ПОЛИПЛОИДИЯ, увеличение числа наборов хромосом в клетках организма, кратное гаплоидному (одинарному) числу хромосом; тип геномной мутации. Половые клетки большинства организмов гаплоидны (содержат один набор хромосом – n), соматические – диплоидны (2n). Организмы, клетки которых содержат более двух наборов хромосом, называются полиплоидами: три набора – триплоид (3n), четыре – тетраплоид (4n) и т. д. Наиболее часто встречаются организмы с числом хромосомных наборов, кратным двум, – тетраплоиды, гексаплоиды (6 n) и т. д. Полиплоиды с нечётным числом наборов хромосом (триплоиды, пентаплоиды и т. д.) обычно не дают потомства (стерильны), т. к. образуемые ими половые клетки содержат неполный набор хромосом – не кратный гаплоидному.

Полиплоидия может возникнуть при нерасхождении хромосом в мейозе. В этом случае половая клетка получает полный (нередуцированный) набор хромосом соматической клетки (2n). При слиянии такой гаметы с нормальной (n) образуется триплоидная зигота (3n), из которой развивается триплоид.
ли обе гаметы несут по диплоидному набору, возникает тетраплоид. Полиплоидные клетки могут возникнуть в организме при незавершённом митозе: после удвоения хромосом деления клетки может не происходить, и в ней оказываются два набора хромосом. У растений тетраплоидные клетки могут дать начало тетраплоидным побегам, цветки которых будут вырабатывать диплоидные гаметы вместо гаплоидных. При самоопылении может возникнуть тетраплоид, при опылении нормальной гаметой – триплоид. При вегетативном размножении растений сохраняется плоидность исходного органа или ткани.

Полиплоидия широко распространена в природе, но среди разных групп организмов представлена неравномерно. Большое значение этот тип мутаций имел в эволюции диких и культурных цветковых растений, среди которых ок. 47 % видов – полиплоиды. Высокая степень плоидности свойственна простейшим – число наборов хромосом у них может возрастать в сотни раз. Среди многоклеточных животных полиплоидия редка и более характерна для видов, утративших нормальный половой процесс, – гермафродитов (см. Гермафродитизм), напр. земляных червей, и видов, у которых яйцеклетки развиваются без оплодотворения (см. Партеногенез), напр. некоторых насекомых, рыб, саламандр. Одна из причин, по которой полиплоидия у животных встречается значительно реже, чем у растений, заключается в том, что у растений возможно самоопыление, а большинство животных размножается путём перекрёстного оплодотворения, и, значит, возникшему мутанту-полиплоиду нужна пара – такой же мутант-полиплоид другого пола. Вероятность подобной встречи крайне низка. Довольно часто у животных бывают полиплоидными клетки отдельных тканей (напр., у млекопитающих – клетки печени).


Полиплоидные растения часто более жизнеспособны и плодовиты, чем нормальные диплоиды. О их большей устойчивости к холоду свидетельствует увеличение числа видов-полиплоидов в высоких широтах и в высокогорьях.

Поскольку полиплоидные формы часто обладают ценными хозяйственными признаками, искусственную полиплоидизацию применяют в растениеводстве для получения исходного селекционного материала. С этой целью используют специальные мутагены (напр., алкалоид колхицин), нарушающие расхождение хромосом в митозе и мейозе. Получены урожайные полиплоиды ржи, гречихи, сахарной свёклы и др. культурных растений; стерильные триплоиды арбуза, винограда, банана популярны благодаря бессемянным плодам.

Применение отдалённой гибридизации в сочетании с искусственной полиплоидизацией позволило отечественным учёным ещё в 1-й пол. 20 в. впервые получить плодовитые полиплоидные гибриды растений (Г.Д. Карпеченко, гибрид-тетраплоид редьки и капусты) и животных (Б.Л. Астауров, гибрид-тетраплоид тутового шелкопряда). См. также Гаплоид.Геном.Диплоид.Кариотип.

Источник: sbio.info

Полиплоидия (от греческих слов polyploos — многократный и eidos — вид) — наследственное изменение, заключающееся в кратком увеличении числа наборов хромосом в клетках.


Дети всегда похожи на обоих родителей. Происходит это потому, что в каждой их клетке находятся два набора хромосом, два комплекта генов — один материнский и один отцовский. Такой двойной, или диплоидный (от греческих слов diploos — двойной и eidos — вид), набор хромосом типичен для живой природы. Он достаточен для преемственности поколений. Но в некоторых тканях диплоидных организмов в процессе их развития появляются клетки, в которых 4, 8 или гораздо больше наборов хромосом. Такие клетки называют полиплоидными, а сам процесс — соматической полиплоидией (от греческого слова soma — тело). Такая частичная полиплоидизация клеток некоторых тканей очень широко распространена, она свойственна всем изученным классам животных и растений. Например, у млекопитающих много полиплоидных клеток находят в печени, сердце, среди пигментных клеток и др. Другое явление — генеративная полиплоидия, исходно свойственная организмам или искусственно создаваемая при оплодотворении. В этом случае все клетки организма полиплоидные. Такой вариант полиплоидии наиболее свойствен растениям, особенно высшим.

Для полиплоидных растений обычно характерны крупные размеры. Избыток хромосом повышает их устойчивость к болезням и многим повреждающим воздействиям, например к радиации: при повреждении одной или даже двух сходных (гомологичных) хромосом остаются другие такие же совершенно целые. Полиплоидные особи жизнеспособнее диплоидных. Многие виды растений полиплоидные. Вероятно, так же эволюционировали и некоторые животные. Примером могут служить некоторые черви, насекомые, рыбы и др.


Человек давно использует полиплоидию для выведения высокопродуктивных сортов сельскохозяйственных растений. Не так давно, до начала нашего века это делалось бессознательно: просто размножали самые крупные экземпляры, дающие много зерна или же особенно крупные плоды. Отбором лучших растений закрепляли признак, нужный человеку. С появлением генетики выяснилось, что такие гиганты — природные полиплоиды и, следовательно, их отбор — это выделение полиплоидного сорта из предкового, диплоидного вида. Тогда полиплоиды стали создавать.

Есть вещество колхицин, задерживающее деление клеток: число хромосом перед делением удваивается, как обычно, но клетка не делится, и в ней получается 4 набора хромосом. Воздействуя раствором колхицина на семена, можно получить полиплоидное растение. Задержать деление клетки можно также рентгеновским облучением, нагревом и некоторыми другими воздействиями. Можно воздействовать на гаметы и получить зиготу с умноженнным числом хромосом, которое сохранится во всех её потомках — соматических клетках. У растений, которые размножаются и вегетативным путем (см. Размножение), можно получить полиплоидное потомство от природного или выведенного полиплоида.

Около 80% современных культурных растений — полиплоиды. Среди них хлебные злаки, овощные и плодовые культуры, многие ягодные, цитрусовые, некоторые технические и лекарственные растения.
еди сортов декоративных растений также немало полиплоидов. Советские ученые вывели триплоидную свеклу, отличающуюся от обычной не только крупными размерами корнеплодов, но и повышенной их сахаристостью, а также устойчивостью к болезням. Выведена полиплоидная гречиха, гораздо более урожайная, чем исходные, диплоидные сорта. Возможно получение межвидовых полиплоидных гибридов, например ржи и пшеницы, капусты и редьки.

Экспериментально полученные полиплоиды животных — большая редкость. Так, советскому ученому-генетику Б. Л. Астаурову методом межвидовой гибридизации удалось получить полиплоидную форму тутового шелкопряда, продуцента шелка. Ученые вывели полиплоидных рыб, а в последнее время и птиц, например кур. Однако внедрение полиплоидных пород животных в практику сельского хозяйства — дело будущего.

Источник: yunc.org

Для каждого вида живых организмов характерно определенное число хромосом. Например, у шимпанзе соматические клетки содержат 48 хромосом, а половые — в два раза меньше (24).

Полиплоидия и ансуплоидия представляют собой результат изменений числа хромосом и относятся к геномным мутациям, т. е. изменениям генома — гаплоидного набора хромосом с локализованными в них генами.


Полиплоидия — это кратное увеличение гаплоидного набора хромосом. Клетки с разным числом гаплоидных наборов хромосом называют триплоидными (Зn), тетраплоидными (4n), гексаплоидными (6n), октаплоидными (8n) и т д.

Чаще всего полиплоиды образуются при нарушении расхождения хромосом к полюсам клетки при мейоэе или митозе. Это может быть вызвано действием физических (высокая и низкая температура, радиоактивное излучение) и химических (колхицин, винбластин, аценафтен, хлороформ, эфир, хлоргидрид) факторов. В результате возникает клетка с удвоенным числом хромосом, которая может стать началом будущего полиплоидного организма.

Для многих растений известны так называемые полиплоидные ряды. Они включают формы от 2 до 10n и более. Например, полиплоидный ряд из наборов в 12, 24, 36, 48, 60, 72, 96, 108 и 144 хромосомы составляют представители рода паслен (Solanum); род пшеница (Trilicum) представляет ряд, члены которого имеют 14, 28 и 42 хромосомы.

Известно, что при отдаленной гибридизации наблюдается бесплодие, поскольку их генеративные клетки не имеют гомологичных хромосом для конъюгации и образуют нежизнеспособные гаметы, которые гибнут при первом же делении. Для преодоления бесплодия гибридов в этом случае используют полиплоидию. При кратном увеличении числа хромосом каждая хромосома имеет гомолога. Гаметы такого полиплоидного гибрида образуют тетраплоидные зиготы (2n хромосом от одного и 2n хромосом от другого вида). Такие формы называются аллотетраплоидами.


Полиплоидия приводит к изменению признаков организма, поэтому является важным источником изменчивости в эволюции и селекции, особенно у растений. Это связано с тем, что у них весьма широко распространены гермафродитизм (самоопыление), партеногенез и вегетативное размножение. Поэтому около трети видов растений, произрастающих на нашей планете, — полиплоиды, а в резко континентальных условиях высокогорного Памира произрастает до 85 % полиплоидов. Почти все культурные растения тоже полиплоиды, у которых, в отличие от их диких сородичей, более крупные цветки, плоды и семена, в запасающих органах (стебель, клубни) накапливается больше питательных веществ. Полиплоиды легче приспосабливаются к неблагоприятным условиям жизни, легче переносят низкие температуры и засуху. Именно поэтому они очень распространены в северных и высокогорных районах.

В основе резкого увеличения продуктивности полиплоидных форм культурных растений лежит явление полимерии.

У раздельнополых животных как в естественных, так и в искусственных условиях полиплоидия встречается крайне редко.

Анеуплоидия или гетероплоидия. У анеуплоидов нормальное число хромосом увеличивается или уменьшается менее чем на целый набор. Анеуплоиды возникают тогда, когда не расходятся хроматиды отдельных хромосом в митозе или отдельные гомологичные хромосомы в мейозе. В результате нерасхождения хромосом при гаметогенезе могут возникать половые клетки с лишними хромосомами, и тогда при последующем слиянии с нормальными гаплоидными гаметами они образуют зиготу 2n + 1 (трисомик) по определенной хромосоме. Если в гамете оказалось меньше на одну хромосому, то последующее оплодотворение приводит к образованию зиготы 2n — 1 (моносомик) по какой-либо из хромосом. Кроме того, встречаются формы 2n — 2 или нуллисомики, так как отсутствует пара гомологичных хромосом, и 2n + n или полисомики.


Анеуплоиды встречаются как у растений и животных, так и у человека. Анеуплоидные растения обладают низкой жизнеспособностью и плодовитостью, а у человека это явление нередко приводит к бесплодию и в этих случаях не наследуется. У детей от матерей старше 38 лет частота анеуплоидии повышена (до 2,5 %). Кроме того, случаи анеуплоидии у человека вызывают хромосомные болезни.

Анеуплоидные формы часто используются в селекции растений. Скрещивая растения с нуллисомиками и моносомиками, в геном можно вводить определенную хромосому с желательными генами. Таким путем получены новые формы пшеницы, устойчивые к ряду заболеваний.

Источник: jbio.ru

Виды плоидности и терминология

  • Гаплоидные клетки — содержат одинарный набор непарных хромосом (половые клетки, прокариоты).
  • Диплоидные клетки — содержат парное количество хромосом. Большая часть организмов, размножающихся половым путём, диплоидны, т. е. содержат в соматических клетках тела по одному набору хромосом от каждой из гамет (гаплоидных половых клеток).

  • Полиплоидные клетки — содержат более чем две пары хромосом (до двенадцати пар). В зависимости от того, сколько раз в ядре клетки повторяется гаплоидный набор, их соответственно называют три-, тетра-, гексаплоидными и т. д. Полиплоидия возникает вследствие нарушения хода митоза или мейоза (значительно реже) под воздействием мутагенов: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки (так возникают гаметы с двукратным числом хромосом — 2n). При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом и т.д. Полиплоидия имеет две разновидности:
    • Автополиплоидия — результат кратного увеличения гаплоидного набора хромосом одного вида.
    • Аллополиплоидия — результат объединения наборов хромосом разных видов после образования межвидовых гибридов.
  • Анеуплоидные клетки — непропорциональное (не кратное гаплоидному) удвоение или утрата отдельных хромосом. В зависимости от того, произошло уменьшение или увеличение хромосом, используют соответственно приставки гипо- и гипер-. Например, гипердиплоиды — трисомики (2n +1) и тетрасомики (2n + 2), гиподиплоиды — моносомики (2n — 1) и нуллисомики (2n — 2). Анеуплоидия как правило появляется из-за влияния мутагенов.

Иногда термин «плоидность» применяют не только к эукариотам, но и в отношении безядерных прокариотов, которые как правило гаплоидны, однако иногда встречаются диплоидные и полиплоидные бактерии.

Полиплоидию не следует путать с увеличением количества ядер в клетке и увеличением числа молекул ДНК (политенизацией) в хромососоме.

Гаплоидная и диплоидная фазы в жизненном цикле

У раздельнополых организмов в жизненном цикле происходит как правило нормальное чередование гаплоидной и диплоидной фаз. При мейозе образуются гаплоидные клетки в результате разделения диплоидной (у некоторых растений и грибов затем может происходить размножение путём митоза с образованием гаплоидного многоклеточного тела или нескольких поколений гаплоидных клеток-потомков). В результате полового процесса хромосомы двух гаплоидных клеток объединяются в одной диплоидной (зиготе), после чего могут размножаться при помощи митоза (у растений и животных) с образованием диплоидного многоклеточного тела или диплоидных клеток-потомков.

Полиплоидия у растений

Термин полиплоидия был предложен в 1916 году немецким ученым Винклером, изучавшим образцы аномальных (химерных) тканей у паслена.

Естественная полиплоидность в природе распространена достаточно широко. До 75% арктический флоры – полиплоиды, так же велик процент полиплоидов в пустынных и высокогорных регионах, где выживают растения, устойчивые к экстремальным условиям обитания.

Человеком полиплоидия используется издавна. Сначала просто размножали самые крупные экземпляры, дающие много зерна или же хорошие плоды. С развитием генетики выяснилось, что такие гиганты – отобранные природные полиплоиды. В настоящее время на основе искусственной автополиплоидии синтезированы высокоурожайные формы и сорта пшеницы, ржи, гречихи, кукурузы, картофеля, хлопчатника, сахарной свеклы, сахарного тростника и других культурных растений. Растения-полиплоиды как правило характеризуются более крупными размерами, повышенным содержанием ряда веществ, устойчивостью к неблагоприятным факторам внешней среды, отличными от исходных форм сроками цветения и плодоношения. Искусственная полиплоидия вызывается ядами, разрушающими веретено деления, такими как алкалоид колхицин.

Аллополиплоидия (межвидовое скрещивание) обычно возникает от удвоения хромосом гибрида двух видов, что приводит к его плодовитости (амфиплоидия). Пример природной аллополиплоидии – алыча, гибрид терна и дикой сливы, полученный тысячелетия назад в результате естественной гибридизации. Искусственный гибрид получен в 1928 году русским цитогенетиком Карпеченко, который скрестил редьку с капустой. Полученый «амфидиплоид» получил научное название Paphanobrassica. У этого растения листья были как у редьки, а корни напоминали капустные. Хотя экономической ценностью полученный гибрид не обладает, зато позиционируется эволюционистами в качестве доказательства реальности биологической эволюции. В этом случае стоит отметить, что Paphanobrassica имела признаки обеих видов-прародителей, но не обладало принципиально новыми признаками, которые бы указывали на возможность прогрессивных макроэволюционных изменений.

Полиплоидия у животных

В животном мире полиплоиды встречаются среди нематод, аскарид, пиявок, земноводных. У многих млекопитающих полиплоидные клетки встречаются в отдельных органах (печень, и др.), но пример полной полиплоидии известен лишь один – южноамериканский грызун Tympanoctomys barrerae (вид, родственный морским свинкам и шиншиллам).

Нарушения плоидности у человека

У человека большая часть клеток диплоидны. Гаплоидны только зрелые половые клетки (гаметы). Другие варианты плоидности — несут лишь отрицательное воздействие.

Примеры анеуплоидии у человека: синдром Дауна (21-я хромосома представлена тремя копиями), синдром Кляйнфельтера — избыточная X хромосома (XXY), синдром Тернера — отсутствие одной из половых хромосом (X0). Описаны также примеры утроения X хромосомы и некоторые другие аномалии.

Примерами полиплоидии являются абортивные триплоидные зародыши и триплоидные новорождённые (срок их жизни при этом не превышает нескольких дней), а также диплоидно-триплоидные мозаики.

Полиплодия в теории креационизма

Казалось бы, примеры с удачными гибридами неоспоримо доказывают, что увеличение числа хромосом — путь к эволюционному прогрессу. Однако наблюдение полиплоидии в природе приводит к интересным, а иногда — и к противоположным выводам. В частности Кент Ховант в своих лекциях (1999 г.) любил приводить факты о количестве хромосом в соматических клетках разных организмов. Если бы количество хромосом имело смысл в эволюции, тогда по правилу элементарной логики, чем больше хромосом, тем дальше живое существо взобралось по древу эволюции. Но это не так.

Царство растений число хромосом Животные и человек число хромосом
Помидор 12 Домашняя муха 12
Горох 14 Опоссум 22
Капуста 18 Лягушка 26
Морковь 20 Летучая мышь 44
Бобы 22 Человек 46
Секвойя 22 Шимпанзе 48
Лук 32 Амёба 50
Соя 40 Собака 78
Табак 48 Курица 78
Папоротник 480 Карп 100

Таким образом полиплоидия ещё ждёт своего научного осмысления.

Источник: www.creationwiki.org