Источником энергии для озера служит солнечный свет. При прохождении света через воду некоторая его часть поглощается планктоном и используется в процессе фотосинтеза; остальной свет поглощает вода, так что с увеличением глубины освещенность уменьшается. В глубоких озерах существует некий компенсационный уровень, т.е. глубина, на которую проникает столько света, что зеленые растения едва могут поддерживать свое существование: фотосинтез у таких растений (образование сложных органических веществ и кислорода) в точности уравновешивает их дыхание (расход пищи и кислорода).

Схема экосистемы озера

Схема экосистемы озера

Рисунок 1: Структура озёрной экосистемы. Показаны
некоторые организмы, обитающие в различных частях озера.

Схема экосистемы озера


Глубина, на которой находится компенсационный уровень, зависит от прозрачности воды. Выше этой глубины растения выделяют больше кислорода, чем потребляют, так что избыточный кислород могут использовать другие организмы; ниже этой глубины фотосинтез не может обеспечить дыхание, поэтому организмам доступен лишь кислород, поступающий с водой из более поверхностных слоев озера.

Укореняющиеся водные растения, такие, как водяные лилии и камыши, растут на мелководных участках озера. Среди этих растений находят себе убежище и пищу рыбы, головастики, насекомые и другие членистоногие, моллюски и черви. На открытой поверхности озера обитают свободно плавающие растения, которым необходим свет, и животные, которым необходимо обилие кислорода, — многие рыбы и мелкие членистоногие (рисунок 1).

На большей глубине, где меньше кислорода и недостаточно света для протекания фотосинтеза, главным источником энергии служат мертвые растения и животные, опускающиеся сверху. Организмы-редуценты, рыбы и беспозвоночные, способные переносить низкое содержание кислорода, питаются этими остатками, а также поедают друг друга.

Сильное влияние на жизнь озера оказывает температура. Вода характеризуется одной уникальной особенностью: при 4°С она обладает наибольшей плотностью. Поэтому слои воды, имеющие температуру 4°С, опускаются ниже слоев, имеющих более высокую или более низкую температуру. В результате этого зимой вода с температурой ниже 4°С поднимается вверх и, охлаждаясь до 0°С, замерзает, покрывая озеро слоем льда.


Схема экосистемы озера

Схема экосистемы озера

Рисунок 2: Температура воды в разное время года на
разной глубине в озере, находящемся в умеренной зоне.

Схема экосистемы озера

Этот слой служит изоляцией, предохраняя лежащую под ним воду от полного замерзания, так что обитатели озера выживают под слоем льда в воде, которая в течение всей зимы сохраняет температуру от 0 до 4°С (рисунок 2). Весной солнце растапливает лед и нагревает поверхностные слои воды, которые с приближением их температуры к 4°С погружаются вниз, заставляя лежащую под ними более холодную воду подниматься вверх. Этому весеннему перемешиванию способствуют ветер и волны. Такое перемешивание имеет важное значение, потому что вода, поднимающаяся вверх, приносит с собой питательные вещества, содержащиеся в донных отложениях, и обитающие у поверхности фотосинтезирующие организмы могут использовать их. В свою очередь вода, перемещающаяся из поверхностных слоев озера в придонные, приносит кислород редуцентам и другим обитателям дна озера.

Схема экосистемы озера

Схема экосистемы озера

Рисунок 3: Процесс исчезновения олиготрофного озера.


Схема экосистемы озера А. Олиготрофное озеро.
Б. По мере увеличения притока в озеро питательных веществ и осадочных материалов его продуктивность возрастает и оно становится эвтрофным.
В. В дальнейшем озеро превращается в болото, и покрывается растительностью.
Г. В конце концов это место превращается в сушу. Обычно эта последовательность событий занимает несколько тысяч лет даже для таких мелководных озер, как озеро Эри. Глубина некоторых олиготрофных озер, например озера Тахо, так велика, что для них процесс этот растянулся бы на неограниченно долгое время, если бы эвтрофикация не ускорялась загрязнением.

Если плавая летом в озере с приятной и теплой водой мы опустим ноги вниз, то ощутим, что вода там гораздо холоднее. Это происходит потому, что нагретый солнцем поверхностный слой воды остается на месте, не смешиваясь с лежащей под ним более плотной и холодной водой, температура которой в глубоком озере остается на уровне 4°С. Граница между теплой и холодной водой называется термоклиной и летом она постепенно опускается все ниже и ниже. Осенью термоклина начинает вновь подниматься, по мере того как верхний слой воды охлаждается, что в конце концов приводит к осеннему перемешиванию. Рыбаки, занимающиеся ловлей форели, знают, что весна и осень-это то время, когда можно добыть форель в поднимающейся вверх холодной воде. Форели нужна вода, богатая кислородом, а поскольку в холодной воде растворяется больше кислорода, чем в теплой, форель проводит лето на большей глубине, где вода холоднее.


По продуктивности озера можно разделить на две группы. Эвтрофные («многокормные») озера — относительно мелководные, богаты элементами питания и бедны кислородом. В отличие от них олиготрофные («малокормные») озера обычно более глубокие, с более крутыми берегами и менее богаты элементами питания; вода в них прозрачная и до самого дна может содержать много кислорода. При нормальном течении событий озеро медленно наполняется осадочным материалом и мертвым органическим веществом и постепенно эвтрофицируется. В конце концов оно превращается в верховое или низинное болото, а затем и в сушу (рисунок 3). В случае глубокого олиготрофного озера этот процесс может тянуться миллионы лет.

Одним из последствий загрязнения среды, вызванного человеком, является ускорение процесса эвтрофикации. На первый взгляд повышение продуктивности может показаться желательным, однако, как мы увидим ниже, это не так. Олиготрофные озера с чистой водой и рыбой гораздо более привлекательны и полезны человеку, чем эвтрофные озера, заросшие водорослями и сорняками и населенные карпом и мелкими представителями карповых.

В природные экосистемы весь фосфор изначально поступает из горных пород, а поскольку многие экосистемы расположены на породах, содержащих мало фосфора, их продуктивность ограничивается недостатком этого элемента.


Люди непрерывно вносят в озера фосфор вместе со сточными водами, детергентами или удобрениями, стекающими с обрабатываемых земель. Это повышает продуктивность озера и ускоряет его эвтрофикацию, изменяя характер озера.

Самый явный симптом эвтрофикации — помутнение воды, создаваемое усиленным размножением планктона. Другой признак-уменьшение численности таких рыб, как форель, любящих чистую воду, богатую кислородом. Загрязняемое элементами питания озеро проходит через несколько стадий, прежде чем достигнет хорошо знакомого всем состояния с вонючей тиной на дне и берегами, усеянными погибшей рыбой. Вначале загрязнение элементами питания способствует «цветению», или необычайно сильным взрывам численности популяции, водорослей. Некоторые водоросли выделяют токсины, отравляющие рыбу и делающие воду непригодной для питья. При отмирании водорослей бактерии разлагают их ткани и используют большую часть кислорода. В иле, лишенном кислорода, разложение мертвых растений некоторыми бактериями сопровождается выделением сероводорода (газа с запахом тухлых яиц). В «здоровом» озере обитающие на дне фотосинтезирующие бактерии используют этот сероводород по мере его образования. Однако при большом содержании в озере удобрений или сточных вод у его поверхности появляется так много водорослей и бактерий, что до дна доходит очень мало света и фотосинтезирующие серные бактерии растут плохо. Они не могут использовать весь образующийся сероводород, придающий загрязненному озеру его специфический запах.


Процесс эвтрофикации нельзя устранить, но его можно замедлить и временно повернуть в обратную сторону. Если прекратить сбрасывание в озеро сточных вод, то водоросли, питающиеся за счет этих вод, погибнут и опустятся на дно, причем замещения их происходить не будет. Вода станет более прозрачной, обогатится кислородом и популяции рыб восстановятся.

Такое загрязнение возникает в результате внесения в воду дополнительного тепла, например в тех случаях, когда электростанция использует озерную воду для охлаждения турбин. Поскольку при более высокой температуре рост растений ускоряется, при тепловом загрязнении продуктивность озера возрастает и, так же как и при загрязнении биогенными элементами, эвтрофикация ускоряется. Помимо этого повышение температуры воды может задержать и даже подавить размножение, развитие или рост некоторых рыб и беспозвоночных; при достаточно высокой температуре организмы просто гибнут. Неестественное подогревание воды может также увеличить промежуток между весенним и осенним перемешиваниями, нарушая нормальные сроки пополнения запасов элементов питания у поверхности воды и запасов кислорода вблизи дна.

Схема экосистемы озера

Источник: info.sotvorenie.kiev.ua

§1Структура экологических систем


Основной объект экологии – экологическая система или экосистема пространственно определенная совокупность живых организмов и среды их обитания, объединенных вещественно-энергетическими и информационными взаимодействиями.

Термин «экосистема» введен в экологию английским ботаником А. Тенсли (1935). Понятие экосистемы не ограничивается какими-то признаками ранга, размера, сложности или происхождения. Поэтому оно приложимо как к относительно простым искусственным (аквариум, теплица, пшеничное поле, обитаемый космический корабль), так и к сложным естественным комплексам организмов и среды их обитания (озеро, лес, океан, экосфера). Различают водные и наземные экосистемы. Все они образуют на поверхности планеты густую пеструю мозаику. При этом в одной природной зоне встречается множество сходных экосистем – или слитых в однородные комплексы, или разделенных другими экосистемами. Например, участки лиственных лесов, перемежающиеся хвойными лесами, или болота среди лесов и т.п. В каждой локальной наземной экосистеме есть абиотический компонент биотоп, или экотоп, участок с одинаковыми ландшафтными, климатическими, почвенными условиями и биотический компонент сообщество, или биоценоз, совокупность всех живых организмов, населяющих данный биотоп. Биотоп является общим местообитанием для всех членов сообщества. Биоценозы состоят из представителей многих видов растений, животных и микроорганизмов. Практически каждый вид в биоценозе представлен многими особями разного пола и возраста. Они образуют популяцию (или часть популяции) данного вида в экосистеме.


Члены сообщества так тесно взаимодействуют со средой обитания, что биоценоз часто трудно рассматривать отдельно от биотопа. Например, участок земли – это не просто «место», но и множество почвенных организмов и продуктов жизнедеятельности растений и животных. Поэтому их объединяют под названием биогеоценоза: «биотоп + биоценоз = биогеоценоз» (рис. 1)

Схема экосистемы озера

Рис. 1.

Схема биогеоценоза

Биогеоценоз – это элементарная наземная экосистема, главная форма существования природных экосистем. Понятие биогеоценоза ввел В.Н. Сукачев (1942). Для большинства биогеоценозов определяющей характеристикой является определенный тип растительного покрова, по которому судят о принадлежности однородных биогеоценозов к данному экологическому сообществу (сообщества березового леса, мангровой заросли, ковыльной степи, сфагнового болота и т.п.).


Крупная, региональная или субконтинентальная биосистема, характеризующаяся каким либо основным типом растительности или характерной особенностью ландшафта, называются биомом (Ю. Одум, 1986).

Выделяют: микроэкосистемы (подушка лишайника и т. п.); мезоэкосистемы (пруд, озеро, степь и др.); макроэкосистемы (континент, океан) и, наконец, глобальную экосистему (биосфера Земли) или экосферу – интеграция всех экосистем мира.

Типичным примером экосистемы может быть подушка лишайника на стволе дерева. Выше мы уже приводили пример классического мутуализма, к которому пришли водоросли и грибы через паразитизм последних. Продуценты здесь – симбиотические водоросли, консументы – различные мелкие членистоногие и др. Гифы грибов и большинство микроскопических животных выступают здесь и в роли редуцентов, живущих за счет тканей отмерших водорослей.

Замкнутость круговорота в такой системе не велика: часть продуктов распада выносится за пределы лишайника дождевыми водами, часть животных мигрирует в другие местообитания.

Границы этой экосистемы очерчены границами лишайника, но ее существование будет достаточно стабильным, если вынос будет компенсироваться поступлением вещества. Но есть экосистемы, в которых внутренний круговорот вещества вообще малоэффективен – реки, склоны гор – здесь стабильность поддерживается только перетоком вещества извне. Многие системы достаточно автономны – пруды, озера, океан, леса и др. Но даже биосфера Земли часть веществ отдает в космос и получает вещества из космоса.


Таким образом, природные экосистемы – это открытые системы: они должны получать и отдавать вещества и энергию.

Для того, чтобы экосистема существовала неограниченно долго, она должна обладать свойствами связывания и высвобождения энергии и в ней должен осуществляться круговорот веществ. Свойства экосистем, и механизмы, обеспечивающие устойчивое существование, определяются их структурной организацией.

Под структурой экосистемы понимаются ее составные части и пути их взаимодействия, обеспечивающие сохранение экосистемы как единого целого.

Каждая экосистема имеет собственное материально-энергетическое хозяйство и определенную функциональную структуру (рис. 2). В каждой экосистеме выделяются два компонента – совокупность живых организмов (биотический компонент) и окружающая среда (абиотический компонент). Биотический компонент экосистемы представлен живыми организмами, которые по способу получения необходимой им энергии подразделяются на организмы автотрофные и гетеротрофные.

Автотрофы (самопитающие)составляют основную массу всех живых существ и полностью отвечают за образование всего нового органического вещества в любой экосистеме, т.е. являются производителями продукции – продуцентами экосистем. Это организмы, образующие органическое вещество своего тела из неорганических веществ – диоксида углерода и воды – посредством процессов фотосинтезa и хемосинтеза. Фотосинтез осуществляют фотоавтотрофы – все хлорофиллоносные (зеленые) растения и микроорганизмы. Хемосинтез наблюдается у некоторых хемоавтотрофных бактерий, которые используют в качестве источника энергии окисление водорода, серы, сероводорода, аммиака, железа. Хемоавтотрофы в природных экосистемах играют относительно небольшую роль, за исключением чрезвычайно важных нитрифицирующих бактерий.

Схема экосистемы озера

Схема экосистемы озера

Рис. 2.

Источник: StudFiles.net

Источники возникновения

На Земле возникали озера в результате тектонических сдвигов породы, отступления ледников при таянии или изменения русел рек. К ним можно относить пруды, более мелкие водные образования. Общее у них, то, что это замкнутые экосистемы с тенденцией к исчезновению.
Источники возникновения
Неважно, является водоем сточным, то есть из которого вытекает вода, или бессточным, экосистема озера постепенно будет трансформироваться в сторону преобладания в ней растительного над животным миром. Затем превратиться в болото и, в конце концов, высохнет и исчезнет. Быстрота такого превращения зависит лишь от величины и глубины водного объекта.

Структура системы и основные факторы влияния

Экосистема озера представляет собой видовую совокупность, существующую в границах водного объекта, и взаимодействующая между собой. Трофическая цепь типичная и состоит из продуцентов – растений и водорослей, консументов – рыбы, рептилии, водоплавающей птицы, некоторые видов животных, а также редуцентов – бактерий, червей и ракообразных.

Схематическая иллюстрация экосистемы озера.

Соленая в озере вода или пресная, влияет только на видовую структуру, в которой преобладают живые организмы, приспособленные к существованию в воде с большим или меньшим содержанием соли.

экосистема озера
Основными факторами, влияющими на систему, являются солнце, температура воды и количество содержащегося в ней кислорода.

Главным и определяющим из них – солнце. Вступая во взаимодействие с водой, солнечная энергия изменяет, а именно повышает, температуру последней. Это, в свою очередь, влияет на процесс фотосинтеза, то есть производства кислорода, его содержание и растворимость в воде.

По количеству поступающей солнечной энергии, водную массу озера можно разделить на горизонтальные слои или пласты.

В летний период верхний слой получает максимальное количество солнечной энергии. Он нагревается. Продуценты активно перерабатывают солнечную энергию в кислород. Фауна в верхнем слое играет роль консументов. Это в основном водоплавающие животные и птицы, рептилии, некоторые виды рыб и насекомые.

Следующий пласт воды играет «заградительную» функцию между разными температурными слоями, расположенными над и под ним. Этот слой с максимальной плотностью воды, которая возникает, когда температура ее +4°С. Он сдерживает перемешивание слоев воды озера. Обычно перемешивание происходит весной и осенью. В результате чего происходит обмен кислородом и питательными веществами.

перемешивание слоев воды озера

Солнечный свет, доходя до придонного слоя, сильно рассеивается. На дно попадают остатки живых организмов и отходы их жизнедеятельности. Придонный слой населяют редуценты – раки, черви, личинки насекомых, бактерии и микроорганизмы. Очень редки рыбы. Главная их функция переработка органических отходов. Последний этап пищевой цепи, перед началом нового.

На этом этапе и происходит тот сбой, который, в конечном счете ведет к исчезновению озера. Условия существования не позволяют справиться с переработкой отходов полностью. А верхний слой, подпитанный во время перемешивания, увеличивает биомассу. Отходы увеличиваются, а остатки накапливаются. Они превращаются в ил, а затем в торф. Озеро начинает мелеть и исчезать.

Использование человеком

Использование озера человеком можно описать предельно коротко. Человек берет из него воду и пищу, и возвращает неочищенную воду и отходы.

Перед тем как полностью исчезнуть, озеро превращается в болото. Донный ил становится торфом. Торф обладает способностью сохранять влагу. Накапливая ее в период таяния снегов или дождей, он затем отдает ее ручьям и тем поддерживают уровень воды в больших водоемах и в грунтовых водах. Человек добывая торф, как природное топливо или удобрение, проводя мелиоративные работы и осушая болота, изменяет водный режим региона со всеми вытекающими отсюда последствиями.

Использование озера человеком
Экосистема озера не содержит фосфор, азот и другие вещества, стимулирующие рост растений. Сточные воды промышленных предприятий, сбросы канализационных систем городов, неочищенные бытовые стоки и, главное, вода, сходящая после ливней и таяния снегов с земель, используемых под сельскохозяйственные нужды, содержит эти вещества. А они ускоряют рост и увеличивают количество биомассы, особенно сине-зелёных водорослей.

Тот же эффект при сбросе теплой воды, после охлаждения ею оборудования электростанций. Повышение температуры воды в результате таких сбросов ускоряет рост все тех же водорослей и других растений. Если температура будет слишком велика, то животный мир может вообще погибнуть или произойти сбой в его репродуктивной системе.

Еще одна форма использования человеком экосистемы озера – это привнесение в нее живых организмов, ей несвойственных. Иногда это может произойти случайно. Но бывает, что это делается преднамеренно, с целью разведения полезных для человека видов рыб, моллюсков, беспозвоночных и тому подобное.

Эти организмы ведут себя агрессивно по отношению к местным видам флоры и фауны. А с учетом стимулирования их роста и развития человеком, то природная биосистема начинает подвергаться существенным изменениям. Происходит дисбаланс, который может привести к ее полной гибели. Примером могут служить Великие озера в Америке.

Вам будет интересно посмотреть фото и картинки экосистемы озера.

Посмотрите видео: Красивые фото озер, рек и морей.

Источник: ecology-of.ru