80. Дайте определение понятия

Фотосинтез – процесс синтеза органических соединений из воды и углекислого газа при помощи энергии света


81. Запишите суммарное уравнение фотосинтеза

6СО2 + 6Н2О + энергия света = С6Н12О6 + 6О2


82. Закончите предложения

Фотосинтез происходит в клетках зеленых растений, в хлоропластах

Кислород, выделяющийся в процессе фотосинтеза, образуется в результате фотолиза воды



83. Заполните таблицу «Сравнительная характеристика фаз фотосинтеза»

Критерии сравнения Световая фаза Темновая фаза
Где протекает в пластидах в пластидах
Что происходит с энергией в избытке, затем теряется
Что образуется богатые энергией молекулы и ионы водорода глюкоза


84. Закончите схему, подписав названия веществ

Таблица сравнение фаз фотосинтеза

1. – вода

2. – кислород

3. – воды

4. – ионы водорода

5. – углекислый газ

6. – глюкоза


85. Дайте определение понятия

Хемотрофы – организмы, способные синтезировать органические вещества из неорганических за счет энергии химических реакций окисления, происходящих в клетке



86. Закончите предложения

Хемотрофами являются автотрофами

Хемосинтез открыл в 1887 году С. Н. Виноградский

Хемотрофы отличаются от фототрофов тем, что они синтезируют органические вещества из неорганических за счет энергии химических реакций окисления, происходящих в клетке. Фототрофы же синтезируют необходимые вещества за счет энергии солнечного света


87. Заполните таблицу «Сравнение фотосинтеза и хемосинтеза»

Критерии сравнения Фотосинтез Хемосинтез
У каких организмов происходит зеленые растения нитрифицирующие бактерии
Какой источник энергии используется в процессе солнечный свет энергия химических реакций
Какие образуются вещества глюкоза, ионы водорода и кислорода соли


88. Как вы думаете, можно ли, рассмотрев единственную клетку многоклеточного организма, определить его тип питания? Ответ обоснуйте

Да можно, так как многоклеточные организмы являются либо фототрофами, либо гетеротрофами. Растения являются автотрофами, кроме некоторых их частей. Но в подобных клетках не будет хлоропластов. Распознав, какому царству живых организмов принадлежит организм, легко можно определить его тип питания


Источник: pobio.ru

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.


Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»


Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2


Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.


При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:


  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:


  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

Источник: studarium.ru

23. Реакции ассимиляции со2 в темновой фазе фотосинтеза.

Цикл Кальвина – главный путь ассимиляции СО 2 . Фаза декарбоксилирования — углекислый газ, связываясь с рибулозобифосфатом, образует две молекулы фосфоглицерата. Эту реакцию катализирует рибулозобифосфат карбосилаза.


Фотосинтез представляет собой совокупность процессов формирования световой энергии в энергию химических связей органических веществ с участием фотосинтетических красящих веществ.

Такой тип питания характерен для растений, прокариот и некоторых видов одноклеточных эукариот.

При природном синтезе углерод и вода во взаимодействии со светом преобразуются в глюкозу и свободный кислород:

6CO2 + 6H2O + световая энергия → C6H12O6 + 6O2

Современная физиология растений под понятием фотосинтеза понимает фотоавтотрофную функцию, которая является совокупностью процессов поглощения, превращения и применения квантов световой энергии в разных несамопроизвольных реакциях, включая преобразование углекислого газа в органику.

Фазы

Фотосинтез у растений происходит в листьях через хлоропласты — полуавтономные двухмембранные органеллы, относящиеся к классу пластид. С плоской формой листовых пластин обеспечивается качественное поглощение и полное использование световой энергии и углекислого газа. Вода, необходимая для природного синтеза, поступает от корней через водопроводящую ткань. Газообмен происходит с помощью диффузии через устьица и частично через кутикулу.

Таблица сравнение фаз фотосинтезаХлоропласты заполнены бесцветной стромой и пронизаны ламеллами, которые при соединении друг с другом образуют тилакоиды. Именно в них и происходит фотосинтез. Цианобактерии сами собой представляют хлоропласты, поэтому аппарат для природного синтеза в них не выделен в отдельную органеллу.


Фотосинтез протекает при участии пигментов , которыми обычно выступают хлорофиллы. Некоторые организмы содержат другой пигмент — каротиноид или фикобилин. Прокариоты обладают пигментом бактериохлорофиллом, причем данные организмы не выделяют кислород по завершении природного синтеза.

Фотосинтез проходит две фазы — световую и темновую. Каждая из них характеризуется определенными реакциями и взаимодействующими веществами. Рассмотрим подробнее процесс фаз фотосинтеза.

Световая

Таблица сравнение фаз фотосинтезаПервая фаза фотосинтеза характеризуется образованием высокоэнергетических продуктов, которыми являются АТФ, клеточный источник энергии, и НАДФ, восстановитель. В конце стадии в качестве побочного продукта образуется кислород. Световая стадия происходит обязательно с солнечным светом.

Процесс фотосинтеза протекает в мембранах тилакоидов при участии белков-переносчиков электронов, АТФ-синтетазы и хлорофилла (или другого пигмента).

Функционирование электрохимических цепей, по которым происходит передача электронов и частично протонов водорода, образуется в сложных комплексах, формирующихся пигментами и ферментами.

Описание процесса световой фазы:

  1. При попадании солнечного света на листовые пластины растительных организмов происходит возбуждение электронов хлорофилла в структуре пластин;
  2. В активном состоянии частицы выходят из пигментной молекулы и попадают на внешнюю сторону тилакоида, заряженную отрицательно. Это происходит одновременно с окислением и последующим восстановлением молекул хлорофилла, которые отбирают очередные электроны у поступившей в листья воды;
  3. Затем происходит фотолиз воды с образованием ионов, которые отдают электроны и преобразуются в радикалы OH, способные участвовать в реакциях и в дальнейшем;
  4. Затем эти радикалы соединяются, образуя молекулы воды и свободный кислород, выходящий в атмосферу;
  5. Тилакоидная мембрана приобретает с одной стороны положительный заряд за счет иона водорода, а с другой — отрицательный за счет электронов;
  6. С достижением разницы в 200 мВ между сторонами мембраны протоны проходят через фермент АТФ-синтетазу, что приводит к превращению АДФ в АТФ (процесс фосфорилирования);
  7. С освободившимся из воды атомным водородом происходит восстановление НАДФ + в НАДФ·Н2;

Тогда как свободный кислород в процессе реакций выходит в атмосферу, АТФ и НАДФ·Н2 участвуют в темновой фазе природного синтеза.

Темновая

Таблица сравнение фаз фотосинтезаОбязательный компонент для этой стадии — углекислый газ , который растения постоянно поглощают из внешней среды через устьица в листьях. Процессы темновой фазы проходят в строме хлоропласта. Поскольку на данном этапе не требуется много солнечной энергии и будет достаточно получившихся в ходе световой фазы АТФ и НАДФ·Н2, реакции в организмах могут протекать и днем, и ночью. Процессы на этой стадии происходят быстрее, чем на предыдущей.

Совокупность всех процессов, происходящих в темновой фазе, представлена в виде своеобразной цепочки последовательных преобразований углекислоты, поступившей из внешней среды:

  1. Первой реакцией в такой цепочке является фиксация углекислого газа. Наличие фермента РиБФ-карбоксилаза способствует быстрому и плавному протеканию реакции, в результате которой происходит образование шестиуглеродного соединения, распадающегося на 2 молекулы фосфоглицериновой кислоты;
  2. Затем происходит довольно сложный цикл, включающий еще определенное число реакций, по завершении которых фосфоглицериновая кислота преобразуется в природный сахар — глюкозу. Этот процесс называют циклом Кальвина;

Вместе с сахаром также происходит формирование жирных кислот, аминокислот, глицерина и нуклеотидов.

Суть фотосинтеза

Таблица сравнение фаз фотосинтезаИз таблицы сравнений световой и темновой фаз природного синтеза можно вкратце описать суть каждой из них. Световая фаза происходит в гранах хлоропласта с обязательным включением в реакции световой энергии. В реакциях задействованы такие компоненты как белки, переносящие электроны, АТФ-синтетаза и хлорофилл, которые при взаимодействии с водой образуют свободный кислород, АТФ и НАДФ·Н2. Для темновой фазы, происходящей в строме хлоропласта, солнечный свет не является обязательным. Получившиеся на прошлом этапе АТФ и НАДФ·Н2 при взаимодействии с углекислотой формируют природный сахар (глюкозу).

Как видно из вышеизложенного, фотосинтез предстает довольно сложным и многоступенчатым явлением, включающим множество реакций, в которых задействуются разные вещества. В итоге природного синтеза получается кислород, необходимый для дыхания живых организмов и защиты их от ультрафиолетовой радиации с помощью образования озонового слоя.

Мембраны тилакоидов содержат большое количество белков и низкомолекулярных пигментов, как свободных, так и соединенных с белками, которые объединены в два сложно устроенных комплекса, называемых фотосистема I и фотосистема I I. Ядром каждой из этих фотосистем является белок, содержащий зеленый пигмент хлорофилл , способный поглощать свет в красной области спектра. Входящие в состав фотосинтетических комплексов разнообразные пигменты способны улавливать даже очень слабый свет и передавать его энергию на хлорофилл, в связи с этим фотосинтез может идти даже при незначительном освещении (например, в тени деревьев или в пасмурную погоду).

Поглощение кванта света молекулой хлорофилла фотосистемы II приводит к ее возбуждению, а именно, один из электронов при этом переходит на более высокий энергетический уровень. Данный электрон передается на цепь переносчиков электронов, а точнее, на пигменты и белки-цитохромы, растворенные в мембране тилакоида, чем-то напоминающие цитохромы внутренней мембраны митохондрий (см. рисунок). По аналогии с митохондриальной цепью переноса электронов, происходит снижение энергии электрона при его передаче от переносчика к переносчику. Часть его энергии уходит на перенос протонов через мембрану из стромы хлоропласта внутрь тилакоида. На мембране тилакоида, таким образом, появляется градиент концентрации протонов . Данный градиент может быть использован специальным ферментом АТФ-синтетазой для синтеза АТФ из АДФ и Н 3 РО 4 (Ф н). Т.е. в хлоропластах реализован тот же, так называемый, принцип «плотины», который был рассмотрен раньше на примере митохондрий. Синтез АТФ во время световой фазы фотосинтеза называют фотофосфорилированием . Это название связано с тем, что при этом используется энергия солнечного света. Отличительной чертой окислительного фосфорилирования в митохондриях является то, что энергия для синтеза АТФ образуется при окислении органических субстратов (см. раздел « «).

Восстановление окисленного хлорофилла, который «потерял» электрон, фотосистемы II происходит в результате деятельности специального фермента, разлагающего молекулу воды, отбирая у нее (молекулы) электроны:

Н 2 О —> 2e — + 2Н + + 1/2О 2

Вышеуказанный процесс назван фотолизом воды , а протекает он на внутренней стороне мембраны тилакоидов. Этот процесс приводит к еще большему увеличению градиента концентрации протонов на мембране, а следовательно, к дополнительному синтезу АТФ.

Т.е., можно сказать, что вода является «поставщиком» электронов для хлорофилла. Побочным продуктом этой реакции является молекулярный кислород, который за счет диффузии покидает хлоропласты и через устьица выделяется в атмосферу.

Попробуем проследить дальше «судьбу» электронов, отрываемых от хлорофилла фотосистемы II. Они проходят по цепи переносчиков и попадают в реакционный центр фотосистемы I, так же содержащий молекулу хлорофилла. Эта молекула хлорофилла так же поглощает квант света и передает его энергию одному из электронов, поднимая его при этом на более высокий энергетический уровень. Электрон, проходя по цепи специальных белков-переносчиков, передается молекуле НАДФ+. Эта молекуле НАДФ + получает в следующем цикле еще один электрон, захватывает протон из стромы хлоропласта и восстанавливается до НАДФН.

Итак, электроны, которые были «оторванны» от молекулы воды, получают высокую энергию благодаря поглощению квантов света хлорофиллами фотосистем II и I, затем, пройдя по цепи переносчиков, восстанавливают НАДФ + . Частично энергия этих электронов тратится на перенос протонов через мембрану тилакоида и создание градиента их концентрации. Затем энергия градиента протонов будет использована для синтеза АТФ ферментом АТФ-синтазой.

Фотосинтез – процесс довольно сложный и включает две фазы: световую, которая всегда происходит исключительно на свету, и темновую. Все процессы происходят внутри хлоропластов на особых маленьких органах — тилакоидах. В ходе световой фазы хлорофиллом поглощается квант света, в результате чего образуются молекулы АТФ и НАДФН. Вода при этом распадается, образуя ионы водорода и выделяя молекулу кислорода. Возникает вопрос, что это за непонятные загадочные вещества: АТФ и НАДН?

АТФ – это особые органические молекулы, которые имеются у всех живых организмов, их часто называют «энергетической» валютой. Именно эти молекулы содержат высокоэнергетические связи и являются источником энергии при любых органических синтезах и химических процессах в организме. Ну, а НАДФН – это собственно источник водорода, используется непосредственно при синтезе высокомолекулярных органических веществ — углеводов, который происходит во второй, темновой фазе фотосинтеза с использованием углекислого газа. Но давайте по порядку.

Cветовая фаза фотосинтеза

В хлоропластах содержится очень много молекул хлорофилла, и все они поглощают солнечный свет. Одновременно свет поглощается и другими пигментами, но они не умеют осуществлять фотосинтез. Сам процесс происходит лишь только в некоторых молекулах хлорофилла, которых совсем немного. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры или ловушки. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно в фотосистеме II — P680, а в фотосистеме I — P700. Они поглощают свет именно такой длины волны(680 и 700 нм).

Таблица сравнение фаз фотосинтеза По схеме более понятно, как все выглядит и происходит во время световой фазы фотосинтеза.

На рисунке мы видим две фотосистемы с хлорофиллами Р680 и Р700. Также на рисунке показаны переносчики, по которым происходит транспорт электронов.

Итак: обе молекулы хлорофилла двух фотосистем поглощают квант света и возбуждаются. Электрон е- (на рисунке красный) у них переходит на более высокий энергетический уровень.

Возбужденные электроны обладает очень высокой энергией, они отрываются и поступают в особую цепь переносчиков, которая находится в мембранах тилакоидов – внутренних структур хлоропластов. По рисунку видно, что из фотосистемы II от хлорофилла Р680 электрон переходит к пластохинону, а из фотосистемы I от хлорофилла Р700 – к ферредоксину. В самих молекулах хлорофилла на месте электронов после их отрыва образуются синие дырки с положительным зарядом. Что делать?

Чтобы восполнить недостачу электрона молекула хлорофилла Р680 фотосистемы II принимает электроны от воды, при этом образуются ионы водорода. Кроме того, именно за счет распада воды образуется выделяющийся в атмосферу кислород. А молекула хлорофилла Р700, как видно из рисунка, восполняет недостачу электронов через систему переносчиков от фотосистемы II.

В общем, как бы ни было сложно, именно так протекает световая фаза фотосинтеза, ее главная суть заключается в переносе электронов. Также по рисунку можно заметить, что параллельно транспорту электронов происходит перемещение ионов водорода Н+ через мембрану, и они накапливаются внутри тилакоида. Так как их там становится очень много, они перемещаются наружу с помощью особого сопрягающего фактора, который на рисунке оранжевого цвета, изображен справа и похож на гриб.

В завершении мы видим конечный этап транспорта электрона, результатом которого является образование вышеупомянутого соединения НАДН. А за счет переноса ионов Н+ синтезируется энергетическая валюта – АТФ (на рисунке видно справа).

Итак, световая фаза фотосинтеза завершена, в атмосферу выделился кислород, образовались АТФ и НАДН. А что же дальше? Где обещанная органика? А дальше наступает темновая стадия, которая заключается, главным образом, в химических процессах.

Темновая фаза фотосинтеза

Для темновой фазы фотосинтеза обязательным компонентом является углекислый газ – СО2. Поэтому растение должно постоянно его поглощать из атмосферы. Для этой цели на поверхности листа имеются специальные структуры – устьица. Когда они открываются, СО2 поступает именно внутрь листа, растворяется в воде и вступает в реакцию световой фазы фотосинтеза.

В ходе световой фазы у большинства растений СО2 связывается с пятиуглеродным органическим соединением (которое представляет собой цепочку из пяти молекул углерода), в результате чего образуются две молекулы трехуглеродного соединения (3-фосфоглицериновая кислота). Т.к. первичным результатом являются именно эти трехуглеродные соединения, растения с таким типом фотосинтеза получили название С3-растений.

Дальнейший синтез, происходящий в хлоропластах, довольно сложен. В конечном итоге образуется шестиуглеродное соединение, из которого потом могут синтезироваться глюкоза, сахароза или крахмал. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по всему растению и поступают именно туда, где больше всего нужна энергия, например, в точки роста.

Фотосинтез состоит из двух фаз — световой и темновой.

В световой фазе кванты света (фотоны) взаимодействуют с молекулами хлорофилла, в результате чего эти молекулы на очень короткое время переходят в более богатое энергией- «возбужденное» состояние. Затем избыточная энергия части «возбужденных» молекул преобразуется в теплоту или испускается в виде света. Другая ее часть передается ионам водорода, всегда имеющимся в водном растворе вследствие диссоциации воды. Образовавшиеся атомы водорода непрочно соединяются с органическими молекулами — переносчиками водорода. Ионы гидроксида ОН» отдают свои электроны другим молекулам и превращаются в свободные радикалы ОН. Радикалы ОН взаимодействуют друг с другом, в результате чего образуются вода и молекулярный кислород:

4ОН = О2 + 2Н2О Таким образом, источником молекулярного кислорода, образующегося в процессе фотосинтеза и выделяющегося в атмосферу, является фотолиз — разложение воды под влиянием света. Кроме фотолиза воды энергия солнечного излучения используется в световой фазе для синтеза АТФ и АДФ и фосфата без участия кислорода. Это очень эффективный процесс: в хлоропластах образуется в 30 раз больше АТФ, чем в митохондриях тех же растений с участием кислорода. Таким путем накапливается энергия, необходимая для процессов в темновой фазе фотосинтеза.

В комплексе химических реакций темновой фазы, для течения которой свет не обязателен, ключевое место занимает связывание СО2. В этих реакциях участвуют молекулы АТФ, синтезированные во время световой фазы, и атомы водорода, образовавшиеся в процессе фотолиза воды и связанные с молекулами-переносчиками:

6СО2 + 24Н -» С6Н12О6 + 6НЭО

Так энергия солнечного света преобразуется в энергию химических связей сложных органических соединений.

87. Значение фотосинтеза для растений и для планеты.

Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным товаром фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни выйти на сушу. Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом (древесина, уголь, нефть), волокнами (целлюлоза) и бесчисленными полезными химическими соединениями. Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая. Остальные 5-10% приходятся на минеральные соли и азот, полученные из почвы.

Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных и в виде топлива и строительных материалов.

Фотосинтез, являющийся одним из самых распространенных процессов на Земле, обуславливает природные круговороты углерода, кислорода и других элементов и обеспечивает материальную и энергетическую основу жизни на нашей планете. Фотосинтез является единственным источником атмосферного кислорода.

Фотосинтез — один из самых распространенных процессов на Земле, обусловливает круговорот в природе углерода, O2 и др. элементов. Он составляет материальную и энергетическую основу всего живого на планете. Ежегодно в результате фотосинтеза в виде органического вещества связывается около 8 1010 т углерода, образуется до 1011 т целлюлозы. Благодаря фотосинтезу растения суши образуют около 1,8 1011 т сухой биомассы в год; примерно такое же количество биомассы растений образуется ежегодно в Мировом океане. Тропический лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез высших растений и водорослей — единственный источник атмосферного O2. Возникновение на Земле около 2,8 млрд. лет назад механизма окисления воды с образованием O2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником — свободной энергии биосферы, а воду — практически неограниченным источником водорода для синтеза веществ в живых организмах. В результате образовалась атмосфера современного состава, O2 стал доступным для окисления пищи, а это обусловило возникновение высокоорганизованных гетеротрофных организмов (применяют в качестве источника углерода экзогенные органические вещества). Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет около 1,6 1021 кДж в год, что примерно в 10 раз превышает современное энергетическое потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), которая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих организмов (высших растений и водорослей), но используется некоторыми фотосинтезирующими бактериями.

Открытие процесса хемосинтеза С.Н.Виноградским. Характеристика процесса.

Хемосинтез — процесс синтеза из углекислого газа органических веществ, который происходит за счет энергии, выделяемой при окислении аммиака, сероводорода и других химических веществ, в ходе жизнедеятельности микроорганизмов. У хемосинтеза также есть и другое название — хемолитоавтотрофия. Открытие хемосинтеза С. Н. Виноградовским в 1887 году в корне изменило представления науки о типах обмена веществ, являющихся основными для живых организмов. Хемосинтез для многих микроорганизмов является единственным типом питания, так как они способны усваивать углекислый газ как единственный источник углерода. В отличие от фотосинтеза в хемосинтезе вместо энергии света используется энергия, которая образуется в результате окислительно-восстановительных реакций.

Этой энергии должно быть достаточно для синтеза аденозинтрифосфорной кислоты (АТФ), а её количество должно превышать 10 ккал/моль. Некоторые из окисляемых веществ отдают свои электроны в цепь уже на уровне цитохрома, и таким образом создаётся для синтеза восстановителя дополнительный расход энергии. При хемосинтезе биосинтез органических соединений происходит за счет автотрофной ассимиляции углекислого газа, то есть точно таким же образом, как и при фотосинтезе. В результате переноса электронов по цепи дыхательных ферментов бактерий, которые являются встроенными в клеточную мембрану, получается энергия в виде АТФ. Из-за очень большого расхода энергии все хемосинтезирующие бактерии, кроме водородных, образуют довольно мало биомассы, но при этом они окисляют большой объем неорганических веществ. Водородные бактерии используются учеными для получения белка и очистки атмосферы от углекислого газа, особенно это необходимо в замкнутых экологических системах. Существует великое разнообразие хемосинтезирующих бактерий, их большая часть относится к псевдомонадам, также они встречаются среди нитчатых и почкующихся бактерий, лептоспир, спирилл и коринебактерий.

Примеры использования хемосинтеза прокариотами.

Суть хемосинтеза (процесса, открытого российским исследователем Сергеем Николаевичем Виноградским) – получение организмом энергии за счет окислительно-восстановительных реакций, проводимых самим этим организмом с простыми (неорганическими) веществами. Примерами таких реакций может быть окисление аммония до нитрита, или двухвалентного железа до трёхвалентного, сероводорода до серы, и т.п.. Способны к хемосинтезу только определенные группы прокариот (бактерий в широком смысле слова). За счёт хемосинтеза в настоящее время существуют только экосистемы некоторых гидротермалей (мест на дне океана, где есть выходы горячих подземных вод, богатых восстановленными веществами – водородом, сероводородом, сульфидом железа и т.п.), а также крайне простые, состоящие только из бактерий, экосистемы, обнаруженные на большой глубине в разломах горных пород на суше.

Бактерии – хемосинтетики, разрушают горные породы, очищают сточные воды, участвуют в образовании полезных ископаемых.


Источник: azowo.ru

Световая фаза

Световая фаза происходит на мембранах тилакоидов, которые содержат хлорофилл. Фотоны света действуют на хлорофилл, возбуждают его и приводят к выделению электронов на мембрану (это первая фотосистема). Когда хлорофилл теряет все свои электроны, фотоны света действуют на воду, вызывая фотолиз воды (это вторая фотосистема). В результате фотолиза протоны водорода накапливаются на внутренней мембране тилакоидов, а из гидроксильных ионов получается кислород. Также важно то, что работа второй фотосистемы восполняет утраченные электроны первой фотосистемы.

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик, называемый АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму где их подхватывает НАДФ, который вместе с полученным водородом переходит дальше в темновую фазу. Прохождение протонов водорода через АТФ-синтазу сопровождается фосфорилированием, другими словами — синтезом АТФ из АДФ и фосфата.

Стоит отметить, что обе фотосистемы реагируют на световые волны различной длины. Цель их работы – запастись энергией для синтеза сложных органических молекул из простых неорганических, а именно, запастись АТФ и НАДФ·H2, которые активно используются в темновой фазе.

Темновая фаза

Темная стадия фотосинтеза – сложный процесс, в котором НАДФ·H2 и АТФ используются для производства молекул углеводов (сахаров). В отличие от световой фазы, ее процессы могут происходить как на свету, так и в темноте. Разберемся, как темновая фаза фотосинтеза работает, какие у нее преимущества и почему она важна.

Темная фаза фотосинтеза происходит внутри органелл хлоропластов и ​​напрямую зависит от продуктов, полученных в световой фазе. Рибулозобисфосфат, присоединяясь к газообразному углекислому газу (CO2) из воздуха, приводит к образованию органических соединений, главным образом углеводов или сахаров, молекулы которых содержат углерод, водород и кислород. Этот цикл трансформации называется циклом Кальвина.

Выделяют три стадии темновой фазы:

  1. Углеродная фиксация.
  2. Восстановление.
  3. Регенерация.

После образования глюкозы происходит последовательность химических реакций, которая приводит к образованию крахмала и ряда других углеводов. С помощью этих продуктов растение производит липиды (жиры) и белки, необходимые для формирования растительной ткани. Полученный крахмал смешивается с водой, содержащейся в листьях, через крошечные трубки в стебле растения транспортируется к корням, где формируются его основные запасы. Также крахмал используется для производства целлюлозы, основного компонента древесины.

Стоит отметить, что темновая фаза является донором НАДФ+ и АДФ + Ф для световой фазы.

С3-фотосинтез

Растения, использующие для фиксации углекислого газа из воздуха лишь цикл Кальвина, известны как растения C3. На первом этапе цикла CO2 реагирует с RuBP с образованием двух 3-углеродных молекул 3-фосфоглицериновой кислоты (3-PGA). Отсюда и происходит обозначение C3 для растений, использующих этот цикл.

Весь процесс, от захвата световой энергии до производства сахара, происходит внутри хлоропласта. Световая энергия улавливается нециклическим процессом транспорта электронов, который использует тилакоидные мембраны.

Около 85% видов растений являются растениями С3. Приведем примеры:

  • Пшеница
  • Рис
  • Ячмень
  • Овес
  • Рожь
  • Арахис
  • Хлопок
  • Сахарная свекла
  • Табак
  • Шпинат
  • Большинство деревьев
  • Газонные травы (овсяница и др.)

Главный недостаток С3 фотосинтеза

У растений C3 есть недостаток: в сухих условиях их фотосинтетическая эффективность страдает из-за процесса, называемого фотодыханием. Когда концентрация CO2 в хлоропластах падает ниже уровня 50 частей на миллион, катализатор РуБисКО, который помогает фиксировать углерод, начинает вместо этого фиксировать кислород. Это очень бесполезно расходует энергию, полученную от света, и заставляет РуБисКО работать всего на четверть своей максимальной скорости. В результате резко угнетается синтез органических веществ, рост и развитие растения, а побочный продукт фотосинтеза (кислород) не выбрасывается в атмосферу.

Фотодыхание

Во время дыхания растения потребляют питательные вещества для поддержания метаболизма растительных клеток, в то время как во время фотосинтеза растения создают свою собственную пищу.

Формула фотосинтеза:

  • Световая энергия + углекислый газ + вода ➜ кислород + глюкоза

    6CO2 + 6H2O = C6H12O6 + 6O2

Формула дыхания растений:

  • Кислород + глюкоза ➜ диоксид углерода + вода + тепловая энергия

    C6H12O6 + 6O2 = 6CO2 + 6H2O + 674 ккал

Растения дышат постоянно, днем ​​и ночью. А фотосинтез происходит только в течение дня, когда есть солнечный свет.

Дыхание – это физический процесс обмена газами между живыми объектами и окружающей средой.

Растения не дышат в самом строгом смысле этого слова, как животные и люди. Во время дыхания и фотосинтеза газы диффузно входят и выходят из растений через маленькие отверстия, называемые устьицами. Устьица расположены на нижней стороне листа. Каждый лист может содержать тысячи таких отверстий.

Все живые организмы дышат, потому что им нужно получать кислород для осуществления клеточного дыхания, чтобы остаться в живых. Так же и растения должны дышать, чтобы остаться в живых.

Однако, в общем и целом у растений объем выброса кислорода намного превышает объем его поглощения при фотодыхании. За солнечный день один гектар леса выделяет 180-200 кг кислорода, поглощая 120-280 кг углекислого газа.

Газообмен растений в зависимости от освещенности

В зависимости от количества солнечного света растения могут выделять или поглощать кислород и углекислый газ следующим образом.

Темно – имеет место только дыхание. Кислород расходуется, а углекислый газ выделяется.

Тусклый солнечный свет – скорость фотосинтеза равна «частоте» дыхания. Растение потребляет на дыхание весь кислород, который генерирует фотосинтез. В результате газообмен с окружающей средой не происходит.

Яркий солнечный свет – при фотосинтезе используется углекислый газ, и кислорода освобождается намного больше, чем расходуется на дыхание. Лишний кислород выделяется в атмосферу. В дневное время фотосинтез производит кислород и глюкозу быстрее, чем дыхание потребляет его. Фотосинтез также использует углекислый газ быстрее, чем его производит дыхание. Избыток кислорода выделяется в атмосферу, углекислый газ забирается из воздуха, а неиспользованная глюкоза связывается в крахмал, который откладывается в растении для хранения и последующего использования.

С4-фотосинтез

Проблема фотодыхания преодолевается в растениях C4 с помощью двухэтапной стратегии, которая поддерживает высокий уровень CO2 и низкий уровень O2 в хлоропластах, где работает цикл Кальвина. Эта стратегия служит для предотвращения фотодыхания.

Сахарный тростник является лидером в сфере фотосинтеза в нормальных условиях произрастания и является ярким примером растения, использующего фотосинтез C4.

Растения С4 почти никогда не насыщаются светом, а в жарких и сухих условиях значительно превосходят растения С3 по скорости синтеза органических веществ. Они используют двухстадийный процесс, в котором СО2 фиксируется в тонкостенных клетках мезофилла с образованием 4-углеродного промежуточного соединения, обычно малата (яблочной кислоты). 4-углеродная кислота активно перекачивается через клеточную мембрану в толстостенную оболочку, где она расщепляется на CO2 и 3-углеродное соединение.

Этот CO2 затем вступает в цикл Кальвина и вырабатывает G3P, а затем углеводы, которые попадают в клеточную систему обмена энергии.

Преимущество этого двухстадийного процесса состоит в том, что активная закачка углерода в ячейку оболочки пучка и блокирование кислорода создают окружающую среду с 10-120-кратным количеством СО2, доступным для цикла Кальвина, и рубиско оптимально используется, не переходя на связывание кислорода. Высокая концентрация CO2 и отсутствие кислорода означает, что система никогда не испытывает негативных эффектов фотодыхания.

Недостатком фотосинтеза С4 является расход дополнительной энергии АТФ, которая идет на превращение 4-углеродных кислот в 3-углеродные соединения, и обратно. Эта потеря энергии объясняет, почему растения C3 всегда будут превосходить растения C4 по производительности, если им будет достаточно воды и солнца.

Небольшой процент растений С4 включает в себя многие тропические травы и осоки, а также важные продовольственные культуры:

  • Кукурузу
  • Сорго
  • Сахарный тростник
  • Просо

Значение фотосинтеза в природе

Растения жизненно важны для существования человека и других животных. Без фотосинтеза у нас не было бы ни кислорода, ни пищи, чтобы элементарно оставаться в живых.

Жизнь на нашей планете поддерживается в основном благодаря фотосинтезу водорослями и наземными растениями. Это связано с их способностью синтезировать органическое вещество из неорганических веществ почвы, воды и атмосферного углекислого газа, с использованием солнечного света.

Также можем рассматривать растения (наземные и водные) как глобальную фабрику кислорода, который они выбрасывают в виде отходов фотосинтеза, когда производят для себя сахар и прочие углеводы, используя воду с углекислым газом в качестве сырья, а свет – источника энергии.

Хемосинтез

Фотосинтез происходит на суше и на мелководье, где доступен солнечный свет. Но образование моноуглеводов из углекислого газа и воды возможно и без солнечной энергии. И такую возможность используют бактерии.

Хемосинтез – это процесс, при котором пища (глюкоза) производится с использованием химических веществ (вместо солнечного света) в качестве источника энергии. Хемосинтез происходит вокруг гидротермальных источников и метановых утечек в глубоком море, и других теплых местах, где отсутствует солнечный свет.

Во время хемосинтеза бактерии, живущие на морском дне или внутри животных, используют энергию, запасенную в химических связях сероводорода и метана, для получения глюкозы из воды и углекислого газа (растворенного в морской воде). Как побочные продукты хемосинтеза образуются сера и соединения серы.

Оба процесса, фотосинтез и хемосинтез, сводятся к образованию молекул глюкозы и других простых углеводов из СО2 и Н2О. Но у этих процессов разные источники энергии и побочные продукты (отходы). И это определяет значение растений и бактерий в природе.

Источник: sci-news.ru

Световая фаза фотосинтеза:

  • фотоны света ударяют в молекулы хлорофилла, которые находятся в фотосистеме 2
  • хлорофилл переходит в возбужденное состояние и создается энергия резонанса, которая передается соседним молекулам хлорофилла
  • далее эта энергия достигает рекреационного центра Р680 и выбивает электрон с молекулы хлорофилла, а другой фотон точно таким же путем выбивает еще одни электрон
  • рядом с хлорофиллом Р680   располагается пластохинон— переносчик электронов, он захватывает сразу два электрона, которые высвободились из хлорофилла Р680, а также захватывает и два протона из стромы хлоропласта
  • далее пластохинон переносит электронык цитохром-b6f-комплексу
  • в этот момент два протона высвобождаются в пространство между двумя мембранами хлоропласта (люмен)
  • в цитохром-b6f-комплексе также идет захват протонов и дальнейшее их высвобождение
  • далее электроны захватываются пластоцианином
  • с пластоцианина электроны уходят в фотосистему 1
  • два недостающих электрона фотосистемы 2 возмещаются благодаря фотолизу воды, при котором высвобождаются протоны для создания протонного градиента, как в процессе окислительного фосфорилирования в митохондриях
  • фотолиз воды- процесс распада воды под действием солнечного света, он происходит на внутренней поверхности мембраны тилакоида
  • при фотолизе двух молекул воды образуется одна молекула кислорода

2 Н2О — 4е = 4 Н+2

Отданные водой электроны идут на восстановление израсходованных хлорофиллом электронов при образовании АТФ из АДФ. Таким образом получается восстановленный хлорофилл. Образованный в этой реакции кислород выделяется в атмосферу.

  • проходя по электрон- транспортной цепи, энергия возбужденных электронов используется для перекачивания протонов из стромы хлоропласта во внутритилакоидное пространство, что создает протонный градиент
  • протонный градиент сообщает энергию АТФ-синтазе для фосфорилирования АДФ в АТФ
  • в фотосистеме 1 также происходит возбуждение хлорофилла P700 фотонами света, как и в фотосистеме 2 (они поглощают свет только длиной волны 680 и 700 нм)
  • возбужденные электроны уходят на ферредоксин
  • ферредоксин переносит электроны на ферредоксин-НАДФ-редуктазу
  • после этого переноса электронов синтезируется НАДФ⋅2Н

Следует отметить, что фотоны света попадают на фотосистемы 1 и фотосистемы 2 одновременно.

Образовавшиеся НАДФ⋅2Н и АТФ поступают в строму хлоропласта, где активно используются для темновой фазы фотосинтеза.

Схема движения электронов:

Источник: ladle.ru