Строение хромосомы

Эти плотные структуры имеют палочковидную форму. Хромосомы отличаются друг от друга длиной, которая колеблется от 0,2 до 50 мкм. Ширина обычно имеет постоянное значение и не отличается у разных пар плотных телец.

На молекулярном уровне хромосомы представляют собой сложный комплекс из нуклеиновых кислот и белков гистонов, соотношение которых соответственно 40% на 60% по объему. Гистоны участвуют в компактизации молекул ДНК.

Стоит отметить, что хромосома – это непостоянная структура ядра эукариотической клетки. Такие тельца образуются только в период деления, когда необходимо упаковать весь генетический материал для упрощения его передачи. Поэтому мы рассматриваем строение хромосомы на момент подготовки к митозу/мейозу.

Первичная перетяжка представляет собой фибриллярное тельце, которое делит хромосому на два плеча. В зависимости от соотношения длины этих плеч, различают хромосомы:

  1. Метацентрические, когда первичная перетяжка находится ровно по центру.
  2. Субметацентрические: длина плеч отличается незначительно.
  3. У акроцентрических первичная перетяжка сильно смещена к одному из концов хромосомы.
  4. Телоцентрические, когда одно из плеч полностью отсутствует (у человека не встречаются).

Еще одна особенность строения хромосомы эукариотической клетки – это наличие вторичной перетяжки, которая обычно сильно смещена к одному из концов. Ее главная функция заключается в синтезе рибосомальных РНК на матрице ДНК, которые потом формируют немембранные органеллы клетки рибосомы. Также вторичные перетяжки называют ядрышковыми организаторами. Располагаются эти образования у дистального отдела хромосомы.

Несколько организаторов формируют целостную структуру – ядрышко. Число таких образований в ядре может разниться от 1 до нескольких десятков, и обычно их видно даже в световом микроскопе.Свойства хромосом«>

Во время синтетической фазы митоза строение хромосомы меняется в результате удвоения ДНК в процессе репликации. При этом формируется привычная форма, напоминающая букву Х. Именно в таком виде часто можно застать хромосомы и сделать качественный снимок на специальных микроскопах.

Стоит отметить, что количество хромосом у разных видов никак не показывает степень их эволюционного развития. Вот несколько примеров:

  1. У человека 46 хромосом.
  2. У кошки 60.
  3. У карася 100.
  4. У крысы 42.
  5. У лука 16.
  6. У мушки дрозофилы 8.
  7. У мыши 40.
  8. У кукурузы 20.
  9. У абрикоса 16.
  10. У краба 254.

Функции хромосом

Ядро является центральной структурой любой эукариотической клетки, т. к. оно содержит всю генетическую информацию. Хромосомы выполняют ряд важных функций, а именно:

  1. Хранение собственно генетической информации в неизменном виде.
  2. Передача этой информации путем репликации молекул ДНК в процессе деления клетки.
  3. Проявление характерных признаков организма за счет активации генов, отвечающих за синтез тех или иных белков.
  4. Сборка рРНК в ядрышковых организаторах для построения малой и большой субъединиц рибосом.

Важная роль при делении клетки отводится первичной перетяжке, к белкам которой присоединяются нити веретена деления в метафазу митоза или мейоза. При этом Х-строение хромосомы разрывается на два палочковидных тельца, которые доставляются к разным полюсам и будут в дальнейшем заключены в ядра дочерних клеток.Свойства хромосом«>

Уровни компактизации

Первый уровень называется нуклеосомным. ДНК при этом обкручивается вокруг гистоновых белков, образуя «бусинки на нитке».

Второй уровень – нуклеомерный. Здесь «бусинки» сближаются и формируют нити толщиной до 30 нм.

Третий уровень получил название хромомерный. При этом нити начинают образовывать петли нескольких порядков, тем самым во много раз укорачивая начальную длину ДНК.

Четвертый уровень – хромонемный. Компактизация достигает своего максимума, а полученные палочковидные образования уже видны в световом микроскопе.Свойства хромосом«>

Особенности генетического материала прокариот


Отличительной особенностью бактерий является отсутствие ядра. Генетическая информация также хранится с помощью ДНК, которые разбросаны по всей клетке в составе цитоплазмы. Среди молекул нуклеиновых кислот выделятся одна кольцевая. Она обычно располагается в центре и отвечает за все функции прокариотической клетки.Свойства хромосом«>

Иногда эту ДНК называют хромосомой бактерии, строение которой, конечно же, никак не совпадает с таковой у эукариота. Поэтому подобное сравнение носит относительный характер и просто упрощает понимание некоторых биохимических механизмов.

Источник: www.syl.ru

Что такое хромосомы

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

iv>

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» — окраска и «somo» — тело.

Хромосомы

Хромосомная теория наследственности


Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности — генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

>
строение хромосомы

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом


Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.

В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара — половых хромосом — разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

хромосомный набор человека

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами


Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Источник: www.poznavayka.org

Вопрос 1. Охарактеризуйте строение хромосомы. Хромосома — это ДНК?

Хромосомы — это основные органоиды клеточного ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Каждая хромосома образована одной молекулой ДНК и сопутствующими ей белками. В структурной организации ДНК центральную роль играют специфические белки — гистоновые и негистоновые. Считается, что вся ядерная ДНК ассоциирована с этими белками и образует нуклеопротеиновый комплекс, называемый хроматином.

Хромосома — это ДНК? Хромосома – это вместилище ДНК, где, на ряду, с ним присутствуют и белки примерно такой же массы. Значит, это – неверное утверждение.


Вопрос 2. Поясните, какие функции в ядре выполняет хроматин.

Комплекс ДНК с сопутствующими белками называют хроматином. Строением молекулы ДНК обеспечивается запись наследственной информации в хромосоме, а белки принимают участие в сложной упаковке молекулы ДНК в хромосому и в регуляции её способности к синтезу РНК (транскрипции). Разные участки хромосом обеспечивают синтез различных РНК.

Хромосомы осуществляют сложную координацию и регуляцию процессов в клетке путём синтеза первичной структуры белка, информационной и рибосомной РНК.

Вопрос 3. Что является продуктом действия хромосом?

Продуктом действия хромосом являются хроматиды.

Вопрос 4. Поясните, какая разница между репликацией ДНК и репликацией хромосом.

Репликация ДНК — процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты на матрице родительской молекулы ДНК. В ходе последующего деления материнской клетки каждая дочерняя клетка получает по одной копии молекулы ДНК, которая является идентичной ДНК исходной материнской клетки. Этот процесс обеспечивает точную передачу генетической информации из поколения в поколение.

Репликация (удвоение) хромосом эукариотов является сложным процессом, поскольку включает не только репликацию гигантских молекул ДНК, но также и синтез связанных с ДНК гистонов и негистоновых хромосомных белков. Конечным этапом является упаковка ДНК и гистонов в нуклеосомы.

Т. е. репликация ДНК составной и основополагающий процесс в репликации хромосом.

Источник: resheba.me

Кариотип и правила хромосом


Кариотипом называется совокупность всех хромосом (диплоидный набор), находящихся в клетке. Он видоспецифичен, то есть является уникальным для каждого вида живых существ на планете, уровень изменчивости его относительно низок, однако у некоторых особей может обладать определенными особенностями. Например, представители разного пола имеют в основном одинаковые хромосомы (аутосомы), различие кариотипов составляет только одна пара хромосом — половые хромосомы, или гетерохромосомы.

Правила хромосом просты: число их постоянно (в соматических клетках может содержаться только строгое число хромосом, например, у кошек — 38, у плодовой мушки дрозофилы — 8, у курицы — 78, а у человека 46).

Хромосомы парны, каждая из них имеет гомологичную пару, идентичную по всем параметрам, включая форму и размер. Разнится только происхождение: одна — от отца, другая — от матери.

Гомологичные пары хромосом индивидуальны: каждая из пар отличается от других не только внешним видом — формой и размером, — но и расположением светлых и темных полос.

Непрерывность — еще одно правило хромосом. ДНК клетки удваивается перед делением, результатом чего становится пара сестринских хроматид. Каждая дочерняя клетка после деления получает по одной хроматиде, то есть от хромосомы образуется хромосома.

хромосома строение

Необходимые элементы

Хромосома, строение которой относительно несложно, образуется из молекулы ДНК, обладающей большой длиной. Она содержит линейные группы множества генов. Каждая хромосома обладает центромерой и теломерами, точками инициации репликации — это ее необходимые функциональные элементы. Теломеры находятся на кончиках хромосом. За счет них и точек начала репликации (их так же называют сайтами инициации), молекула ДНК может реплицироваться. В центромерах же происходит прикрепление сестринских молекул ДНК к митотическому веретену деления, что позволяет им точно разойтись по дочерним клеткам во время процесса митоза.

О вирусах

Термин «хромосома» изначально был предложен в качестве обозначения структур, свойственных эукариотическим клеткам, однако ученые все чаще упоминают вирусные и бактериальные хромосомы. Состав, функции их практически схожи, поэтому Д. Е. Коряков и И. Ф. Жимулёв считают, что понятие уже давно нужно расширить, и определять хромосому, как структуру, содержащую нуклеиновую кислоту и имеющую функцию хранения, реализации и передачи информации о генах. У эукариот хромосомы содержатся в ядре, а так же пластидах и митохондриях. Прокариоты (безъядерные) также содержат ДНК, однако в клетке нет ядра. У вирусов хромосомы имеют вид молекулы РНК или ДНК, расположенной в капсиде. Независимо от наличия в клетке ядра, в состав хромосом входят органические вещества, ионы металлов и множество других веществ.

химический состав интерфазных хромосом

История открытия

Ученые прошли большой путь, прежде чем исследовали хромосомы. Впервые они были описаны в семидесятых годах позапрошлого века: разные авторы упоминали о них в своих статьях, книгах и научных работах, поэтому открытие хромосом приписывают разным людям. В этом списке имена И. Д. Чистякова, А. Шнейдера, О. Бючли, Э. Страсбургера и многие другие, однако большинством ученых 1882 год признается как год открытия хромосом, а первооткрывателем называют В. Флеминга, немецкого анатома, собравшего и упорядочившего сведения о хромосомах в своей книге Zellsubstanz, Kern und Zelltheilung, добавив к уже имевшимся сведениям собственные исследования. Сам же термин предложил в 1888 году гистолог Г. Вальдейер. В переводе хромосома значит буквально «окрашенное тело». Название связано с тем, что химический состав хромосомы позволяет ей легко связывать основные красители.

В 1900 году были «переоткрыты» законы Менделя, и очень скоро, в течение двух лет, ученые пришли к выводу, что хромосомы во время процессов мейоза и оплодотворения ведут себя как «частицы наследственности», поведение которых было теоретически описано ранее. В 1902 году, независимо друг от друга, Т. Бовери и У. Сеттоном была выдвинута гипотеза о том, что хромосома, строение которой еще было неизвестно, несет функцию передачи и хранения наследственной информации.

Дрозофилы и генетика

Первая четверть прошлого века ознаменовалась экспериментальным подтверждением идей о том, что хромосомы имеют генетическую роль. Американские ученые Т. Морган, А. Стёртевант, К. Бриджес и Г. Мёллер работали над исследованиями, объектами которых стали строение и классификация хромосом, а также их функции. Опыты проводились на D.melanogaster, известной, пожалуй, всем плодовой мушке. Полученные данные послужили фундаментом для хромосомной теории наследственности, которая актуальна и сейчас, спустя почти сто лет. Согласно ей, хромосомы связаны с наследственной информацией, а гены в них локализованы линейно, в четкой последовательности, но химический состав и морфология хромосом исследуются учеными и в наши дни.

За проведенную работу Т. Моргану была присуждена Нобелевская премия в области физиологии и медицины в 1933 году.

Химический состав хромосом

Кратко можно описать, что наследственный материал в хромосомах предстает как нуклео-протеиновый комплекс. После изучения химической организации хромосом в эукариотических клетках, ученые могут сказать, что состоят они в большей части из ДНК и белков, которыми образуется нуклео-протеиновый комплекс, называемый хроматином.

Белки, входящие состав хромосом, это значительная часть всего вещества в хромосомах, около 65% всей массы структур приходится именно на них. Хромосомные белки подразделяются на негистоновые белки и гистоны. Гистоны — сильноосновны, щелочной характер их обуславливается наличием лизина и аргенина — основных аминокислот.

Химический и структурный состав хромосом разнообразен. Гистоны представляют пять фракций: Hl, H2A, H2B, H3 и H4. Все, кроме первой фракции, примерно в равных количествах имеются в клетках всех видов, принадлежащих к высшим млекопитающим. Белков Hl меньше вдвое.

Синтез гистонов происходит на полисомах цитоплазмы. Это основные белки, имеющие положительный заряд, за счет чего могут прочно соединяться с молекулами ДНК и таким образом не дают считывать заключенную наследственную информацию. В этом заключается регуляторная роль гистонов, но помимо нее есть и структурная функция, за счет которой обеспечивается пространственная организация ДНК в хромосомах.

В характерный химический состав интерфазных хромосом входят и негистоновые белки, которые, в свою очередь, подразделяются более чем на сто фракций. В этот ряд входят ферменты, отвечающие за синтез РНК, и ферменты, которые запускают репарацию и редупликацию ДНК. Так же как и основные, кислые хромосомные белки имеют регуляторную и структурную функции.

Однако химический состав хромосомы на этом не заканчивается: кроме белков и ДНК, в составе присутствует РНК, ионы металлов, липиды и полисахариды. Отчасти хромосомная РНК присутствует в качестве продуктов транскрипции, которые еще не покинули место синтеза.

 в состав хромосом входят органические вещества

В метафазе

Морфологические особенности метафазной хромосомы заключаются в следующем: в течение первой половины митоза они состоят из пары сестринских хроматид, которые соединены между собой в области центромеры (первичная перетяжка, или кинетохора) — это участок хромосомы, общий для обеих хроматид. Химический состав хромосомы также меняется. Вторая половина митоза характеризуется разделением хроматид, после чего происходит образование однонитчатых дочерних хромосом, которые распределяются в дочерние клетки. Вопрос о том, сколько ДНК входит в состав метафазной хромосомы, часто встречается в тестах по биологии и ставит в тупик учащихся. В последний период интерфазы, а также в профазе и метафазе, хромосомы двухроматидны, поэтому их набор соответствует формуле 2n4c.

Классификация хромосом

По положению центромер и длине плеч, располагающихся по обе стороны от нее, хромосомы классифицируются на метацентрические (равноплечие), если центромера располагается посредине, и субметацентрические (неравноплечие), если центромера сдвинута к одному из концов. Также существуют акроцентрические, или палочковидные хромосомы (центромера у них расположена практически на самом конце) и точковые хромосомы, получившие свое название за небольшой размер, вследствие чего практически невозможно определить их форму. У телоцентрических хромосом тоже трудно определить место расположения первичной перетяжки.

Компактизация

Любая соматическая клетка содержит в себе 23 пары хромосом, каждая из которых состоит из одной молекулы ДНК. Общая длина всех 46 молекул составляет около двух метров! Это более трех миллиардов пар нуклеотидов, и все они умещаются в одной клетке, при этом хромосомы в период интерфазы практически неразличимы даже в электронный микроскоп. Причина этого — надмолекулярная организация хромосом, или компактизация. При переходе в другую фазу клеточного цикла хроматин может изменять свою организацию.

Структура и химический состав интерфазных хромосом и строение метафазных хромосом расцениваются учеными как полярные варианты структуры, которые связываются между собой взаимными переходами во время процесса митоза.

белки входящие состав хромосом

Первый уровень компактизации представлен нуклеосомной нитью, который также называют «бусы на нитке». Характерный размер — 10-11 нм, что не позволяет рассмотреть их в микроскоп.

Химический состав хромосомы обуславливает наличие этого уровня организации: его обеспечивают четыре вида гистонов — основных белков (Н2А, Н2В, НЗ, Н4). Они образовывают коры — тела из белковых молекул, имеющие форму шайбы. Каждая кора состоит из восьми молекул (пара молекул от каждого из гистонов).
Происходит комплектация молекулы ДНК, она спирально накручивается на коры. С каждым белковым телом контактирует отрезок молекулы ДНК, насчитывающий 146 нуклеотидных пар. Есть и не участвующие в контакте области, называющиеся линкерными, или связующими. Размер их разнится, но в среднем равен 60 парам нуклеотидов (п. н.).

Нуклеосомой называют участок ДНК, имеющий длину 196 п.н. и включающий в себя белковую кору. Однако нуклеосомная нить, похожая на нить бус, имеет и области, не содержащие коры.

Подобные участки, которые отлично различают негистоновые белки, ввиду наличия определенных нуклеотидных последовательностей, встречаются довольно равномерно с интервалом в несколько тысяч нуклеотидных пар. Их наличие важно для дальнейшей компактизации хроматина.

Дальнейшая упаковка хроматина

Хроматиновая фибрилла — второй уровень компактизации — называется также соленоидным, или нуклеомерным уровнем. Размер составляет 30 нм. Обеспечивается гистоном HI. Он объединяется с линкерным участком ДНК, а так же с двумя соседними корами и «стягивает» их между собой. Результатом процесса становится образование гораздо более компактной структуры, напоминающей по строению соленоид. Подобная фибрилла, помимо хроматиновой, носит название элементарной.

Далее следует хрономерный уровень. Характерный размер этого уровня компактизации — 300 нм. Уже не происходит дополнительная спирализация, однако образуются поперечные петли, которые совпадают с размером одного репликона и объединяются посредством негистоновых (кислых)

На хромонемном уровне (700 нм) петли сближаются, и хроматин еще больше компактизируется. Образованные нити хромосом уже видны в световой микроскоп.

Хромосомный уровень (1400 нм) наблюдается в период метафазы.

строение и классификация хромосом

Мутации и их роль в медицине

Мутация хромосом — не редкость, однако может иметь разную степень и механизмы возникновения. Изменения в структурной форме хромосом обычно основываются на первоначальном нарушении целостности. Если в хромосоме присутствуют разрывы, то организму приходится производить их перестройку, в результате чего и возникает хромосомная мутация, или абберация.

В процессе кроссинговера гомологичные хромосомы обмениваются соответствующими участками, и именно в это время обычно происходят разрывы. Если во время кроссинговера произошел обмен неравноценными участками генов, появляются новые группы сцепления.

Виды мутаций

Существует несколько видов мутаций, основанных на механизме их происхождения. Мутация деления появляется вследствие выпадения участков генов. Если какие-то участки генома были удвоены — это дупликация. Во время инверсии участок хромосомы между разрывами поворачивается на 180°.

Транслокацией называется переход участка из одной хромосомы в другую, причем если перемещение происходит между негомологичными хромосомами, транслокация называется реципрокной, а если фрагмент был присоединен к той же хромосоме, мутация именуется транспозицией. Во время робертсоновской транслокации происходит объединение в одну двух негомологичных структур.

Также существуют мутации перицентрические и парацентрические.

РНК

В зависимости от фазы, в которой находится клетка, меняется химический состав, особенности морфологии хромосом и их размер, но генетический материал несет в себе не только ДНК и хромосомы в ядре.

Рибонуклеиновая кислота (РНК) — еще одна структура, участвующая в передаче и хранении генетической информации.

Существует мРНК, или иРНК (матричная, или информационная), она участвует в синтезе белков с заданными свойствами. Для этого необходимо, чтобы на место «постройки» поступила «инструкция», которая сообщит, в каком порядке аминокислоты должны быть включены в цепь пептидов. Этой инструкцией и является информация, закодированная в последовательности нуклеотидов мРНК (иРНК). Транскрипцией и называется процесс синтеза матричной РНК.

Процесс считывания информации с ДНК можно сравнить с компьютерной программой. Сначала РНК-полимераза должна обнаружить промотор — особый участок молекулы ДНК, который отмечает область начала транскрипции. РНК-полимераза соединяется с промотором и начинает раскручивание прилежащего витка ДНК-спирали. В этом месте две цепи ДНК отсоединяются друг от друга, после чего фермент начинает образование мРНК на одной из них (кодогенной, обращенной к ферменту 3`-концом). Рибонуклеотиды собираются в цепь по правилу комплементарности с нуклеотидами ДНК, и антипараллельно относительно матричной ДНК-цепи.

хромосомы состав функции

Процесс транскрипции

Таким образом, по мере продвижения вдоль ДНК-цепи, фермент точно считывает всю информацию, продолжая процесс, пока вновь не встретит особую последовательность нуклеотидов. Она называется терминатором транскрипкции, и сигнализирует, что РНК-полимераза должна отделиться и от матричной цепи ДНК, и от только что синтезированной мРНК. Сумма областей от промотора до терминатора, включая транскрибируемый участок, называется единицей транскрипции — транскриптоном.

По мере того, как РНК-полимераза продвигается вдоль кодогенной цепи, транскрибированные одноцепочечные участки ДНК снова объединяются и принимают вид двойной спирали. Образованная мРНК несет в себе точную копию данных, переписанных с участка ДНК. Нуклеотиды мРНК, кодирующие последовательности аминокислот, группируются по три и носят название кодонов. Каждому кодону мРНК соответствует определенной аминокислоте.

Свойства и функции генов

Ген считается элементарной неделимой функциональной единицей наследственного матриала. Она имеет вид участка молекулы ДНК, которой кодируется структура как минимум одного пептида.

Ген имеет определенные свойства, первое из них — дискретность действия. Это означает, что различно локализованные гены контролируют развитие признаков особи.
Свойство постоянства определяется тем, что ген неизменен при наследственной передаче, если, конечно, не произошло мутации. Из этого следует, что ген не может быть изменен в течение жизни.

Специфичность действия заключается в обусловленности развития признака или группы признаков, однако гены могут оказывать и множественные действия — это называется плейотропией.

Свойство дозированности действия определяет предел, до которого может развиться признак, обусловленный геном.

Для них также характерно и аллельное состояние, то есть практически все гены находятся в аллелях, количество которых начинается с двух.

Источник: fb.ru

19. Нуклеиновые кислоты, их виды, строение, локализация в клетке, значение.

Нуклеиновые кислоты – биологические полимеры.

ДНК – биологический полимер, состоящий из 2 нуклеотидных цепей. Мономером является нуклеотид. Строение: Азотистое основание, дезоксирибоза, остаток фосфорной кислоты. ДНК находится в хромосома, митохондриях, пластидах.

Значение:

— Хранение ни.

— Передача ни.

— Реализация ни в ходе биологического синтеза.

РНК – одноцепочечный биологический полимер. Мономером является нуклеотид. Строение: Азотистое основание, рибоза, остаток фосфорной кислоты. РНК находится в ядрах и рибосомах.

Виды:

— Т-РНК – транспортировка аминокислот к рибосоме. (10%).

— Р-РНК – структурный компонент рибосом и полисом. Контролирует начало и конец синтеза белка. (85%).

И-РНК – содержит информацию о строении белковой молекулы. (5%).

20. Генетический код. Его сущность, свойства. Понятие о кодоне.

Генетический код – это схема расположения следующих друг за другом азотистых оснований в ДНК, определяющих место аминокислот в молекуле белка.

Свойства:

— Триплетность – три азотистых основания, следующих друг за другом.

— Избыточность

— Специфичность – определённую аминокислоту, кодируют строго определённые триплеты.

— Неперекрываемость – одно и тоже азотистое основание не может присутствовать в одно и тоже время в двух триплетах.

Универсальность – генетический код является единым для всех живых организмов на земле.

— Колленеарность – последовательность ДНК строго соответствует последовательности аминокислот в молекуле белка.

— Непрерывность – между нуклеотидами в ДНК нет никаких дополнительных знаков, разделяющих эти нуклеотиды.

Кодон – тройка рядом стоящих нуклеотидов.

21. Жизненный цикл клетки, его периоды, их сущность.

Жизненный цикл клетки – это период существования клетки от момента её образования путём деления материнской клетки до её смерти. Важнейшим компонентом является митотический цикл.

Периоды:

— Интерфаза – подготовка к делению клетки.

— Митоз – деление клетки.

22. Интерфаза, её периоды, их характеристика.

Интерфаза — подготовка к делению клетки.

— Пресинтетический (G1) – идёт рост образовавшейся клетки, синтез различных РНК и белков. Синтез ДНК не происходит. (12-24 часа). 2n2c (хромосом и ДНК).

— Синтетический (S) – синтез ДНК и редупликация хромосом. Синтез РНК и белка. (10 часов).

— Постсинтетический (G2) – синтез ДНК останавливается. Происходит синтез РНК, белков и накопление энергии. Ядро увеличивается в размере. Происходит его деление. (3-4 часа).

Источник: StudFiles.net