Проблема изменения климата на земле

Содержание

Введение

. Климатические изменения на земле

.1 Оледенения

.2 Глобальное потепление

. Факторы воздействующие на климат

.1 Природные факторы и их влияние на изменение климата

.1.1 Парниковые газы

.1.2 Солнечное излучение

.1.3 Изменения орбиты

.1.4 Вулканизм

.2 Антропогенные факторы

.2.1 Сжигание топлива

.2.2 Аэрозоли

.2.3 Скотоводство

. Положительные и отрицательные последствия глобального потепления, прогноз

Заключение

Используемая литература

климат природный антропогенный потепление

Введение

Палеонтологические данные свидетельствуют о том, что климат Земли не был постоянным. Тёплые периоды, сменялись холодными ледниковыми. В тёплые периоды среднегодовая температура Арктических широт поднималась до 7 — 13°С, а температура самого холодного месяца января составляла 4-6 градусов, т.е. климатические условия в нашей Арктике мало отличались от климата современного Крыма. На смену тёплым периодам приходили похолодания, во время которых льды достигали современных тропических широт[13].


Изменение климата — колебания климата Земли в целом или отдельных её регионов с течением времени, выражающиеся в статистически достоверных отклонениях параметров погоды от многолетних значений за период времени от десятилетий до миллионов лет. Учитываются изменения, как средних значений погодных параметров, так и изменения частоты экстремальных погодных явлений. Изучением изменений климата занимается наука палеоклиматология. Причиной изменения климата являются динамические процессы на Земле, внешние воздействия, такие как колебания интенсивности солнечного излучения, и, по одной из версий, с недавних пор, деятельность человека. В последнее время термин «изменение климата» используется, как правило для обозначения изменения в современном климате.

Климат — это усредненное состояние погоды и он, напротив, стабилен и предсказуем. Климат включает в себя такие показатели как средняя температура, количество осадков, количество солнечных дней и другие переменные, которые могут быть измерены в каком-либо определенном месте. Однако на Земле происходят и такие процессы, которые могут оказывать влияние на климат.

Цели работы: подробно рассмотреть факторы влияющие на изменение климата, и степень их воздействия на климат.


Задачи:

изучить историю оледенений;

понять закономерности природных циклов;

охарактеризовать влияние факторов воздействующих на климат и причины их возникновения;

дать характеристику каждого фактора, воздействующего на климат,

составить возможные сценарии изменения климата.

Методы: Отбор и обобщение информации в процессе анализа литературы по выбранной тематике; сбор, систематизация и обработка необходимых фактов и сведений; подбор и частичное создание иллюстративного материала; изучение справочной и научной литератур , а также материалов с интернет сайтов.

1. Климатические изменения на земле

.1 Оледенения

Ледниковый период — периодически повторяющийся этап геологической истории Земли продолжительностью в несколько миллионов лет, в течение которого на фоне общего относительного похолодания климата происходят неоднократные резкие разрастания материковых ледниковых покровов — ледниковые эпохи. Ледники признаны одними из самых чувствительных показателей изменения климата. Ледниковые эпохи, в свою очередь, чередуются с относительными потеплениями — эпохами сокращения оледенения (межледниковьями). Существует несколько гипотез о причинах возникновения оледенений [5].

За время геологической истории планеты, насчитывающей более 4 млрд. лет, Земля испытала несколько периодов оледенения.

Раннепротерозойская — 2,5-2 млрд. лет назад


Позднепротерозойская — 900-630 млн. лет назад

Палеозойская — 460-230 млн. лет назад

Кайнозойская — 30 млн. лет назад — настоящее время [15].

В последние несколько миллионов лет оледенение Земли то разрастается, и тогда значительные территории в Европе, Северной Америке и частично в Азии оказываются, заняты покровными ледниками, то сокращается до тех размеров, которые существуют сегодня. Для последнего миллиона лет выявлено 9 таких циклов. Обычно период разрастания и существования ледниковых покровов в Северном полушарии примерно в 10 раз продолжительнее, чем период разрушения и отступания. Периоды отступания ледников называют межледниковьем. Центральная проблема криологии Земли — выявление и изучение общих закономерностей оледенения нашей планеты. Криосфера Земли испытывает как непрерывные сезонно-периодические колебания, так и многовековые изменения. В настоящее время Земля прошла ледниковую эпоху и находится в межледниковом периоде. [1]

Оледенение Земли — планетарный процесс, при его изучении необходимо рассмотреть закономерности развития ледниковых эпох, установить основные причины их возникновения. Решению этих проблем были посвящены труды многих выдающихся ученых A. A. Чернов, B. A. Bарсанофьева, П.И. Мельников. Не вдаваясь в подробности всех теорий и гипотез, можно объединить их в две основные группы: геологические и астрономические. К астрономическим факторам, вызывающим похолодание на земле, относятся:[3]

iv>

1. Изменение наклона земной оси;

. Отклонение Земли от ее орбиты в сторону удаления от Солнца;

. Неравномерное тепловое излучение Солнца.

К геологическим факторам относят процессы горообразная, вулканическую деятельность, перемещение материков[16]

1.2 Глобальное потепление

Глобальное потепление — процесс постепенного роста средней годовой температуры поверхностного слоя атмосферы Земли и Мирового океана, вследствие всевозможных причин (увеличение концентрации парниковых газов в атмосфере Земли, изменение солнечной или вулканической активности и т.д.). Очень часто в качестве синонима глобального потепления употребляют словосочетание «парниковый эффект», но между этими понятиями есть небольшая разница. Парниковый эффект — это увеличение средней годовой температуры поверхностного слоя атмосферы Земли и Мирового океана вследствие роста в атмосфере Земли концентраций парниковых газов (углекислый газ, метан, водяной пар и т.д.). Эти газы выполняют роль плёнки или стекла теплицы (парника), они свободно пропускают солнечные лучи к поверхности Земли и задерживают тепло, покидающее атмосферу планеты.

Впервые о глобальном потеплении и парниковом эффекте заговорили в 60-ых годах XX века, а на уровне ООН проблему глобального изменения климата впервые озвучили в 1980 году. С тех пор над этой проблемой ломают головы многие учёные, зачастую, взаимно опровергая теории и предположения друг друга.


начала 20 века началось довольно таки быстрое потепление. Уже к 1940 году в Гренландском море количество льдов сократилось вдвое, в Баренцевом — почти на треть, а в Советском секторе Арктике площадь льдов в сумме сократилась почти на половину (1 млн. км2). В этот период времени даже обычные суда спокойно проплывали северным морским путём от западных до восточных окраин страны. Именно тогда было зафиксировано значительное повышение температуры арктических морей, отмечено значительное отступление ледников в Альпах и на Кавказе. Общая площадь льда Кавказа снизилась на 10%, а толщина льда местами уменьшилась на целые 100 метров. Повышение температуры в Гренландии составило 5°С, а на Шпицбергене все 9°С. В 1940 потепление сменилось кратковременным похолоданием, в скором времени на смену которого, пришло очередное потепление, а с 1979 года начался быстрый рост температуры поверхностного слоя атмосферы Земли, который вызвал очередное ускорение таяния льдов Арктики, Антарктики и повышение зимних температур в умеренных широтах. Так, за последние 50 лет, толщина арктических льдов уменьшилась на 40%, а жители ряда сибирских городов стали для себя отмечать, что крепкие морозы уже давно остались в прошлом [13]. Средняя зимняя температура в Сибири повысилась почти на десять градусов за последние пятьдесят лет. В некоторых областях России безморозный период увеличился на две-три недели. Ареал обитания многих живых организмов сместился к северу вслед за растущими средними зимними температурами. Особенно наглядно о глобальных изменениях климата свидетельствуют старые фотографии ледников (все фото сделаны в одном и том же месяце, см. рис.2 и рис.3.) [13].

>

2. Факторы воздействующие на климат

2.1 Природные факторы и их влияние на изменение климата

·Парниковые газы

·Солнечное излучение

·Изменение орбиты

·Вулканизм

Парниковые газы

Парниковый эффект — повышение температуры нижних слоёв атмосферы планеты по сравнению с эффективной температурой, то есть температурой теплового излучения планеты, наблюдаемого из космоса. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан и озон

Таблица 2.1.1.Объем выбросов в атмосферу газов влияющих на климат

Потенциально в парниковый эффект могут вносить вклад и антропогенные галогенированные углеводороды и оксиды азота, однако ввиду низких концентраций в атмосфере оценка их вклада проблематична.

Водяной пар является основным естественным парниковым газом, который ответственен более чем за 60 % эффекта.

В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь. С другой стороны, повышение влажности способствует развитию облачного покрова, а облака в атмосфере отражают прямой солнечный свет, тем самым увеличивая альбедо Земли. Альбедо- характеристика отражательной (рассеивающей) способности поверхности земли. Повышенное альбедо приводит к антипарниковому эффекту, несколько уменьшая общее количество поступающего солнечного излучения и дневной прогрев атмосферы


Углекислый газ. Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность биосферы, деятельность человека. Антропогенными источниками являются: сжигание ископаемого топлива; сжигание биомассы, включая сведение лесов; некоторые промышленные процессы приводят к значительному выделению углекислоты (например, производство цемента). Основными потребителями углекислого газа являются растения, однако, в состоянии равновесия, большинство биоценозов за счет гниения биомассы производит приблизительно столько же углекислого газа, сколько и поглощает. Антропогенная эмиссия увеличивает концентрацию углекислого газа в атмосфере, что, предположительно, является главным фактором изменения климата. Углекислый газ является «долго живущим» в атмосфере. Согласно современным научным представлениям, возможность дальнейшего накапливания СО2 в атмосфере ограничена риском неприемлемых последствий для биосферы и человеческой цивилизации

Метан. Парниковая активность метана примерно в 21 раз выше, чем у углекислого газа. Время жизни метана в атмосфере составляет примерно 12 лет. Сравнительно короткое время жизни в сочетании с большим парниковым потенциалом делает его кандидатом для смягчения последствий глобального потепления в ближайшей перспективе.


Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель, пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов.

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет.

Озон- необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли и ввиду своей токсичности вредить живым существам. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы. По наиболее широко распространенным научным оценкам, вклад озона составляет около 25% от вклада СО2


Большая часть тропосферного озона образуется, когда оксиды азота (NOx), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии кислорода, водяных паров и солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO2.

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе, основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху [14].


Солнечное излучение

Солнце является основным источником тепла в климатической системе. Солнечная энергия, превращённая на поверхности Земли в тепло, является неотъемлемой составляющей, формирующей земной климат. Если рассматривать длительный период времени, то в этих рамках Солнце становится ярче и выделяет больше энергии, так как развивается согласно главной последовательности.

Это медленное развитие влияет и на земную атмосферу. Считается, что на ранних этапах истории Земли Солнце было слишком холодным для того, чтобы вода на поверхности Земли была жидкой, что привело к т. н. «парадоксу слабого молодого Солнца» [13]

На более коротких временных отрезках также наблюдаются изменения солнечной активности: 11-летний солнечный цикл и более длительные модуляции. Однако 11-летний цикл возникновения и исчезновения солнечных пятен не отслеживается явно в климатологических данных. Изменение солнечной активности считается важным фактором наступления малого ледникового периода, а также некоторых потеплений,. Циклическая природа солнечной активности ещё не до конца изучена; она отличается от тех медленных изменений, которые сопутствуют развитию и старению Солнца [14].

Изменения орбиты

По своему влиянию на климат изменения земной орбиты сходны с колебаниями солнечной активности, поскольку небольшие отклонения в положении орбиты приводят к перераспределению солнечного излучения на поверхности Земли. Такие изменения положения орбиты называются циклами Миланковича, они предсказуемы с высокой точностью, поскольку являются результатом физического взаимодействия Земли, её спутника Луны и других планет. Изменения орбиты считаются главными причинами чередования гляциальных и интергляциальных циклов последнего ледникового периода. Результатом прецессии земной орбиты являются и менее масштабные изменения, такие как периодическое увеличение и уменьшение площади пустыни Сахара.[14]

Милутин Миланкович (1879-1958)- сербский геофизик, астроном. В начале 20го века выдвинул теорию о теорию периодичности ледниковых периодов. Объяснение теории связано с изменениями в земной орбите («циклы Миланковича»). В соответствии с законом всемирного тяготения Ньютона (а также первым из законов Кеплера, описывающим траектории движения планет Солнечной системы), каждая планета вращается вокруг Солнца по эллиптической орбите.

Кроме того, согласно закону сохранения момента импульса, если Земля вращается вокруг своей оси, то направление этой оси в пространстве должно оставаться неизменным. Но в реальной Солнечной системе Земля вращается вокруг Солнца не в гордом одиночестве. На нее действует притяжение Луны и других планет, и это притяжение оказывает хоть и слабое, но очень важное влияние и на земную орбиту, и на вращение Земли.

За последние 3 миллиона лет было по крайней мере четыре периода масштабного оледенения, а до этого были и еще. Хочу напомнить, что последний ледниковый период достиг своего максимума примерно 18 тысяч лет назад и что время, в которое мы живем, ученые определяют как межледниковое [17].

Вулканизм

Вулканы воздействуют на природную среду и на человечество несколькими способами. Во-первых, прямым воздействием на окружающую среду извергающихся вулканических продуктов (лав, пеплов и т.п.), во-вторых, воздействием газов и тонких пеплов на атмосферу и тем самым на климат, в-третьих, воздействием тепла продуктов вулканизма на лед и на снег, часто покрывающих вершины вулканов, что приводит к катастрофическим селям, наводнениям, лавинам, в-четвертых, вулканические извержения обычно сопровождаются землятресениями и т.д. Но особенно долговременны и глобальны воздействия вулканического вещества на атмосферу, что отражается на изменении климата Земли.

При катастрофических извержениях выбросы вулканической пыли и газов, сублимирующих частички серы и других летучих компонентов, могут достигать стратосферы и вызывать катастрофические изменения климата. Такие извержения, часто имеющие эксплозивный стиль, особенно характерны для островодужных вулканов. Фактически при таких извержениях мы имеем природную модель «ядерной зимы».

Эмиссия газов пассивно дегазирующих вулканов в целом может оказывать глобальное влияние на состав атмосферы. Так плинианские и коигнимбритовых колонны выносили вулканический материал в тропосферу с образованием аэрозольного облака, полярных дымок и нарушением состояния полярного озонового слоя. В качестве примера стоит привести извержение вулкана Уайнапутина, Перу. 19 февраля 1600 года (6 баллов по шкале вулканических извержений VEI). Сильнейшее извержение вулкана в Южной Америке за историческое время, которое, по некоторым оценкам, вызвало общемировое понижение температуры и стало причиной неурожая в России 1601-1603 и начала Смутного времени [14].

2.2 Антропогенные факторы

Сжигание топлива

Многие ученые считают, что процесс потепления климата вызван увеличением выбросов в атмосферу парниковых газов (ПГ), в первую очередь СО2, с продуктами сжигания ископаемых топлив и их накоплением в атмосфере. В середине ХIX в. концентрация СО2 в атмосфере составляла около 290?10-4 % объема, через 100 лет — 313?10-4 %, в 1978 г. — 330?10-4 %, в 1990 г. — 353?10-4 %. В атмосферу выбрасывается в год примерно 700 млрд т СО2: суша — 370млрд т, океан — 330 млрд т, вулканическая деятельность — 2 млрд т. Годовые уровни выбросов СО2 в атмосферу с продуктами сжигания ископаемых топлив составляли: в 1970 г. -16 млрдт, а в 2008 г. -32 млрд т, т.е. не превышали 5 % от суммарной эмиссии СО2 в атмосферу. Это наглядно показано на рисунке 4. Поэтому увеличение содержание СО2 в атмосфере с 1971 гпо 2009 г. определялось, видимо, с большой степенью вероятности, уменьшением поглощения СО2 наземными фотосинтезирующими системами и снижением его растворимости в водах мирового океана. Климатическая система изменялась во времени в результате внешних воздействий, обусловленных «неразумной» хозяйственной деятельностью человека. В результате изменялся состав атмосферы, гидросферы и литосферы из-за загрязнения ОС выбросами энергетики, промышленности, бытовыми отходами, ухудшения землепользования, вырубки и старения лесов. Как следствие, снижался объем и продуктивность фотосинтезирующей растительности и микроорганизмов на поверхности суши и в водах мирового океана. Растительный мир особо чувствителен к концентрациям вредных веществ в атмосфере (оксидов азота и серы, озона, канцерогенных веществ и др.), при этом нарушается его жизнедеятельность, снижается фотосинтезирующая активность и продуктивность. Физико-химическое, биологическое и тепловое загрязнение внутренних водоемов, морей и океанов нарушает газообмен воды с атмосферой, что приводит к снижению растворимости СО2 вводах мирового океана), к исчезновению многих видов животных и растений. Способность природных систем к самоочищению атмосферы серьезно нарушена, атмосферный воздух не в полной мере выполняет свои защитные жизнеобеспечивающие экологические функции. Из этого следует, что современное глобальное потепление приземного слоя атмосферы в значительной степени является антропогенно-экологической проблемой, определяемой, в том числе, снижением способности деградируемых наземных и океанических экосистем поглощать (СО2) по мере роста их концентраций в атмосфере. Основным антропогенным источником выбросов является сжигание всевозможных видов углеродосодержащего топлива. В настоящее время экономическое развитие обычно связывается с ростом индустриализации. Исторически сложилось, что подъём экономики зависит от наличия доступных источников энергии и количества сжигаемого ископаемого топлива. Данные о развитии экономики и энергетики для большинства стран за период 1860-1973 гг. Свидетельствуют не только об экономическом росте, но и о росте энергопотребления. Тем не менее одно не является следствием другого.

Начиная с 1973 года во многих странах отмечается снижение удельных энергозатрат при росте реальных цен на энергию..В последние десятилетия химический состав атмосферы вызывает особенный интерес в связи с так называемым «парниковым эффектом», который заключается в том, что атмосфера поглощает энергию инфракрасной части спектра уходящего от поверхности Земли излучения в диапазоне 8-18 мкм. Усиление эффекта ведет к повышению средней температуры атмосферного воздуха, изменению ее распределения по земной поверхности, уменьшению атмосферной циркуляции и другим явлениям, вследствие чего могут начаться глобальные изменения климата с неблагоприятными последствиями: засуха, таяние ледников Антарктиды и Гренландии, подъем уровня Мирового океана, затопление прибрежных, плотно населенных территорий и др.[2]

Аэрозоли

Аэрозоль- дисперсная система, состоящая из взвешенных в газовой среде, обычно в воздухе, мелких частиц. В зависимости от природы аэрозоли подразделяют на естественные и искусственные. Естественные аэрозоли образуются вследствие природных сил, например при вулканических извержениях, сочетании эрозии почвы с ветром, явлениях в атмосфере. Искусственные аэрозоли образуются в результате хозяйственной деятельности человека. Важное место среди них занимают промышленные аэрозоли. Примером промышленного аэрозоля может служить газовый баллончик Важнейшие оптические свойства аэрозолей — рассеяние и поглощение ими света. В прошлом климат Земли изменялся много раз без воздействия или при малом воздействии антропогенных источников. Поэтому возникает вопрос: может ли оказать воздействие на климат присутствие в атмосфере аэрозоля вообще и антропогенного в частности. Отмечалось, что глобальные выбросы антропогенного аэрозоля в настоящее время достаточно велики. Так, среднегодовой выброс аэрозоля из естественных источников составляет 2312 млн. т, а из антропогенных-296 млн. т, что составляет соответственно 88.5 и 11.5% от общего среднегодового количества генерируемого аэрозоля [12]

При оценке потенциального влияния антропогенного аэрозоля важно сознавать, что его образование ограничено промышленными центрами, расположенными в основном в Северной Америке, Европе, Японии и на части территории Австралии. Таким образом, 296 млн. т антропогенного аэрозоля образуется над площадью, равной примерно 2.5% поверхности Земли. Для сравнения отметим, что эта же территория продуцирует 58 млн. т аэрозоля естественного происхождения, т. е. лишь 20% от антропогееного аэрозоля. Эта относительно высокая концентрация антропогенного аэрозоля над относительно маленькой площадью позволяет предположить возможность локального, вполне вероятно что и регионального, воздействия на климат. Например, в большом количестве работ рассматривается влияние больших промышленных центров на процесс облакообразования, влияние промышленности на термический режим атмосферы, изменение прозрачности атмосферы в результате хозяйственной деятельности человека. Известно, что изменение аэрозольной оптической толщины со временем в стратосфере после вулканических извержений, а в тропосфере от промышленных загрязнений и пылевых бурь могут вызывать климатические изменения. Непоглощающий аэрозоль увеличивает альбедо атмосферы и, следовательно уменьшает количество солнечной радиации, достигающей поверхности Земли. Если аэрозоль поглощает в коротковолновой области спектра, то поглощенная энергия солнечного излучения передается атмосфере. Это приводит к нагреванию атмосферы и охлаждению подстилающей поверхности. Если аэрозоль поглощает и соответственно испускает энергию в инфракрасной области спектра, то это приводит к противоположному результату, т. е. энергия выводится из тропосферы, что приводит к охлаждению воздуха и усилению парникового эффекта у поверхности Земли. Общий эффект зависит от соотношения коэффициентов поглощения в видимой и инфракрасной области, а также от альбедо поверхности. Изменение радиационных потоков в аэрозольной атмосфере приводит к изменению ее температурной стратификации, а также к изменению температуры земной поверхности.

Те же механизмы, что приводят к изменению температурного режима поверхности и атмосферы, могут влиять на точность определения температуры поверхности моря и суши из космоса, и на возникновение и поведение воздушных потоков, включая развитие струйных течений на низких высотах. Эти факторы сказываются также на точность местного и регионального прогноза погоды. Наличие сильных полос поглощения в атмосферном «окне» 8 -12 мкм для аэрозоля аридного происхождения может привести к уменьшению температуры подстилающей поверхности, которое достигает нескольких кельвинов. [4]

Скотоводство

«Длинная тень животноводства», — доклад Организации Объединенных Наций по вопросу защиты окружающей среды, от 29 ноября 2006 года , описывающий полный урон , наносимый сектором животноводства окружающей среде и человеку.

Оценки основаны на самых последних и полных данных , с учетом прямых последствий скота вместе с нуждами этого сектора кормовых культур . Сектор животноводство стал одним из главных 2-3 наиболее значимых причин наиболее серьезных экологических проблем , на местном и глобальном уровне . Выводы этого доклада, показывают , что необходимо серьезно взяться за политику по вопросу скотоводства.[14]

Данные доклада:

·Животноводство отвечает за 18% выбросов парниковых газов, измеренная в эквиваленте СО2 (углекислый газ). Для сравнения на транспортный сектор приходится 13.5% выбросов. Стоит отметить, этот показатель был пересмотрен в 2009 году двумя учёными из Worldwatch Institute: они оценили вклад животноводства в выбросы парниковых газов в 81 % общемирового.

·Животноводство использует 30% поверхности суши Земли, в основном постоянные пастбища, но и 33% пахотных земель в мире используется для производства корма для животных

·Животноводство как ожидается, будет основным внутренним источником фосфора и азотного загрязнения Южно-Китайского моря, способствуя утраты биоразнообразия в морских экосистемах (так называемые «мертвые зоны»).

·15 из 24 важных полезных для человека, экосистем находятся в упадке, очевидно виновником которых сельскохозяйственные животные8]

3. Положительные и отрицательные последствия глобального потепления, прогноз

К негативным последствиям можно отнести:

-деградация вечной мерзлоты

-смещение границ климатических зон

-рост годового стока в бассейнах рек

-увеличение питания подземными водами

-неравномерное распределения количества осадков холодного и теплого периода

-рост процессов опустынивания

-развитием процессов заболачивания

-подъем уровня мирового океана

К позитивным последствиям можно отнести:

+возрастание продуктивности естественных лесных формаций

+увеличение урожайности культурных растений

Возможные сценарии глобальных климатических изменений:

Сценарий 1 — глобальное потепление будет происходить постепенно

Земля очень большая и сложная система, состоящая из большого количества связанных между собой структурных компонентов. На планете есть подвижная атмосфера, движение воздушных масс которой распределяет тепловую энергию по широтам планеты, на Земле есть огромный аккумулятор тепла и газов — Мировой океан (океан накапливает в 1000 раз больше тепла, чем атмосфера) Изменения в такой сложной системе не могут происходить быстро. Пройдут столетия и тысячелетия, прежде чем можно будет судить об сколько-нибудь ощутимом изменении климата

Сценарий 2 — глобальное потепление будет происходить относительно быстро

Самый «популярный» в настоящее время сценарий. По различным оценкам за последние сто лет средняя температура на нашей планете увеличилась на 0,5-1°С, концентрация — СО2 возросла на 20-24 %, а метана на 100%. В будущем эти процессы получат дальнейшее продолжение и к концу XXI века средняя температура поверхности Земли может увеличиться от 1,1 до 6,4°С, по сравнению с 1990 годом (по прогнозам IPCC от 1,4 до 5,8°С). Дальнейшее таяние Арктических и Антарктических льдов может ускорить процессы глобального потепления из-за изменения альбедо планеты. По утверждению некоторых учёных, только ледяные шапки планеты за счёт отражения солнечного излучения охлаждают нашу Землю на 2°С, а покрывающий поверхность океана лёд существенно замедляет процессы теплообмена между относительно теплыми океаническим водами и более холодным поверхностным слоем атмосферы. Кроме того, над ледяными шапками практически нет главного парникового газа — водяного пара, так как он выморожен. Глобальное потепление будет сопровождаться подъёмом уровня мирового океана. С 1995 по 2005 год уровень Мирового океана уже поднялся на 4 см, вместо прогнозируемых 2-ух см. Если уровень Мирового океана в дальнейшем будет подниматься с такой же скоростью, то к концу XXI века суммарный подъём его уровня составит 30 — 50 см, что вызовет частичное затопление многих прибрежных территорий, особенно многонаселённого побережья Азии. Следует помнить, что около 100 миллионов человек на Земле живёт на высоте меньше 88 сантиметров над уровнем моря. Кроме повышения уровня Мирового океана глобальное потепление влияет на силу ветров и распределение осадков на планете. В результате на планете вырастет частота и масштабы различных природных катаклизмов (штормы, ураганы, засухи, наводнения).В настоящее время от засухи страдает 2% всей суши, по прогнозам некоторых учёных к 2050 году засухой будет охвачено до 10% всех земель материков. Кроме того, изменится распределение количества осадков по сезонам. В Северной Европе и на западе США увеличится количество осадков и частота штормов, ураганы будут бушевать в 2-а раза чаще, чем в XX веке. Климат Центральной Европы станет переменчивым, в сердце Европы зимы станут теплее, а лето дождливее. Восточную и Южную Европу, включая Средиземноморье, ждёт засуха и жара.

Сценарий 3 — Глобальное потепление в некоторых частях Земли сменится кратковременным похолоданием

Известно, что одним из факторов возникновения океанических течений является градиент (разница) температур между арктическими и тропическими водами. Таяние полярных льдов способствует повышению температуры Арктических вод, а значит, вызывает уменьшение температурной разницы между тропическими и арктическими водами, что неминуемо, в будущем приведёт к замедлению течений. Одним из самых известных тёплых течений является Гольфстрим, благодаря которому во многих странах Северной Европы среднегодовая температура на 10 градусов выше, чем в других аналогичных климатических зонах Земли. Понятно, что остановка этого океанического конвейера тепла очень сильно повлияет на климат Земли. Уже сейчас течение Гольфстрим, стало слабее на 30% по сравнению с 1957 годом. Математическое моделирование показало, чтобы полностью остановить Гольфстрим достаточно будет повышения температуры на 2-2,5 градуса. В настоящее время температура Северной Атлантики уже прогрелась на 0,2 градуса по сравнению с 70-ми годами. В случае остановки Гольфстрима среднегодовая температура в Европе к 2010 году понизится на 1 градус, а после 2010 года дальнейший рост среднегодовой температуры продолжится. Другие математические модели «сулят» более сильное похолодание Европе. Согласно этим математическим расчётам полная остановка Гольфстрима произойдёт через 20 лет, в результате чего климат Северной Европы, Ирландии, Исландии и Великобритании может стать холоднее настоящего на 4-6 градусов, усилятся дожди и участятся шторма. Похолодание затронет также и Нидерланды, Бельгию, Скандинавию и север европейской части России. После 2020-2030 года потепление в Европе возобновится по сценарию №2.

Сценарий 4 — Глобальное потепление сменится глобальным похолоданием

Остановка Гольфстрима и других океанических вызовет глобальное похолодание на Земле и наступление очередного ледникового периода.

Сценарий 5 — Парниковая катастрофа

Парниковая катастрофа — самый «неприятный» сценарий развития процессов глобального потепления. Автором теории является наш учёный Карнаухов, суть её в следующем. Рост среднегодовой температуры на Земле, вследствие увеличения в атмосфере Земли содержания антропогенного CO2, вызовет переход в атмосферу растворённого в океане CO2, а также спровоцирует разложение осадочных карбонатных пород с дополнительным выделением углекислого газа, который, в свою очередь, поднимет температуру на Земле ещё выше, что повлечёт за собой дальнейшее разложение карбонатов, лежащих в более глубоких слоях земной коры (в океане содержится углекислого газа в 60 раз больше, чем в атмосфере, а в земной коре почти в 50 000 раз больше). Ледники будут интенсивно таять, уменьшая альбедо Земли. Такое быстрое повышение температуры будет способствовать интенсивному поступлению метана из тающей вечной мерзлоты, а повышение температуры до 1,4-5,8°С к концу столетия будет способствовать разложению метангидратов (льдистых соединений воды и метана), сосредоточенных преимущественно в холодных местах Земли. Если учесть, что метан, является в 21 раз более сильным парниковым газом, чем CO2 рост температуры на Земле будет катастрофическим. Чтобы лучше представить, что будет с Землёй лучше всего обратить внимание на нашего соседа по солнечной системе — планету Венера. При таких же параметрах атмосферы, как на Земле, температура на Венере должна быть выше Земной всего на 60°С (Венера ближе Земли к Солнцу) т.е. быть в районе 75°С, в реальности же температура на Венере почти 500°С. Большинство карбонатных и метано-содержащих соединений на Венере давным давно были разрушены с выделением углекислого газа и метана. В настоящее время атмосфера Венеры состоит на 98% из СО2, что приводит к увеличению температуры планеты почти на 400°СЕсли глобальное потепление пойдёт по такому же сценарию, как на Венере, то температура приземных слоев атмосферы на Земле может достигнуть 150 градусов. Повышение температуры Земли даже на 50°С поставит крест, на человеческой цивилизации, а увеличение температуры на 150°С вызовет гибель почти всех живых организмов планеты.

По оптимистическому сценарию Карнаухова, если количество, поступающего в атмосферу CO2, останется на прежнем уровне, то температура 50°С, на Земле установится через 300 лет, а 150°С через 6000 лет. К сожалению, прогресс не остановить, с каждым годом объёмы выбросов CO2 только растут. По реалистическому сценарию, согласно которому выброс CO2 будет расти с такой же скоростью, удваиваясь каждые 50 лет, температура 502 на Земле уже установится через 100 лет, а 150°С через 300 лет.[13][6]

Заключение

В результате отбора и обобщения информации в настоящей курсовой работе рассмотрены факторы воздействующие на климат, дана характеристика каждого из них, составлены прогнозы его изменения. Составлены прогнозы изменения климата и их описание.В результате проведенного исследования можно сделать следующие выводы: климат на земле менялся на протяжении миллионов лет и продолжает меняется, в наши дни климат продолжает меняться под воздействием описаных выше факторов, также имеет место быть такое явления как глобальное потепление которое активизировалось в течении последних двух столетий под воздействием антропогенных факторов. Из этого понятно что изменение климата это сложный процесс, на который оказывает влияние как человек так и природа

Используемая литература

1. Ершов Э.Д.; «Общая геокриология» 1990

. П.М. Канило, И.В. Парсаданов; «Проблемы сжигания ископаемых топлив и Глобальное потепление климата» 2010

«Ледниковый период»; Большая Советская Энциклопедия

. «Аэрозоли»; Большая Советская Энциклопедия

. Гаршин И.К.; «Галактические года в истории Земли и ее биосферы

6. Кривенко В. Г. «Концепция внутривековой и многовековой изменчивости климата как предпосылка прогноза // Климаты прошлого и климатический прогноз»

7. «Изменение климата 2007». Обобщающий доклад Межправительственной группы экспертов по изменению климата

. Доклад ООН «Длинная Тень Скотоводства»; От 29 Ноября 2006 Года

. «Национальный доклад по проблемам изменения климата» от 12 августа 2002 года

. Климат океана- http://www.okeanavt.ru/klimat-okeana.html(климат океана)

11. http://www.ecoexpertcenter.ru/info/koncepciya_cikliki_144.html (Концепция природной циклики и некоторые задачи хозяйственных стратегий России)

. http://www.newreferat.com/ref-7209-1.html (Влияние городского антропогенного аэрозоля на микрофизические характеристики атмосферы)

. http://www.priroda.su/item/389/catid/ (Глобальное потепление: факты, гипотезы, комментарии)

. http://ru.wikipedia.org/wiki/(Свободная энциклопедия)

http://www.bestreferat.ru/referat-213661.html (История ледниковых эпох)

http://biofile.ru/geo/3757.html (Оледенение земли)

http://elementy.ru/trefil/milankovic_cycles(Циклы Меланковича)

Источник: diplomba.ru

Окончание статьи Игоря Эзау, кандидата физико-математических наук, Ph.D., старшего исследователя Центра дистанционного зондирования Земли и изучения окружающей среды им. Ф. Нансена и Центра исследований климата им. В. Бьеркнеса, Берген, Норвегия. Начало см. по ссылке.

Реально ли потепление климата?

Почему изменения климата так трудно заметить

Почему вы считаете, что глобальное потепление — реальность? Где мы можем увидеть его проявления вокруг нас?

Изменения климата — процесс медленный и всё ещё малозаметный на фоне межгодовых аномалий погоды в большинстве районов мира (Mahlstein et al., 2011). В первую очередь изменения климата заметны там, где и сама погода мало меняется, то есть в тропиках над океанами. Но как раз там-то и не на чем это продемонстрировать, кроме сухих статистических цифр. Рисунок 5 наглядно демонстрирует эти трудности. Исследования общественного мнения показали, что люди гораздо охотнее соглашаются с выводами климатологов о глобальном потеплении, если уже на их памяти, экстремально тёплые годы случались относительно недавно. В этом смысле исключительно жаркое лето в центральной России в 2010-м и в арктических районах в 2016-м помогли серьёзно изменить мнение россиян о климатических процессах.

Отличные анимированные иллюстрации меняющегося климата предлагает в своём твиттере Гэвин Шмидт (см., например, Рисунок 6).

Рисунок 6. Изменения разброса температур по месяцам и 30-летиям
Рисунок 6. Изменения разброса температур по месяцам и 30-летиям.

Где признаки потепления климата очевидны для каждого?

Тем не менее в мире есть регионы, где изменения климата более чем наглядны. Это крайний Север и Арктика, хотя и там находятся «понимающие» люди, которые наотрез отказываются верить своим глазам. Рисунок 7 более чем наглядно показывает отступление ледника в Норвегии за 121 год. Причём ледник успел исчезнуть даже с перевала в горах! Ледники отступают по всему миру, хотя в отдельных местах некоторые ледники растут из-за выпадения большего количества снега. Тот очевидный факт, что горные ледники отступают, очень важен. Именно потепление климата за счёт выбросов углекислого газа должно приводить в первую очередь к прогреву верхней атмосферы (3—6 км над поверхностью Земли), а уж потом и самой поверхности. Ни Солнце, ни космические лучи, ни естественные климатические изменения не приводят к такому хитрому эффекту.

Рисунок 7. Энгабреен — ледник в северной Норвегии (Му-и-Рана). Фотографии сделаны с одной точки в 1889 и 2010 годах
Рисунок 7. Энгабреен — ледник в северной Норвегии (Му-и-Рана). Фотографии сделаны с одной точки в 1889 и 2010 годах.

Рисунок 8 показывает куда более масштабное исчезновение льдов в Ледовитом океане. И хотя Ледовитый океан по-прежнему замерзает, этот лёд уже не тот. Он гораздо тоньше, более солёный и потому тает и ломается быстрее.

Рисунок 8. Возраст (белый лёд — старый) и положение льдов в Ледовитом океане по данным зондирования Земли из космоса.
Рисунок 8. Возраст (белый лёд — старый) и положение льдов в Ледовитом океане по данным зондирования Земли из космоса.

Потепление реально, ну и что?

Дождь сегодня обещают синоптики. Врут, конечно, но зонтик захватить с собой всё-таки будет не лишне!

Аномалии погоды приходят и уходят, а климатические изменения медленно, но неумолимо, меняют нашу окружающую среду и нашу жизнь, в конечном итоге и само наше общество. То, что в погоде понимают все — неудивительно, в конце концов, у нас у всех есть более или менее полные традиционные знания об окружающей среде. Однако, ни это наше понимание, ни наш скептицизм по отношению к синоптикам и их прогнозам, ни даже самодеятельные прогнозы некоторых особо «понимающих» товарищей, не мешают нам прислушиваться и даже следовать официальным прогнозам погоды.

Все меняется, как только мы «погоду» поменяем на «климат». Теперь уверенность «понимания» достигает невероятных вершин! И действительно, ценные указания мастеров пера и экономических советников, если им следовать, не принесут немедленного ущерба, как попадание молнии в самолёт, но зато более отдалённый ущерб может быть куда серьёзней.

Например, недостаточный учёт потепления (и пренебрежение температурным режимом почвы) в городах крайнего севера привёл к тому, что до 70% зданий в них оказались повреждены протаиванием мерзлоты (Grebenets et al, 2012; Streletskiy et al., 2012).

Увы, есть различие в спорах по вопросам строительства пирамид 5000 лет назад и строительства атомных электростанций сейчас. Различие это в том, что альтернативное мнение по второму вопросу может отразиться за здоровье и жизни любого слушателя. Точно также и пренебрежение «официальными знаниями» климатологов отразится на каждом, даже и незаинтересованном гражданине. Отразится не сразу, но масштабно и очень дорого.

Спросите себя, а Вы хотите рискнуть своим имуществом или здоровьем, отвергая с порога результаты, полученные «официальными учёными», даже если и есть некоторая вероятность того, что они неточны и где-то может быть и неверны?

Чем мы рискуем, пренебрегая зловредными «официальными знаниями»?

Как на нашей жизни может сказаться глобальное потепление? На экономике? На чём ещё? Чем вообще это грозит людям? Ну подумаешь, чуток теплее будет.

Верно, что климат менялся в прошлом, меняется сейчас и будет меняться в будущем, в том числе, и по не зависящим от человека причинам. Рисунок 9, взятый с известного научного сайта климатологов RealClimate, показывает изменение климата в исторической и геологической перспективе. Действительно, на Земле были периоды, когда температура была намного выше и намного ниже современной. Даже сравнительно недавно, последний межледниковый период был гораздо теплее современного климата. Более того, даже и в наш межледниковый период, во время оптимума, температуры были выше. Например, всего лишь 6 тысяч лет назад в Прибалтике климат напоминал Северную Францию, развивалось земледелие, и было довольно многочисленное, по сравнению с более поздними эпохами, население (Warden et al., 2017).

Рисунок 9. Изменение глобальной температуры поверхности Земли за последние 550 миллионов лет
Рисунок 9. Изменение глобальной температуры поверхности Земли за последние 550 миллионов лет. Источник: http://www.realclimate.org/index.php/archives/2014/03/can-we-make-better-graphs-of-global-temperature-history/.

Казалось бы, никакой опасности нет и незачем удерживать потепление в пределах 1,5 °C от современных температур. В реальности, однако, в дело вмешивается геополитика и экономика. Мир поделён на страны, и в каждой стране города, земледелие, дороги, да и весь образ жизни приспособлены к существующему климату. Ухудшение условий жизни, стихийные бедствия и даже сравнительно небольшие подвижки климатических норм ведут к необходимости расплачиваться большим ущербом и новыми капиталовложениями, а часто и жизнями.

Интересный пример мы видим в Норвегии. Здесь 99% электричества производится на гидроэлектростанциях. В горах построены большие водохранилища, в которых с периода осенних дождей держат воду, чтобы в достатке производить электроэнергию зимой, когда вода копится в виде снега, а спрос на энергию наибольший. Поэтому, к концу октября, когда в горах ложится снег, водохранилища полны до краёв. И вот климат теплеет, и дожди, а не снег, все чаще идут в ноябре и декабре. Воду приходится сбрасывать. В течение ряда последних лет дождей в ноябре было настолько много, что сброс воды приводил к массовым разрушениям дорог и зданий. Ущерб осенью дополнялся ущербом весной, когда из-за недостатка снега (он же растаял и был сброшен) не хватало электричества, и предприятия были вынуждены останавливать производство, так как покупать энергию из Швеции слишком дорого.

Ущерб в менее развитых странах, как правило, гораздо больше. Посмотрите на Сирию, где засуха в течение ряда лет привела к массовой миграции, политической нестабильности и гражданской войне.

Мало ли парниковых газов выбрасывает человек?

Какова роль человеческой деятельности в том, что происходит с климатом на планете? Я слышал, что парниковых газов, выбрасываемых в атмосферу предприятиями, относительно мало. И что, мол, потепление — это естественный процесс, на который человек никак не влияет.

В том, что изменения атмосферы происходят именно от парниковых газов, которые выбросил человек — сомнения нет. И не только и даже не столько потому, что эти изменения согласуются с изменениями экономической активности человечества, с количеством добытых угля, нефти и газа, а главным образом потому, что изотопный состав сжигаемого углерода согласуется с составом появляющегося углекислого газа. И он отличен от такового естественного происхождения.

Поясню. Человечество меняет химический состав атмосферы, главным образом, через выбросы CO2. В настоящее время, начиная примерно с 1920-х годов, человечество является главным источником нового CO2 в атмосфере. Конечно, существует круговорот CO2 в природе. Растения и океан поглощают (растворяют) CO2 из атмосферы, а процессы дыхания, горения и испарения возвращают его обратно. Нам известно, что содержание углекислого газа в воздухе менялось в очень узких пределах на протяжении сотен тысяч лет. Чтобы найти такое высокое содержание CO2, которое имеется сейчас, то есть 400 частей на миллион частей воздуха, нам нужно пойти назад аж на 3 миллиона лет. Ни наступления и отступления ледников, ни изменения уровня океана на сотню метров, ни извержения или молчание вулканов не приводили за эти миллионы лет к таким большим концентрациям углекислого газа. Таким образом, нового CO2 поставляется в атмосферу много, и поставляет его именно человечество, что установлено не подсчётами баланса, а точными методами изотопного анализа — «старый» углерод из ископаемого топлива + «новый» кислород из современной атмосферы. В настоящее время прирост содержания CO2 в воздухе составляет 0,5% в год и колеблется в согласии с экономической активностью. Кризис 2008-го года вполне чётко виден на рисунке ниже, как замедление прироста CO2 в 2009-м. Так же как, кстати, и кризис, связанный с распадом СССР в 1989 — 1993-м. Этот же рисунок показывает, что прирост содержания CO2 за пять лет перекрывает размах сезонного цикла (синий зигзаг на верхнем графике), то есть способности северных лесов поглощать углекислый газ летом.

Рисунок 9b. Кризис 2008 года виден на рисунке как замедление прироста СО₂ в 2009-м. Как и связанный с распадом СССР кризис в 1989—1993-м. Также рисунок показывает, что прирост содержания СО₂ за пять лет перекрывает размах сезонного цикла (синий зигзаг на верхнем графике), то есть способности северных лесов поглощать углекислый газ летом. Рисунок подготовлен в институте Скриппса (США)
Рисунок 9b. Рисунок показывает изменение содержания углекислого газа в атмосфере с 1958-го по 2012-й годы. Он также широко известен под популярным именем «Кривая Киллинга». На верхней панели красной линией показаны осреднённые по всему земному шару и по годам измерения содержания угликислого газа (СО₂), которое измеряется в частях СО₂ на миллион частей воздуха. Данные собраны Институтом океанографии Скриппса (США). Синей линией показаны данные еженедельных спутниковых измерений СО₂. Сезонные изменения содержания СО₂, которые связаны с летней активностью северных лесов, видны как мелкие колебания (зигзаги) синей линии. Нижняя панель показывает изменения осреднённого за год содержания СО₂ год от года. Положительные значения означают прирост содержания СО₂ в атмосфере.

В дополнение к CO2 человечество выбрасывает и другие парниковые газы, как то метан, окислы азота, галокарбоны (галогензамещённые углеводороды) и прочая. Но их совместное влияние сравнительно невелико, а главное, они не живут долго, то есть если выбросы прекратить, то через некоторое время, порядка 30 лет, их влияние полностью исчезнет.

Новый CO2, который добавило человечество в воздух, приводит к изменению свойств атмосферы таким образом, что для поддержания баланса между потоком тепла к Земле и от Земли требуется, чтобы Земля была теплее. То есть попросту вызывает рост температуры, в первую очередь в атмосфере на высотах 3—6 км над землёй, а затем и у поверхности. Именно это мы и наблюдаем. Это очень важный эффект. Как только кто-то особо «понимающий» хочет предложить что-то своё, то он должен сразу объяснить, каким таким образом у него температура растёт вначале на высотах в несколько километров, а уж потом у поверхности. Побочный, но очень мощный, эффект от такого высотного потепления, состоит в том, что атмосфера начинает вмещать больше обычного водяного пара. Его человечество почти не добавляет, он сам по себе испаряется с океанов, как только у воздуха появляется возможность больше его захватить. Способность воздуха удерживать водяной пар ОЧЕНЬ быстро растёт с ростом температуры. В самой сухой пустыне при 40 градусах жары в воздухе содержится больше водяного пара, чем под проливным дождём при +10. Этой особенностью пользуются в тропиках. На Канарских островах виноградники получают воду от того, что холодная почва по ночам выжимает её из тёплого воздуха. Так же образуется изморось на стёклах авто, которую владельцам приходится чистить по утрам. Во влажном воздухе Норвегии, на стекло машины может осесть до 2 см измороси за ночь.

Итак, верхняя атмосфера греется от CO2, при этом там скапливается больше водяного пара с океанов, но водяной пар сам по себе мощный парниковый газ. Он усиливает в 6 (шесть) раз начальный прогрев от CO2. Но водяной пар живёт в атмосфере лишь 4—8 дней, то есть если внезапно убрать CO2 из воздуха, то и дополнительный прогрев от водяного пара исчезнет за неделю. Таким образом, выбросы CO2 являются тем самым изменением, которое приводит весь климат земли в движение. CO2 живёт долго (по меркам цивилизации), и он запускает целую серию эффектов, которые приводят к усилению потепления, окислению океанов и, в конечном итоге, к необратимым климатическим изменениям.

Итак, уже выброшенные парниковые газы способны нагреть климат Земли гораздо больше, чем мы сегодня наблюдаем. Но часть этого нагрева пока не усвоена Землёй, и в силу этого температуры будут расти ещё многие десятилетия. А часть нагрева компенсируется охлаждающими эффектами: вырубка лесов, выброс пыли и сульфатных частичек, некоторый избыток вулканической активности и недостаток солнечной активности в последние десятилетия.

Изменение климата состоит из взаимосвязанных процессов и их можно предсказать!

Среди публики распространено мнение, что любое утверждение можно рассматривать само по себе, вне связи с комплексом разнообразных следствий. Это не так. Процессы в земной климатической системе взаимосвязаны. Если предположить, что климат меняется из-за солнечной активности или активности космических лучей, то в таком случае мы бы наблюдали определённый набор взаимосвязанных изменений в температуре воздуха, осадках, облаках и т.п. Однако, то, что мы наблюдаем, хорошо согласуется только с гипотезой об антропогенных изменениях климата, и плохо с иными популярными гипотезами.

Некоторые думают, что изменения климата нужно признать только потому, что существует консенсус (согласие) относительно этой гипотезы у 2—3-х тысяч учёных-климатологов. На самом деле, согласны учёные или не согласны с интерпретацией наблюдений и причин изменений, не имеет большого значения. Эксперты, конечно, рассмотрев проблему, скорее приблизятся к правильному решению, но объективная истина существует сама по себе, вне зависимости от наших субъективных, пусть даже и экспертных знаний о ней. Верно ли наше понимание истины, нам помогают понять предсказания будущих изменений. Так понимание сторонников цикличности климата неверно не потому, что их мало, а потому, что их прогноз оказался неверен. А верен ли прогноз сторонников антропогенного потепления? Рисунок 10 ниже показывает, что таки да! Современные модели климата совместно со сценариями изменений состава атмосферы (выброса парниковых газов) достаточно хорошо предсказывают изменения глобальной температуры, несмотря на вулканы и прочие случайные климатические воздействия. Обратите внимание, что модели действительно довольно плохо предсказывают случайную составляющую климатической изменчивости в интервале времени прогноза от года до десятилетия. Тут требуется знание о состоянии океана, а в океане, особенно в тропиках, очень мало наблюдений. Там же где наблюдений в океане достаточно (например, в Северной Атлантике), модели имеют предсказательную силу и на десятилетнем интервале (см. по ссылкам Årthun et al., 2017). Однако для более долгих интервалов времени модели весьма точно предсказывают изменения.

Напомню, что климат — это средний режим погоды за 30 лет наблюдений. Это определение климата использовано для построения таблиц климата в российских СНиПах, например. То есть, наблюдаем температуру по градуснику за окном 30 лет каждый день или чаще, осредняем и получаем одну цифру — среднюю климатическую температуру за вашим окном. Средняя температура не значит, что она же и наблюдается чаще всего. Например, у вас может быть зимой −30, а летом +30, при этом средняя будет 0, хотя этот ноль, может быть, наблюдался-то всего пару дней в году.

На практике, нередко говорят о климате как о среднем режиме погоды, определяя это среднее как кому удобно, скажем за 10 или даже 5 лет. Для обсуждения современного потепления, как правило, пользуются 10-летним средним, а иначе наиболее интересные свежие данные были бы исключены из анализа.

В настоящее время в точности глобальных предсказаний сомнений нет и их можно самостоятельно получить и проверить у ведущих научных центров. Метеорологический центр Великобритании выдал вот этот прогноз на Рисунке 11. Проблема в том, чтобы детализировать такие прогнозы на меньшие регионы, где они были бы крайне полезны для принятия решений. То есть нужно превратить климатические исследования в климатические технологии и услуги. Задача не то что бы новая, но на современном техническом уровне ещё не решённая.

Рисунок 10. Сравнение наблюдаемых изменений климата и предсказаний климатических моделей (серый фон) и их среднего (чёрная кривая)
Рисунок 10. Сравнение наблюдаемых изменений климата и предсказаний климатических моделей (серый фон) и их среднего (чёрная кривая).
Рисунок 11. Изменения глобальной температуры воздуха и её прогноз на 2018
Рисунок 11. Изменения глобальной температуры воздуха и её прогноз на 2018 по версии Метеорологического офиса Великобритании (https://www.metoffice.gov.uk/news/releases/2017/2018-global-temperature-forecast).

Кому выгодно «глобальное потепление»?

А ещё говорят о «всемирном заговоре климатологов», и о том, что «корпорациям выгодна идея глобального потепления». Что можно на это возразить?

Климатологам выгодны глобальные изменения климата

Несомненно, любой мощный общественно-экономический процесс, каким является и влияние изменений климата, оказывается выгодным многим сторонам. Климатологам изменения климата выгодны в том смысле, что это позволяет получать финансирование исследований. Это даёт работу тем самым 3000 авторам международных докладов и ещё десяткам тысяч менее заметных специалистов-климатологов. В свою очередь и перераспределение специалистов из других наук в климатологию, и главным образом в тематику глобального потепления, увеличивает количество тех, кто жизненно заинтересован в продолжении климатических исследований.

За климатологами идут чиновники и специалисты по окружающей среде частных компаний. В Норвегии на одного климатолога-учёного приходиться до 5 таких околоклиматических рабочих мест. Им всем тоже выгодно внимание к изменениям климата.

Впрочем, нужно признать, что и учёным и чиновникам все равно, идёт ли похолодание или потепление, ведь любое изменение требует исследований и мониторинга. Так что им нет особого смысла держаться именно за идею глобального потепления — это данные и модельные расчёты убеждают их, что климатическая система работает именно так, как работает.

За ними идут политики, которые делают на этом активизме карьеру. Идут энергетические компании, получающие субсидии, идут компании, продающие «зелёные» продукты. Им, в значительной мере, интересно именно потепление. Но, в то же время имеется большое количество и богатых компаний, которым интересно отсутствие потепления. Поэтому можно сказать, что идёт борьба интересов. В этой борьбе побеждает всё-таки здравый смысл. Даже если компания и сделала свой капитал на выбросах парниковых газов и готова до последнего бороться за свою прибыль, то компанию будет волновать и безопасность её имущества. По мере накопления свидетельств влияния глобального потепления, даже самые консервативные компании начинают переоценивать свои риски. Ураган, обрушившийся на нефтяную столицу США — Хьюстон — в 2017-м, заставил многих призадуматься, а не нанесли ли они сами себе ущерб.

В настоящее время можно смело утверждать, что, как раз наоборот, идея отсутствия глобального потепления выгодна только фрикам, даже если в числе таковых оказывается Трамп, которые высказывают её лишь ради мелких сиюминутных выгод от интереса лично к себе.

А что мы можем с этим сделать?

А может ли человек предотвратить потепление? Какие меры нужно предпринимать? Или надо смириться?

Природа глобального потепления такова, что изменения баланса тепла и состава нашей атмосферы необратимы, по крайней мере на масштабах столетий. Это не загрязнение, которое можно было бы очистить и все вернуть в прежнее состояние. Это не временное воздействие, которое можно было бы снять и всё бы было как прежде через некоторое время. Эксперименты с моделями климата показывают, что даже если бы удалось каким-то чудесным образом удалить весь накопленный человечеством углекислый газ в атмосфере, то климат бы все равно не вернулся к своим историческим нормам. В том числе и поэтому изменения климата вызывают такую озабоченность специалистов. В силу этих же причин, геоинженерные решения могут мало чем помочь. Они не просто дороги и сложны технически, но и приводят к наибольшим изменениям совсем в других районах, не там, где наблюдаются наибольшие изменения от потепления климата. В итоге человечество рискует получить дополнительные проблемы, а не ослабления проблем потепления.

Итак, тот потенциал, который заложен прошлыми выбросами газов, уже необратим. Человечество должно как-то приспосабливаться, ну и, конечно, постараться не увеличивать своё воздействие на климат в будущем. Рисунок 12 показывает, сколько углекислого газа человечество ещё может выбросить до достижения условной границы в 1,5 градуса потепления, когда запустятся мощные механизмы глобальных изменений (таяния ледниковых щитов, сдвига экологических зон и подъёма уровня моря), которые сделают приспособление крайне дорогим удовольствием для любой страны.

Рисунок 12. Зависимость изменения температуры Земли от количества углекислого газа, накопленного вследствие деятельности человека
Рисунок 12. Зависимость изменения температуры Земли от количества углекислого газа, накопленного вследствие деятельности человека.

Увы, реальность такова, что сокращать выбросы нужно прямо сейчас, а к 2050-му необходимо избавиться практически от всех выбросов парниковых газов, которые не связаны с производством продовольствия.

Но можем ли мы это сделать? Мы ведь не можем остановить жизнь. Как это ни удивительно, но процесс уже начался. Рисунок 13 показывает, как быстро нарастает производство энергии из источников без выбросов парниковых газов. За 10 лет доля энергии без таких выбросов выросла в 3—10 раз в разных странах. В 2017-м в отдельные дни до 93% всей электроэнергии в Европе производилось из таких источников. Более того, цены на электроэнергию на оптовом рынке уже в 2018-м трижды становились отрицательными в Германии и Дании (последний раз 3 января 2018) из-за её перепроизводства ветряными станциями. Показателен и коллапс производства энергии на тепловых станциях в Великобритании, доля которых на рынке электричества сократилась с львиной доли до незначительной части всего лишь за 5 лет.

Рисунок 13. Производство электричества (по некоторым странам) из возобновляемых источников энергии без выбросов парниковых газов
Рисунок 13. Производство электричества (по некоторым странам) из возобновляемых источников энергии без выбросов парниковых газов.

Источник: 22century.ru