационный смысл, отличный от универсального кода.

Вырожденность кода означает его избыточность, синонимичность, то есть одну аминокислоту может кодировать более одного триплета. Однако вырожденность не абсолютна. Например, метионину соответствует только один кодон.

До расшифровки генетического кода было невозможно понять механизм синтеза белка и объяснить происхождение мутаций. Открытие генетического кода позволило ответить на вопрос о том, как связаны между собой дефекты определенных белков человека и наследственные заболевания.

Генетический код

1-ая позиция (5’ конец)

3-ая позиция (3’ конец)

 

A
C
D
E
F
G
H
I
K
L
M
N
P
A
R
S
T
V
W
Y
Ala
Cys
Asp
Glu
Phe
Gly
His
Ile
Lys
Leu
Met
Asn
Pro
Gln
Arg
Ser
Thr
Val
Trp
Tyr
Alanine
Cysteine
Aspartic acid
Glutamic acid
Phenylalani
Glycine
Histidine
Isoleucine
Lysine
Leucine
Methionine
Asparagine
Proline
Glutamine
Arginine
Serine
Threonine
Valine
Tryptophan
Tyrosine
Аланин
Цистеин
Аспарагиновая кислота
Глутаминовая кислота
Фенилаланин
Глицин
Гистидин
Изолейцин
Лизин
Лейцин
Метионин
Аспарагин
Пролин
Глутамин
Аргинин
Серин
Треонин
Валин
Триптофан
Тирозин

GCA GCC GCG GCU
UGC UGU
GAC GAU
GAA GAG
UUC UUU
GGA GGC GGG GGU
CAC CAU
AUA AUC AUU
AAA AAG
UUA UUG CUA CUC CUG CUU
AUG
AAC AAU
CCA CCC CCC CCU
CAA CAG
AGA AGG CGA CGC CGG CGU
AGC AGU UCA UCC UCG UCU
ACA ACC ACG ACU
GUA GUC GUG GUU
UGG
UAC UAU

4. Транспортные РНК и аминоацил-тРНК-синтетазы

Транспортные РНК (тРНК) небольшие по размеру молекулы (73- 97 нуклеотидных остатков в цепи). Все тРНК имеют одинаковый 3'-конец, построенный из двух остатков цитозина и одного аденозина (CCA-конец). В середине цепи тРНК находится антикодон. В молекулах тРНК присутствет множество разнообразных модифицированных нуклеозидов (минорные нуклеозиды), образующиеся путем ферментативной модификации обычных нуклеозидных остатков.

Вторичная структура

protein synthesis, trna, рибосома, рнк, синтез белка, трансляция, трнк

Рисунок 6. Вторичная структура тРНК

Вторичная структура тРНК складывается за счет взаимокомплементарности участков цепи. Они формируют структуру «клеверного листа», состоящую из четырех стеблей и трех петель. Стебель с петлей формируют ветвь. В дополнение к трем петлям клеверного листа в структуре тРНК выделяют также дополнительную, или вариабельную, петлю (V петлю). Двухцепочечные стебли с постоянным числом спаренных нуклеотидов представляют собой двойную спираль.

Пространственная структура

protein synthesis, trna, рибосома, рнк, синтез белка, трансляция, трнк

Рисунок 7. Третичная структура тРНК

Третичная структура формируется за счет взаимодействия элементов вторичной структуры. Пространственная структура тРНК называется L-формой (из-за сходства с латинской буквой L).
Третичные взаимодействия (стекинг оснований и другие) скрепляют разные участки L-структуры в непрерывные двойные спирали.
Молекулам тРНК присущи индивидуальные различия, проявляющиеся на уровне вторичной и третичной структур, например, разная величина угла между доменами L-структуры.

Функции тРНК

Две основные функции тРНК:

  1. Акцепторная функция – способность ковалентно связываться с аминоацильным остатком, превращаясь в аминоацил-тРНК;
  2. Адапторная функция – способность узнавать триплет генетического кода, соответствующий транспортируемой аминокислоте, и обеспечивать поступление аминокислоты на «законное» место в растущей цепи белка.

Аминоацилирование тРНК

Аминоацилирование тРНКпроцесс активации аминокислот. Он происходит на первом этапе биосинтеза белка – двад­цать различных аминокислот присоеди­няются эфирной связью к соответствую­щим тРНК под действием двадцати различных активирую­щих ферментов, называемыми аминоацил-тРНК-синтетазами. Каждый фермент специфичен по отношению к определенной аминокислоте и к соответствующей тРНК.

Обобщенная структура аминоацил-тРНК

Рисунок 8. Обобщенная структура аминоацил-тРНК

Аминоацилирование состоит из двух стадий, проходящих в каталитическом центре фермента. На первой стадии в результате взаимо­действия АТР и аминокислоты образуется промежуточ­ное соединение – аминоациладенилат. На второй стадии аминоацильный оста­ток переносится с аминоациладенилата, связанного с ферментом, на соответ­ствующую специфическую тРНК (Рисунок 8).

Аминоацилирование может быть выражено схемой:

Аминоацилирование

АТФ – аденозинтрифосфат, АМФ – аденозинмонофосфат, PPi – пирофосфаты.
Исключительно низкая частота ошибок при аминоацилировании тРНК является непременным условием реализации генетического кода – если на предрибосомном этапе произошла ошибка и к тРНК присоединилась аминокислота, не соответствующая специфичности антикодона, то эта ошибка уже не может быть исправлена на последующих этапах белкового синтеза.
В ходе эволюции выработались специфические механизмы отбора «правильных» субстратов для аминоацил-тРНК-синтетаз, обеспечивающие безошибочное аминоацилирование тРНК.

Узнавание тРНК аминоацил-тРНК-синтетазами

Каждая тРНК, сохраняя универсальную L-образную форму, имеет отличительные признаки, безошибочно распознаваемые «своим» ферментом как «притягательные», а остальными 19 ферментами – как «отталкивающие».
Это следующие участки тРНК (Рисунок 9):

  • Антикодон
  • Нуклеотид, предшествующий CCA-концу.
  • Первые три пары нуклеотидов акцепторного стебля

узнавание тРНК аминоацил-тРНК-синтетазами

Рисунок 9. Участки, по которым происходит узнавание тРНК аминоацил-тРНК-синтетазами

5. Рибосомы

Комплекс 80S рибосома -мРНК-тРНК

Рисунок 10. Комплекс 80S рибосома-мРНК-тРНК клетки дрожжей

Синтез белка происходит в рибосоме. Рибосома – сложный макромолекулярный аппарат, состоящий из более 50 белков, называемых рибосомными белками, и нескольких молекул РНК, называемых рибосомными РНК. Число рибосом в клетке различно. Оно зависит от интенсивности белкового синтеза в данном типе клеток. Обычная эукариотческая клетка содержит миллионы рибосом. Эукариотические и прокариотические рибосомы схожи в строении и функциях и различаются лишь числом и размером рРНК и рибосомных протеинов.
Строение рибосомы приведено на рисунке 10 на примере рибосомы дрожжей (Рисунок 10).
Рибосомы имеют размер 25-30 нм. Они состоят из двух неравных субъединиц. Субъединицы эукариотических рибосом формируются в ядре из рРНК, ассоциированных с рибосомными белками, которые транспортируются в ядро после синтеза в цитоплазме. Две субъединицы рибосомы затем выходят в цитоплазму, где соединяются воедино для участия в синтезе белка.
Рибосомные рибонуклеиновые кислоты (рРНК) – основные компоненты рибосом, составляют большую часть их массы. Молекулы рРНК определяют структуру, физические и химические свойства, функции рибосом, а также расположение рибосомных белков в субчастицах рибосом.
Малые субчастицы рибосом содержат одну молекулу рРНК, большие – две.
Молекулы рРНК являются совокупностью коротких одноцепочечных и двухспиральных участков, образующихся за счет комплементарного спаривания участков одной и той же полинуклеотидной цепи.
В субъединицах рибосом рРНК компактно упакованы благодаря ионам двухвалентных металлов и рибосомным белкам. Основная часть рРНК располагается внутри рибосомных субчастиц. Отдельные участки рРНК находятся на поверхности субчастиц. Они выполняют важную биололическую роль, формируя функциональные центры рибосом (центры связывания матричных и транспортных РНК и белковых факторов трансляции).
Рибосомная РНК концентрируется в основном ближе к центру частиц, тогда как масса рибосомных белков занимает в среднем более периферическое положение. Можно сделать вывод, что свернутая молекула высокополимерной рибосомной РНК – это структурное ядро рибосомной субчастицы, определяющее и ее компактность, и ее форму, и организацию на ней рибосомных белков. То есть рибосома есть прежде всего ее РНК (Рисунок 11).

Рибосомные белки и рибосомная РНК, синтез белка

Рисунок 11. Рибосомные белки и рибосомная РНК

Многочисленные рибосомные белки могут участвовать в функциях связывания субстратов и каталитических функциях рибосомы, локализуясь в соответствующих функциональных центрах и обеспечивая их своими активными группами; рибосомные белки могут служить стабилизаторами или модификаторами определенных локальных структур рибосомной РНК и таким образом поддерживать их в функционально активном состоянии или способствовать их переключениям из одного состояния в другое.
Когда рибосома не участвует в синтезе белков, две субъединицы разделены. Они соединяются с мРНК (обычно возле 5'-конца) для инициации синтеза белков. Затем мРНК продвигается через рибосому, и по мере вхождения кодонов в ядро рибосомы, нуклеотидная последовательность мРНК транслируется в аминокислотную поледовательность с помощью тРНК в качестве адаптора, чтобы приоединять каждую аминокислоту в правильном порядке к концу растущего белка. Когда считывается терминаторный кодон, из рибосомы выходит синтезированный белок, и две субъединицы снова разделяются. Эти субъединицы могут снова быть использованы для синтеза другого белка по другой молекуле мРНК.
Обычно одна молекула мРНК читается сразу несколькими рибосомами, двигающимися вдоль мРНК друг за другом и, таким образом, независимо синтезирующими идентичные молекулы белка, но с соответствующим отставанием. Такой динамический комплекс одной мРНК с несколькими рибосомами называется полирибосомой.

Функциональные участки рибосомы

Рисунок 12. Функциональные участки рибосомы

Рибосомы работают чрезвычайно продуктивно: в секунду одна рибосома эукариотической клетки присоединяет 2 аминокислоты к полипептидной цепи, рибосомы бактериальных клеток функционируют еще быстрее — около 20 аминокислот в секунду. Такая продуктивность объясняется наличием четырех функциональных участков (сайтов) для РНК молекул (Рисунок 12) – один для мРНК и три для тРНК:

  • А-сайт (aminoacyl-tRNA — аминоацил-тРНК)
  • Р-сайт (peptidyl-tRNA — пептидил-тРНК)
  • Е-сайт (exit — выход)
  • мРНК-связывающий участок

Молекула тРНК крепится к А- и Р-сайтам только если её антикодон образует пары оснований с комплементарным кодоном молекулы мРНК. А- и Р-сайты расположены близко друг к другу чтобы две их тРНК молекулы формировали пары нуклеотидов с примыкающим кодоном молекулы мРНК. Эта особенность рибосомы обеспечивает правильное считывание мРНК.
Рибосомы разных клеток различаются по размерам, которые опре­деляются по скорости осаждения при центрифу­гировании. Скорость осаждения измеряется в еди­ницах Сведберга (S). Сведберг – это отношение скорости седиментации к центробежному ускорению, 1S = 10-13 секунд. Коэффициенты седимента­ции разных рибосом варьируют от 5S до 80S. У прокариот рибосомы имеют коэффициент 70S, а рибосомы цитоплазмы эукариот — 80S.
Диссоциация рибосом в случае прокариот и эукариот соответственно:
70S→50S + 30S
80S→60S + 40S

6. Трансляция

Трансляция – непосредственный процесс синтеза белка рибосомой. Трансляция проходит в три стадии: инициация, элонгация, терминация.

Стадия инициации

Трансляция у бактерий и в эукариотических клетках в общем схожи, но различаются механизмом инициации. Для инициация белкового синтеза в бактериях необходимы 30S и 50S рибосомные единицы, мРНК, молекула тРНК, аминоацилированная N-формилметионином – fMet-tRNAfMet, три белка, называемые факторами инициации, гуанозинтрифосфат (ГТФ), Mg2+. В процессе работы рибосома потребляет энергию гидролиза гуанозинтрифосфата (Рисунок 13).

protein synthesis, гуанозинтрифосфат, синтез белка

Рисунок 13. Структура гуанозинтрифосфата

Комплекс 30S субъединицы с факторами инициации распознает участки связывания рибосомы (сайты), которые содержат инициаторный кодон AUG, и специальную последовательность Шайна- Дальгарно, служащую для отличия AUG от внутренних кодонов, кодирующих метионин. В результате инициации образуется 70S рибосома – инициирующий комплекс, содержащий мРНК и fMet-tRNAfMet, связанную с P-участком рибосомы. Комплекс готов к элонгации.
В эукариотических клетках имеется как минимум девять факторов инициации. Инициирующий кодон AUG распознается не последовательностью Шайна-Дальгарно, а сканированием мРНК с 5'-конца до первого AUG и соответствующим расположением рамки считывания.

Стадия элонгации

Стадия элонгации требует комплекс инициации, аминоацил-тРНК, факторы элонгации (растворимые цитозольные белки) и гуанозинтрифосфат (ГТФ).
Синтез происходит на рибосоме путем последовательного добавления одного аминокислотного остатка за другим к строящейся полипептидной цепи; таким путем осуществляется элонгация (удлинение) пептида. Каждый новый аминокислотный остаток добавляется к карбоксильному концу (С-концу) пептида, т. е. С-конец пептида является растущим. Добавление одного аминокислотного остатка соответствует прочтению одного нуклеотидного триплета.
Элонгация проходит в три этапа, которые повторяются пока есть остатки аминокислот для присоединения.
На первом шаге аминоацил-тРНК молекула, нагруженная аминокислотой крепится к А-сайту рибосомы, а "отработавшая" тРНК высвобождается с Е-сайта (от exit — выход).
На втором шаге формируется новая пептидная связь под действием фермента пептидилтрансферазы.
На третьем шаге происходит транслокация: большая субъединица занимает позицию относительно малой субъединицы, оставляя две тРНК в гибридных сайтах: в Р-сайте на большой субъединице и А-сайте на малой для одной тРНК и в E-сайте на большой субъединице и Р-сайте на малой для другой. Затем малая субъединица перемещается вместе с мРНК на три нуклеотида, освобождая А-сайт для следующей тРНК и цикл повторяется снова. Молекула мРНК транслируется с 5'-конца к 3'-третьему, а синтез протеина начинается с N-конца. С началом каждого цикла аминокислота крепится к C-концу полипептидной цепи.

Стадия терминации

Элонгация продолжается до тех пор пока рибосома не присоединит последнюю аминокислоту. Терминация начинается при присутствии одного из трех терминаторных кодонов в мРНК (UAA, UAG, UGA), которые следуют сразу за последней аминокислотой. Когда рибосома достигнет терминирующего кодона мРНК, синтез полипептида прекращается. В бактериях, если терминаторный кодон имеет место быть в А-сайте рибосомы, в дело вступают три фактора терминации, которые участвуют в гидролизе пептидил-тРНК связи; освобождении полипептида и последней, уже ненагруженной тРНК из Р-сайта; диссоциации 70S рибосомы на 30S и 50S субъединицы, готовых начать новый цикл синтеза белка.
Таким образом, каждая рибосома проходит полный цикл трансляции, включающий инициацию, элонгацию и терминацию; в результате такого эпицикла прочитывается вся кодирующая последовательность мРНК и синтези­руется законченная полипептидная цепь белка. После этого рибосома может повторить цикл с другой цепью мРНК или другой кодирующей последовательностью той же цепи.

7. Сворачивание и транспорт белков

Процесс экспрессии генов не заканчивается на построении аминокислотной последовательности, составляющей протеин, с помощью генетического кода. Чтобы быть полезным клетке, новый пептид должен подвергнутся процессингу: свернутся в трехмерную нативную конформацию, присоединить какие-либо молекулы, необходимые для его активности, модифицироваться под действием протеинкиназ и других энзимов и правильно соединиться с другими частями белка, с которыми он функционирует.
Информация, нужная для всех этих процессов содержится в последовательности связанных аминокислот, которые производит рибосома, когда транслирует мРНК в полипептидную цепь. Когда протеин сворачивается в компактную структуру, гидрофобные звенья обращаются внутрь глобулы. Формируется большая часть нековалентных взаимодействий между различными участками молекул. Итогом всех этих энергетически выгодных взаимодействий, определяющих свернутую структуру полипептидной цепи является конформация с самой низкой энергией.
За миллионы лет эволюции аминокислотная последовательность каждого протеина была выбрана определенным образом не только для конформации, которую он принимает, но также для быстрого сворачивания. Для некоторых белков сворачивание начинается с N-конца сразу после выхода полипептида из рибосомы. В этом случае, как только протеин покидает рибосому, через несколько секунд он формирует компактное строение, содержащее окончательную вторичную структуру (спирали и β-листы).
Большинство белков не сворачиваются во время синтеза. Вместо этого они "встречаются" у рибосомы с отдельным классом белков, называемых шаперонами. Связывание с шаперонами обеспечивает правильное сворачивание белка в нативную конформацию.
Основные этапы процессинга:

  • Модификация N-конца и С-конца
  • Удаление сигнальных последовательностей
  • Фосфорилирование гидраксиаминокислот
  • Реакции карбоксилирования
  • Метилирование групп
  • Присоединение боковых углеводных цепей
  • Добавление простетических групп
  • Образование дисульфидных мостиков

Внутриклеточная сортировка белков

Эукариотические клетки состоят из множества структур, органелл и отсеков со специфичными функциями, которые требуют определенный набор белков. Эти белки (за исключением тех, которые синтезируются в митохондрих и пластидах) производятся рибосомами в цитозоле.
Белки предназначенные для секреции, интеграции в плазматическую мембрану, включения в лизосомы, обычно проходят первые несколько стадий внутриклеточной сортировки. Белки для митохондрий, пластид и ядра используют при отдельных механизм. Белки, предназначенные для цитозоля, остаются там, где были синтезированы.
Важнейшим элементом в процессе сортировки белков является короткая последовательность аминокислот – сигнальная последовательность белка (лидер). Она направляет белок на предназначенное ему место и удаляется во время транспорта или по прибытию белка в конечный пункт.
В процессе синтеза любого белка, в том числе предназначенного на «экспорт», сигнальные лидеры, будучи расположены на N-конце, образуются первыми. Такие лидеры узнаются особыми рецепторными участками на внешней поверхности эндоплазматического ретикулума, при­чем это происходит даже раньше, чем рибосома полностью завершит синтез бел­ка. Гидрофобная жирорастворимая часть лидирующей последовательности проникает сквозь мембрану внутрь цистерн эндоплазматического ретикулума, прота­скивая за собой растущую полипептидную цепь. Внутри цистерн под действием особой пептидазы сигнальный лидер от­щепляется. После этого зрелый белок на­правляется в аппарат Гольджи, инкапсу­лируется и в виде секреторного пузырька покидает наконец клетку.

8. Заключение

Белки являются структурными блоками клетки, а также осуществляют большую часть её функций. Биосинтез белка является одним из основополагающих процессов клетки.
Расшифровка генетического кода, правил, по которым нуклеотидная последовательность РНК переводится в аминокислотную последовательность полипептида, позволила понять принцип биосинтеза белка и связанные с этих явления.
Синтез протеина начинается с построения цепи матричной РНК из ДНК по принципу комплементарности.
После определенных преобразований молекула матричной РНК становится матрицей для построения по ней белка.
Биосинтез белка происходит в рибосомах, которые состоят из белков и рРНК. Рибосомы диссоциируют на две неравные субъединицы.

  • Прокароты: 70S→50S + 30S
  • Эукариоты: 80S→60S + 40S

Транспортная РНК состоит из небольшого числа нуклеотидов (73-97), некоторые из которых могут быть модифицированы. тРНК имеют общее строение:

  • универсальная CCA последовательность
  • акцепторный стебель
  • D шпилька
  • T шпилька
  • Антикодоновая шпилька

Транспортные РНК выполняют акцепторную и адапторную функции.
Рост полипептида в рибосоме начинается с N-конца добавлением новых аминокислотных остатков и завершается на C-конце.
Для синтез белка необходима активация аминокислот. Аминокислоты активируются в цитозоле аминоацил-тРНК синтетазой. Эти ферменты катализируют образование аминоацил-тРНК и расщепление АТФ на АМФ и пирофосфаты (PPi). Точность белкового синтеза зависит от правильного протекания этой реакции.
Непосредственный синтез белка (трансляция) проходит в три стадии.

  • Инициация белкового синтеза включает в себя образование комплекса из малой рибосомной субъединицы, мРНК, ГТФ, fMet-tRNAfMet, факторов инициации и большой рибосомной субъединицы. ГТФ гидролизуется с образованием ГМФ и фосфата.
  • На стадии элонгации ГТФ и факторы элонгации учавствуют в процессе связывания аминоацил-тРНК, нагруженной аминокислотой, с А-участком рибосомы. Под действием фермента пептидилтрансферазы образуется пептидная связь. Движение рибосомы вдоль мРНК транслоцирует тРНК из А-сайта в Р-сайт за счет энергии гидролиза ГТФ. "Отработавшая" тРНК высвобождается из Е-участка.
  • После повторения нескольких циклов элонгации, на стадии терминации, синтез полипептида останавливается факторами терминации.

Полипептид сворачивается в биологически активную конформацию и транспортируется к "рабочему месту".
Несмотря на множество открытий в биохимии и значимую работу, проделанную разными учеными в области этой науки, некоторые аспекты синтеза белков еще не установлены. Например, зачем нужны молекулы рРНК и как случилось, что они приобрели главенствующую роль в структуре и функции рибосом? На этот и другие вопросы науке предстоит ответить.

Источник: studentoriy.ru