Все, что изложено выше относительно химического состава и структуры хромосом эукариот, типично и для хромосом человека. Некоторой детализации требует информация, позволяющая идентифицировать с большей степенью точности любую хромосому человека.

1956 год — шведы Тио и Леван, англичане Форд и Хамертон установили, что ядро диплоидной клетки человека содержит 46 хромосом – это хромосомный набор или кариотип человека; в 1960 – Мурхед и сотр. (США) разработали метод приготовления препаратов хромосом из кратковременной культуры лимфоцитов; в 1968-70 гг. разработаны методы дифференциального окрашивания хромосом, что позволило однозначно идентифицировать все хромосомы человека — все эти манипуляции производились и производятся только на метафазных хромосомах, ибо они различимы лучше все­го, т.к. они максимально укорочены и утолщены, лежат свободно одна от дру­гой, располагаются все в одной плоскости клетки (экваториальной); кроме того, исследуются только те метафазные хромосомы, хроматиды которых отделились друг от друга в области плечей, а в центромерной части еще соединены.


Совокупность всех метафазных хромосом, расположенных относительно произвольно в экваториальной плоскости клетки, именуется метафазной пластинкой или просто хромосомным набором. После приготовления препаратов хромосом, которые можно приготовить из всех тканей и клеточных суспензий, содержащих делящиеся клетки (в зависимости от целей важно, конечно, количе­ство метафаз), хромосомы окрашиваются, ибо только после этого их можно различить в световой микроскоп, получить микрофотографию, идентифицировать и, расположив их в определенном порядке, т.е. составив кариограмму, получить целостное представление о кариотипе конкретного человека. Кариограмма — это те же хромосомы метафазной пластинки, но расположенные упорядоченно. Принцип упорядоченности общий для всего вида и определяется идеограммой. Идиограмма — это графическое изображение гаплоидного набора хромосом (можно и диплоидного) и расположение их по группам в зависимости от формы и величины. Группы располагаются в порядке уменьшения величины входящих в них хромосом.

В современных цитогенетических лабораториях процесс составления кариограммы компьютеризирован.

Наиболее простой способ окрашивания хромосом красителем Гимза или 2%-ым ацетоорсеином, или 2%-ым ацетокармином.


и этом хромосомы окрашиваются целиком, равномерно и интенсивно. Окрашенные таким образом хромосомы, согласно Денверской классификации (I960), располагались в идиограмме в зависимости от их длины и нумеровались по парам от 1 до 23. Тогда же Патау предложил разбить 23 пары хромосом на 7 групп от А до G с учетом расположения центромеры. Важным признаком, уточняющим форму хромосомы, стал центромерный индекс: отношение длины короткого плеча к длине всей хромосомы, выраженное в %. Комплекс этих параметров позволял с немалой степенью точности распределить хромосомы по группам, но идентифицировать их, особенно в группах В, С, D, F и G, было невозможно.

Однако уже при стандартном (рутинном) равномерном окрашивании хромосом замечали, но оставили без внимания, некоторую неоднородность в плот­ности окрашивания по длине хромосом. И только позже (1968 г.), когда Касперсон с сотрудниками обнаружили, что после обработки акрихин-ипритом флуоресценция по длине хромосом распределена не равномерно, а в виде сегментов, они показали, что каждую хромосому можно надежно идентифицировать с помощью такого метода дифференциального окрашивания, ибо расположение сегментов для каждой хромосомы строго специфично. Вскоре стало ясно, что очень сходный рисунок сегментации хромосом можно получить и с помощью красителя Гимза, дополнив окрашивание некоторыми приемами. Впоследствии при разных способах обработки хромосом были обнаружены разные типы сегментов.


На Парижской конференции по стандартизации и номенклатуре хромосом человека (1971) все полученные к тому времени данные по дифференциальному окрашиванию хромосом были сопоставлены и оказалось, что все методы в принципе выявляют одни и те же структуры, но каждый специфичен в отношении определенных сегментов. И обозначать различные типы сегментов решили по методам, с помощью которых они выявляются.

Q — сегменты — флуоресцирующие после окраски акрихин-ипритом;

G — сегменты (Гимза) — выявляются при окрашивании красителем Гимза в сочетании с дополнительными процедурами; Q и G сегменты идентичны, но в большинстве лабораторий предпочитают этот метод, т.к. он не требует использования флуоресцентного микроскопа и эти препараты дольше хранятся; однако, только с помощью Q-метода можно идентифицировать Y-хромосому человека даже в интерфазном ядре;

R — сегменты — окрашиваются после контролируемой тепловой денатурации, располагаются между Q и G — сегментами;

С — сегменты — конститутивный гетерохроматин, располагается в прицентромерных районах обоих плечей хромосомы;

Т — сегменты — расположены в теломерных (концевых) районах хромосом.

Химическая природа дифференциального окрашивания еще только исследуется.

iv>
суждаются две основные гипотезы: первая исходит из того, что различные участки хромосом человека отличаются по количественному содержанию пар оснований аденин — тимин и гуанин — цитозин. Отсюда разная сте­пень усвоения ими красителей. В частности, блоки с большим содержанием пар А-Т связываются преимущественно с акрихин-ипритом, следовательно, Q-сегменты соответствуют участкам, богатым А-Т — парами; R-сегменты соответствуют участкам, богатым Г-Ц — парами, которые более устойчивы к тепловой денатурации — это, однако, не объясняет всех особенностей сегментации хромосом. Вторая гипотеза, белковая, исходит из данных о том, что предварительная протеолитическая обработка перед окрашиванием красителем Гимза индуцирует появление G-сегментов, а так как разные по составу участки ДНК связаны с разными белками, можно полагать, что рисунок сегментации зависит от особенностей комплекса ДНК — белок.

И все же, что собой представляют полосы — сегменты митотических хромо­сом, остается загадкой. Даже небольшие тонкие полосы содержат не менее 30 гигантских петель, суммарный нуклеотидный состав которых более 1 млн., нуклеотидов. Возможно, существование таких структурных блоков связано с функционированием эукариотического генома вообще, хотя сами по себе сег­менты ничего конкретного о функционировании индивидуальных генов не гово­рят, ибо в самой тонкой полосе, которую еще можно различить, содержится от 10 до 100 генов. Но то, что картина распределения сегментов в хромосомах поч­ти не изменилась за долгие периоды эволюции (почти каждая хромосома человека имеет своего аналога в кариотипе шимпанзе, гориллы, орангутана), свидетельствует о большом значении пространственной организации ДНК для экспрессии соответствующих генов.


Итак, информация, полученная в результате анализа дифференциально окрашенных хромосом, позволяет представить идиограмму хромосом человека следующим образом:

Группа А, 1-3 хромосомы — большие метацентрические и субметацентрические хромосомы; 1-ая — самая большая метацентрическая, центромерный ин­декс (ЦИ) 48 — 49%, в длинном плече вблизи центромеры часто обнаруживается вторичная перетяжка; вторая самая большая субметацентрическая ЦИ 38-40%; 3-я -почти на 20% короче 1 -ой, ЦИ 45-46%, метацентрическая.

Группа В, 4 и 5 хромосомы — большие субметацентрические. ЦИ 24-30%, без дифференциального окрашивания друг от друга не отличаются.

Группа С, 6-12 хромосомы и Х-хромосома — средние Субметацентрические хромосомы 6, 7, 8,11 и 12 — относительно субметацентрические, ЦИ — 27-35; 11 и 12 обнаруживают очень сходный рисунок сегментации, однако 11-я хромосома более метацентрическая; в 9-й в длинном плече часто обнаруживают вторич­ную перетяжку, которая не окрашивается ни акрихином, ни красителем Гимза; Х-хромосома значительно варьирует по длине, в целом сходна с самыми длинными из С-группы, ЦИ — 40,12+2,12, отличить от других при стандартном окрашивании очень трудно.

>

Группа D, 13-15 хромосомы — акроцентрические, ЦИ около 15 -наименьший в кариотипе человека, все они могут иметь вторичную перетяжку на коротком плече или не иметь, а следовательно, иметь спутники или не иметь, спутники могут быть очень большими, а иногда двойными; короткие плечи этих хромосом содержат ядрышковый организатор.

Группа Е, 16-18 хромосомы — относительно короткие метацентрические и субметацентрические; 16 — ЦИ — около 40, длина вариабельна, в длинном плече в 10% случаев выявляется вторичная перетяжка; 17-я, ЦИ -31; 18-ая хромосома на 5 -10%короче17,ЦИ-26.

Группа F, 19, 20 хромосомы — мелкие метацентрические, ЦИ — 36-46, при стандартной окраске выглядят одинаково, при дифференциальной — резко отличаются.

Группа G, 21, 22, Y-хромосомы — мелкие акроцентрические, ЦИ — 13-33; 21 и 22-ая могут иметь спутники, короткие плечи имеют ядрышковый органи­затор; Y-хромосома обычно (но не всегда) больше, хроматиды ее длинного плеча, как правило, лежат параллельно одна другой, а у 21 и 22 — ой хромосомы они чаще образуют широкий угол; спутники в Y-хромосоме отсутствуют, ЦИ от 0 до 26. В интерфазных ядрах дистальный участок длинного плеча при ок­рашивании акрихин-ипритом сильно флуоресцирует и выявляется как яркое пятно, которое называется Y-хроматин.


В соответствии с Парижской номенклатурой в хромосомах идиограммы показан рисунок сегментации (G — Q , R — сегменты) — позитивные светлые G (они же Q) сегменты, негативные темные — R, районы с варьирующей окраской заштриховываются. Латинскими буквами р и q обозначаются соответственно короткое и длинное плечо, в каждом плече выделяются районы, обозначенные арабскими цифрами, районы нумеруются от центромеры к теломерным участкам хромосомы. А уже внутри района выделяются сегменты (англ. bands), обозначенные арабскими цифрами по такому же принципу, т.е. сегмент имеет свой символ, например, 1 q 32 — второй сегмент третьего района в длинном плече 1 -ой хромосомы (при чтении справа налево).

Если в заключение сформулировать интегральную модель хромосомы, то она состоит из единственной двойной спирали ДНК, объединенной с гистонами в нуклеосомы. Некоторые районы этой двойной спирали представлены по­вторяющимися последовательностями, которые могут быть рассеяны по всему геному. Участки с повторяющимися последовательностями обнаруживают признаки конститутивного гетерохроматина. Участки с уникальными последовательностями пар нуклеотидов проявляют свойства эухроматина, это транскрибирующиеся участки — т.е. собственно гены, они соответствуют светлым G- и темным R-сегментам дифференциально окрашенных хромосом.


Благодаря успехам в молекулярной генетике человека разработан принципиально новый метод изучения хромосом – метод флюоресцентной гибридизации in situ (FISH) (in situ – в месте нахождения).

Суть этого молекулярно-цитогенетического метода заключается в следующем:

1 – для изучаемой хромосомы или ее конкретного участка готовят комплементарный однонитевой участок ДНК, к которому присоединяют биотин или дигоксигенин, — такой помеченный участок ДНК называется зондом;

2 – на микроскопическом препарате хромосом (in situ) при обработке щелочью хромосомная ДНК денатурирует, т.е. разрываются водородные связи между двумя комплементарными нитями ДНК;

3 – полученным ранее зондом обрабатывают препарат – зонд присоединяется к хромосоме в комплементарном участке ДНК, происходит ренатурация – между зондом и соответствующим участком молекулы ДНК формируются водородные связи;

4 – затем препарат обрабатывают веществом, которое избирательно может присоединяться к биотину или дигоксигенину, после чего к зонду можно присоединить флюоресцентный краситель (или красный – родамин, или зеленый – флюоресцеина изотиоцианат);

5 – теперь с помощью люминесцентного микроскопа можно увидеть окрашенные хромосомы на фоне неокрашенных.


Можно использовать не только двух – но и трехцветные варианты метода.

Метод FISH применяется очень широко – от определения локализации гена, до расшифровки сложных перестроек между несколькими хромосомами. Он требует меньше времени, чем кариотипирование дифференциально окрашенных хромосом.

Метод FISH можно применять для диагностики анеуплоидий в интерфазных ядрах – интерфазная цитогенетика. Например, в течение нескольких часов можно получить информацию о количестве 21 — х хромосом в клетках амниотической жидкости (пренатальная – дородовая диагностика синдрома Дауна у плода) – специфический ДНК – зонд для 21 — ой хромосомы покажет в ядрах этих клеток или 2 — е светящиеся точки, что соответствует двум 21-м хромосомам, или три – что выявит трисомию по 21-ой хромосоме.

Источник: StudFiles.net

Как определяется пол

У людей есть дополнительная пара половых хромосом, в общей сложности 46 хромосом. Половые хромосомы называются X и Y, и их комбинация определяет пол человека. Как правило, у женщин две Х-хромосомы, а мужчины обладают XY-хромосомами. Эта система определения пола XY встречается у большинства млекопитающих, а также для некоторых рептилий и растений.

Наличие хромосом XX или XY определяется, когда сперма оплодотворяет яйцо. В отличие от других клеток тела, клетки в яйце и сперме, называемые гаметами или половыми клетками, обладают только одной хромосомой. Гаметы производятся делением клеток мейоза, что приводит к тому, что разделенные клетки имеют половину числа хромосом в качестве родительских или предшественников. В случае с людьми это означает, что родительские клетки имеют две хромосомы и у них есть одна гамета.


Все гаметы в яйцах матери имеют Х-хромосомы. Сперма отца содержит около половины X и половины Y-хромосом. Сперма является переменным фактором при определении пола ребенка. Если сперма несет Х-хромосому, она будет сочетаться с Х-хромосомой яйца с образованием женской зиготы. Если сперма несет Y-хромосому, это приведет к рождению мальчика.

Во время оплодотворения гаметы из спермы объединяются с гаметами из яйца, образуя зиготу. Зигота содержит два набора из 23 хромосом для требуемых 46. Большинство женщин составляют 46XX, а большинство мужчин — 46XY, согласно Всемирной организации здравоохранения.

Однако есть некоторые варианты. Недавние исследования показали, что у человека может быть множество различных комбинаций половых хромосом и генов, особенно тех, кто идентифицирует себя как ЛГБТ. Например, определенная Х-хромосома, называемая Xq28, и ген на хромосоме 8, по-видимому, обнаруживается в более высокой распространенности у геев, согласно исследованию 2014 года в журнале Psychological Medicine.

Несколько младенцев из тысячи рождаются с одной половой хромосомой (45X или 45Y), это называатся моносомией. Другие рождаются с тремя или более половыми хромосомами (47XXX, 47XYY или 47XXY и т. д.), это называетя полисомией. «Кроме того, некоторые мужчины рождаются с 46XX из-за транслокации крошечной части пола, определяющего область Y-хромосомы», — сообщает ВОЗ. «Точно так же некоторые женщины также рождаются 46XY из-за мутаций в Y-хромосоме. Очевидно, что не только женщины, которые являются XX, а мужчины XY, но, скорее, существует ряд дополнений хромосом, гормональных балансов и фенотипических вариаций».

Структура хромосом X и Y

В то время как хромосомы для других частей тела имеют одинаковый размер и форму, образуя идентичное спаривание — хромосомы X и Y имеют разные структуры.

Х-хромосома значительно длиннее, чем Y-хромосома, и содержит еще сотни генов. Поскольку дополнительные гены в Х-хромосоме не имеют аналогов в Y-хромосоме, Х-гены являются доминирующими. Это означает, что почти любой ген на X, даже если он рецессивный у самки, будет выражен у самцов. Они называются X-связанными генами. Гены, обнаруженные только на Y-хромосоме, называются Y-связанными генами и выражены только у самцов. Гены на любой половой хромосоме можно назвать половыми генами.

Есть приблизительно 1,098 Х-связанных генов, хотя большинство из них не для женских анатомических характеристик. Фактически, многие из них связаны с такими нарушениями, как гемофилия, мышечная дистрофия Дюшенна и ряд других. Они чаще всего встречаются у мужчин. Неполовые особенности Х-связанных генов также отвечают за облысение мужского пола .

В отличие от большой Х-хромосомы, Y-хромосома содержит только 26 генов. Шестнадцать из этих генов отвечают за поддержание клеток. Девять вовлечены в производство спермы, а если некоторые из них отсутствуют или дефектны, могут наблюдаться низкие показатели спермы или бесплодие. Один ген, называемый ген SRY, отвечает за мужские половые черты. Ген SRY запускает активацию и регулирование другого гена, обнаруженного в неполовой хромосоме, называемой Sox9. Sox9 запускает развитие неполовых гонад в яички вместо яичников.

Нарушения половой хромосомы

Нарушения в комбинации половых хромосом могут приводить к различным гендерно-специфическим условиям, которые редко бывают летальными.

Женские аномалии приводят к синдрому Тернера или Trisomy X. Синдром Тернера возникает, когда у женщин есть только одна Х-хромосома вместо двух. Симптомы включают отказ половых органов от нормального зрелости, что может привести к бесплодию, малым грудям и отсутствии менструации; невысокий рост; широкая, щитовидная грудь; и широкая  шея.

Синдром Trisomy X вызван тремя Х-хромосомами вместо двух. Симптомы включают высокий рост, задержки речи, преждевременную овариальную недостаточность или отклонения яичников, а также слабый мышечный тонус — хотя многие девочки и женщины не проявляют никаких симптомов.

Синдром Клайнфелтера может поражать мужчин . Симптомы включают развитие молочной железы, аномальные пропорции, такие как большие бедра, высокий рост, бесплодие и небольшие яички.

Источник: medictionary.ru

Хромосомный набор человека несёт не только наследственные признаки, как написано в любом учебнике, но и кармические долги, которые могут проявляться как наследственные болезни, если человек ко времени их предъявления к оплате не успел изменить своё ошибочное восприятие реальности, тем самым погасив очередной долг. Кроме этого человек мог исказить хромосомы не только ошибками своего мировосприятия, но и неправильным питанием, образом жизни, нахождением или работой во вредоносных местах и т.д.. Все эти факторы дополнительно искажают хромосомы человека, в чём легко убедиться, если периодически проходить исследования состояния хромосом, например, на компьютерной диагностике Оберон. Из этой же диагностики видно, что при исцелении состояние хромосомного набора человека улучшается. Причём восстановление хромосом и только частичное происходит значительно позже восстановления здоровья органа или системы человека если исцеление человека производилось без проработки первопричин. Значит, первыми принимают на себя «удар судьбы» хромосомы человека, что затем проявляется на клеточном уровне, а затем в виде болезни.

Итак, накопленное «богатство» ошибок фиксируется в человеке  на уровне его хромосом. Искажения в хромосомах  закрывают или искажают сверхспособности человека и создают иллюзию страха, т.к. искажают энергию и информацию, служат причиной иллюзорного восприятия себя, людей и окружающего мира.

Большие искажения в хромосомах человека являются первопричиной гордыни, которая возникает благодаря иллюзорному восприятию себя, начиная с 12% искажений. Большие искажения хромосомного набора обычно присущи колдунам и разнообразной публике, практикующей магию (т.к. мало своей энергии), НЛП,  Рейки, гипноз, дианетику, космоэнергетику, «каналы». Таким профессионалам и самим постоянно приходится этим пользоваться, т.к. иначе груз накопленной кармы из-за применения вредоносных методов отодвигания проблем в будущее может и раздавить, то же можно сказать и о неразумных пациентах,  соглашающихся на использование таких методов.

Средняя величина искажений хромосомного набора у людей составляет 8%.

Каждая пара хромосом отвечает за свою сферу здоровья и жизни. Приведу данные по 5-й, 8-й, 17-й и 22-й, поскольку именно в них содержатся основные искажения (85% из 100%) у тех, кто будет присутствовать на сеансе 19 апреля.

5-я пара хромосом отвечает за деторождение, взаимоотношение полов, передачу родовых энергий, в том числе кармических воздаяний по отрицательной родовой карме (ОРК).

8-я пара отвечает за иммунитет, очищение от шлаков и токсинов, лимфатическую систему,  систему дефекации и выделений (в том числе потовые железы), мочеполовую, почки, печень, селезёнку, тонкий и толстый кишечник.

17-я пара отвечает за выработку в организме гормонов, в том числе эндорфинов, щитовидную железу, гипофиз, всю эндокринную систему.

22-я пара отвечает за костно-мышечную систему и управление движением (вестибулярный аппарат, среднее ухо и нарушение координации), выработку молочной кислоты (усталости), физическую выносливость организма.

Приведу примеры:

— Спортсмены при наличии искажений в 22-й паре хромосом никогда не смогут добиться значительных спортивных достижений. Точнее, величина спортивных достижений обратно пропорциональна искажениям в 22-й паре хромосом.

— Танцовщица никогда не станет выдающейся, если имеет искажения в 5-й  и 22-й парах хромосом.

Искажения в хромосомах являются одной из главных причин возникновения изменённых  клеток.

В этой статье не будем рассматривать тонкоплановые структуры всеобъемлющего поля первопричин, рассмотрим только связь этого поля с физическим телом. Связь поля первопричин и не только его, но и любая связь в области здоровья человека с непроявленным происходит в основном через его хромосомы.  А уже затем искажения хромосом передаются в виде отпечатков негативных программ в клетки организма, что приводит не только к необходимости низко-вибрационного мясного питания, но и служит благоприятной почвой для питания разнообразных вредоносных бактерий и паразитов. Это же служит причиной нарушения микрофлоры кишечника. Если у Вас много искажённых клеток, то какими бы препаратами Вы себя не вычищали или не восстанавливали свою микрофлору, эффект будет кратковременным. При большом количестве изменённых клеток, кроме того, затруднено питание тонкими энергиями — Святым Духом. Обычный способ восстановления клеток снизу, например соблюдение человеком православного поста, при большом количестве изменённых клеток становится весьма мучительным и имеет низкую эффективность относительно предлагаемого нового хромосомного метода восстановления клеток с проработкой первопричин, который будет впервые использован на групповом сеансе Здоровье 19 апреля 2013 года.

к.т.н. Кутовой А.С. 19.04.2013 г.

Источник: novamera.ru

Интересные факты о хромосомах человека

Хромосома – это содержащая ДНК нитевидная структура в клеточном ядре, которая несет в себе гены, единицы наследственности, расположенные в линейном порядке. У человека имеется 22 пары обычных хромосом и одна пара половых хромосом. Помимо генов хромосомы также содержат регуляторные элементы и нуклеотидные последовательности. Они вмещают ДНК-связывающие белки, которые контролируют функции ДНК. Интересно, что слово «хромосома» происходит от греческого слова «chrome», означающего «цвет». Хромосомы получили такое название из-за того, что имеют особенность окрашиваться в различные тона. Структура и природа хромосом разнятся от организма к организму. Человеческие хромосомы всегда были предметом постоянного интереса исследователей, работающих в области генетики. Широкий круг факторов, которые определяются человеческими хромосомами, аномалии, за которые они ответственны, и их сложная природа всегда привлекали внимание многих ученых.

Интересные факты о человеческих хромосомах

В человеческих клетках содержится 23 пары ядерных хромосом. Хромосомы состоят из молекул ДНК, которые содержат гены. Хромосомная молекула ДНК содержит три нуклеотидных последовательности, требующихся для репликации. При окрашивании хромосом становится очевидной полосчатая структура митотических хромосом. Каждая полоска содержит многочисленные нуклеотидные пары ДНК.

Человек – это биологический вид, размножающийся половым путем и имеющий диплоидные соматические клетки, содержащие два набора хромосом. Один набор наследуется от матери, тогда как другой – от отца. Репродуктивные клети, в отличие от клеток тела, имеют один набор хромосом. Кроссинговер (перекрёст) между хромосомами приводит к созданию новых хромосом. Новые хромосомы не наследуются от кого-то одного из родителей. Это служит причиной того факта, что не у всех у нас проявляются черты, получаемые нами непосредственно от одного из наших родителей.

Аутосомным хромосомам присвоены номера от 1 до 22 в порядке убывания по мере уменьшения их размера. У каждого человека имеется два набора из 22-х хромосом, X-хромосома от матери и X- или Y-хромосома от отца.

Аномалия в содержимом хромосом клетки может вызывать у людей определенные генетические нарушения. Хромосомные аномалии у людей часто оказываются ответственными за появление генетических заболеваний у их детей. Те у кого, имеются хромосомные аномалии, зачастую являются только носителями заболевания, тогда как у их детей это заболевание проявляется.

Факты о хромосомах человека

Хромосомные аберрации (структурные изменения хромосом) бывают вызваны различными факторами, а именно делецией или дупликацией части хромосомы, инверсией, представляющей собой изменение направления хромосомы на противоположное, или транслокацией, при которой происходит отрыв части хромосомы и присоединение ее к другой хромосоме.

Лишняя копия хромосомы 21 ответственна за очень хорошо известное генетическое заболевание под названием синдром Дауна.

Трисомия хромосомы 18 приводит к синдрому Эдвардса, который может вызывать смерть в младенческом возрасте.

Делеция части пятой хромосомы приводит к генетическому нарушению известному как синдром кошачьего крика. У людей, пораженных этим заболеванием, зачастую наблюдается задержка в умственном развитии, а их плач в детском возрасте напоминает кошачий крик.

Нарушения, обусловленные аномалиями половых хромосом, включают синдром Тернера, при котором женские половые признаки присутствуют, но характеризуются недоразвитостью, а также синдром XXX у девочек и синдром XXY у мальчиков, которые вызывают дислексию у пораженных ими индивидуумов.

Впервые хромосомы были обнаружены в клетках растений. Монография Ван Бенедена, посвященная оплодотворенным яйцам аскарид привела к дальнейшим исследованиям. Позже Август Вайсман показал, что зародышевая линия отличается от сомы, и обнаружил, что клеточные ядра содержат наследственный материал. Он также предположил, что фертилизация приводит к формированию новой комбинации хромосом.

Эти открытия стали краеугольными камнями в области генетики. Исследователи уже накопили достаточно значительное количество знаний о человеческих хромосомах и генах, однако многое еще только предстоит обнаружить.

Видео

Ссылка по теме: Сердечно-сосудистая система человека

Источник: buzzle.com

Фото: ck12.org

Источник: www.vitaminov.net

Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Морфология хромосом связана со степенью их спирализации. Например, если в стадии интерфазы (см. Митоз, Мейоз) хромосомы максимально развернуты, т. е. деспирализованы, то с началом деления хромосомы интенсивно спирализуются и укорачиваются. Максимальной спирализации и укорочения хромосомы достигают в стадии метафазы, когда происходит формирование относительно коротких, плотных, интенсивно окрашивающихся основными красителями структур. Эта стадия наиболее удобна для изучения морфологических характеристик хромосом.

Метафазная хромосома состоит из двух продольных субъединиц — хроматид [электронная микроскопия выявляет в строении хромосом элементарные нити (так называемые хромонемы, или хромофибриллы) толщиной 200 Å, каждая из которых состоит из двух субъединиц].

Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в пределах 1,5—10 микрон.

Химической основой строения хромосом являются нуклеопротеиды — комплексы нуклеиновых кислот (см.) с основными белками — гистонами и протаминами.

Индивидуальные хромосомы (рис. 1) различают по локализации первичной перетяжки, т. е. места расположения центромеры (во время митоза и мейоза к этому месту прикрепляются нити веретена, подтягивая ее при этом к полюсу). При утрате центромеры фрагменты хромосом утрачивают способность расходиться при делении. Первичная перетяжка делит хромосомы на 2 плеча. В зависимости от расположения первичной перетяжки хромосомы подразделяют на метацентрические (оба плеча равной или почти равной длины), субметацентрические (плечи неравной длины) и акроцентрические (центромера смещена на конец хромосомы). Помимо первичной, в хромосомах могут встречаться менее выраженные вторичные перетяжки. Небольшой концевой участок хромосом, отделенный вторичной перетяжкой, называют спутником.

Каждый вид организмов характеризуется своим специфическим (по числу, размерам и форме хромосом) так называемым хромосомным набором. Совокупность двойного, или диплоидного, набора хромосом обозначают как кариотип.

В зрелых половых клетках, яйцеклетках и сперматозоидах содержится одиночный, или гаплоидный, набор хромосом (n), составляющий половину диплоидного  набора  (2n), присущего хромосомам всех остальных клеток организма. В диплоидном наборе каждая хромосома представлена парой гомологов, один из которых материнского, а другой отцовского происхождения. В большинстве случаев хромосомы каждой пары идентичны по размерам, форме и генному составу. Исключение составляют половые хромосомы, наличие которых определяет развитие организма в мужском или женском направлении. Нормальный хромосомный набор человека состоит из 22 пар аутосом и одной пары половых хромосом. У человека и других млекопитающих женский пол определяется наличием двух Х-хромосом, а мужской — одной X-и одной Y-хромосомы (рис. 2 и 3). В женских клетках одна из Х-хромосом генетически неактивна и обнаруживается в интерфазном ядре в виде полового хроматина (см.). Изучение хромосом человека в норме и патологии составляет предмет медицинской цитогенетики. Установлено, что отклонения в числе или структуре хромосом от нормы, возникающие в половых! клетках или на ранних этапах дробления оплодотворенной яйцеклетки, вызывают нарушения нормального развития организма, обусловливая в некоторых случаях возникновение части спонтанных абортов, мертворождений, врожденных уродств и аномалий развития после рождения (хромосомные болезни). Примерами хромосомных болезней могут служить болезнь Дауна (лишняя G-хромосома), синдром Клайнфелтера (лишняя Х-хромосома у мужчин) и Шерешевского — Тернера (отсутствие в кариотипе Y- или одной из Х-хромосом). В медицинской практике хромосомный анализ проводят или прямым методом (на клетках костного мозга), или после кратковременного культивирования клеток вне организма (периферическая кровь, кожа, эмбриональные ткани).

Хромосомы (от греч. chroma — окраска и soma — тело) — нитевидные, самовоспроизводящиеся структурные элементы клеточного ядра, содержащие в линейном порядке факторы наследственности — гены. Хромосомы отчетливо видны в ядре во время деления соматических клеток (митоза) и во время деления (созревания) половых клеток — мейоза (рис. 1). В том и в другом случае хромосомы интенсивно окрашиваются основными красителями, а также видны на неокрашенных цитологических препаратах в фазовом контрасте. В интерфазном ядре хромосомы деспирализованы и не видны в световой микроскоп, так как их поперечные размеры выходят за пределы разрешающей способности светового микроскопа. В это время отдельные участки  хромосом в виде тонких нитей диаметром 100—500 Å можно различить при помощи электронного микроскопа. Отдельные не деспирализовавшиеся участки хромосом в интерфазном ядре видны через световой микроскоп как интенсивно красящиеся (гетеропикнотические) участки (хромоцентры).

Хромосомы непрерывно существуют в клеточном ядре, претерпевая цикл обратимой спирализации: митоз—интерфаза—митоз. Основные закономерности строения и поведения хромосом в митозе, мейозе и при оплодотворении одинаковы у всех организмов.

Хромосомная теория наследственности. Впервые хромосомы описали И. Д. Чистяков в 1874 г. и Страсбургер (Е. Strasburger) в 1879 г. В 1901 г. Уилсон (Е. В. Wilson), а в 1902 г. Саттон (W. S. Sutton) обратили внимание на параллелизм в поведении хромосом и менделевских факторов наследственности — генов — в мейозе и при оплодотворении и пришли к выводу, что гены находятся в хромосомах. В 1915—1920 гг. Морган (Т. Н. Morgan) и его сотрудники доказали это положение, локализовали в хромосомах дрозофилы несколько сот генов и создали генетические карты хромосом. Данные о хромосомах, полученные в первой четверти 20 века, легли в основу хромосомной теории наследственности, согласно которой преемственность признаков клеток и организмов в ряду их поколений обеспечивается преемственностью их хромосомах.

Химический состав и ауторепродукция хромосом. В результате цитохимических и биохимических исследований хромосом в 30 и 50-х годах 20 века установлено, что они состоят из постоянных компонентов [ДНК (см. Нуклеиновые кислоты), основных белков (гистонов или протаминов), негистонных белков] и переменных компонентов (РНК и связанного с ней кислого белка). Основу хромосом составляют дезоксирибонуклеопротеидные нити диаметром около 200 Å (рис. 2), которые могут соединяться в пучки диаметром 500 А.

Открытие Уотсоном и Криком (J. D. Watson, F. Н. Crick) в 1953 г. строения молекулы ДНК, механизма ее авторепродукции (редупликации) и нуклеинового кода ДНК и развитие возникшей после этого молекулярной генетики привело к представлению о генах как участках молекулы ДНК. (см. Генетика). Вскрыты закономерности авторепродукции хромосом [Тейлор (J. Н. Taylor) и др., 1957], оказавшиеся аналогичными закономерностям авторепродукции молекул ДНК (полуконсервативная редупликация).

Хромосомный набор — совокупность всех хромосом в клетке. Каждый биологический вид обладает характерным и постоянным набором хромосом, закрепленным в эволюции данного вида. Различают два основных типа наборов хромосом: одиночный, или гаплоидный (в половых клетках животных), обозначаемый n, и двойной, или диплоидный (в соматических клетках, содержащий пары сходных, гомологичных хромосом от матери и отца), обозначаемый 2n.

Наборы хромосом отдельных биологических видов значительно различаются по числу хромосом: от 2 (лошадиная аскарида) до сотен и тысяч (некоторые споровые растения и простейшие). Диплоидные числа хромосом некоторых организмов таковы: человека — 46, гориллы — 48, кошки — 60, крысы — 42, дрозофилы — 8.

Размеры хромосом у разных видов также различны. Длина хромосом (в метафазе митоза) варьирует от 0,2 мк у одних видов до 50 мк у других, а диаметр от 0,2 до 3 мк.

Морфология хромосом хорошо выражена в метафазе митоза. Именно метафазные хромосомы используют для идентификации хромосом. В таких хромосомах хорошо видны обе хроматиды, на которые продольно расщеплена каждая хромосома и центромер (кинетохор, первичная перетяжка), соединяющий хроматиды (рис. 3). Центромер виден как суженный участок, не содержащий хроматина (см.); к нему крепятся нити ахроматинового веретена, благодаря чему центромер определяет движение хромосом к полюсам в митозе и мейозе (рис. 4).

Потеря центромера, например при разрыве хромосомы ионизирующими излучениями или другими мутагенами, приводит к потере способности куска хромосомы, лишенного центромера (ацентрический фрагмент), участвовать в митозе и мейозе и к потере его из ядра. Это может привести к тяжелому повреждению клетки.

Центромер делит тело хромосомы на два плеча. Расположение центромера строго постоянно для каждой хромосомы и определяет три типа хромосом: 1) акроцентрические, или палочкообразные, хромосомы с одним длинным и вторым очень коротким плечом, напоминающим головку; 2) субметацентрические хромосомы с длинными плечами неравной длины; 3) метацентрические хромосомы с плечами одинаковой или почти одинаковой длины (рис. 3, 4, 5 и 7).

Характерными чертами морфологии определенных хромосом являются вторичные перетяжки (не обладающие функцией центромера), а также спутники — маленькие участки хромосом, соединенные с остальным ее телом тонкой нитью (рис. 5). Спутничные нити обладают способностью формировать ядрышки. Характерная структура в хромосоме (хромомеры) — утолщения или более плотно спирализованные участки хромосомной нити (хромонемы). Рисунок хромомер специфичен для каждой пары хромосом.

Число хромосом, их размеры и форма на стадии метафазы характерны для каждого вида организмов. Совокупность этих признаков набора хромосом называется кариотипом. Кариотип можно представить в виде схемы, называемой идиограммой (см. ниже хромосомы человека).

Половые хромосомы. Гены, детерминирующие пол, локализованы в специальной паре хромосом  — половых хромосомах (млекопитающие, человек); в других случаях иол определяется соотношением числа половых хромосом и всех остальных, называемых аутосомами (дрозофила). У человека, как и у других млекопитающих, женский пол определяется двумя одинаковыми хромосомами, обозначаемыми как Х-хромосомы, мужской пол определяется парой гетероморфных хромосом: Х и Y. В результате редукционного деления (мейоза) при созревании ооцитов (см. Овогенез) у женщин все яйца содержат по одной Х-хромосоме. У мужчин в результате редукционного деления (созревания) сперматоцитов половина спермиев содержит Х-хромосому, а другая половина Y-хромосому. Пол ребенка определяется случайным оплодотворением яйцеклетки спермием, несущим Х- или Y-хромосому. В результате возникает зародыш женского (XX) или мужского (XY) пола. В интерфазном ядре у женщин одна из Х-хромосом видна как глыбка компактного полового хроматина.

Функционирование хромосом и метаболизм ядра. Хромосомная ДНК является матрицей для синтеза специфических молекул информационной РНК. Этот синтез происходит тогда, когда данный участок хромосомы деспирализован. Примерами локальной активации хромосом служат: образование деспирализованных петель хромосом в ооцитах птиц, амфибий, рыб (так называемые Х-ламповые щетки) и вздутий (пуффов) определенных локусов хромосом в многонитчатых (политенных) хромосомах слюнных желез и других секреторных органов двукрылых насекомых (рис. 6). Примером инактивации целой хромосомы, т. е. выключения ее из метаболизма данной клетки, является образование одной из Х-хромосом компактного тела полового хроматина.

Рис. 6. Политенные хромосомы двукрылого насекомого Acriscotopus lucidus: А и Б — участок, ограниченный пунктирными линиями, в состоянии интенсивного функционирования (пуфф); В — тот же участок в нефункционирующем состоянии. Цифрами обозначены отдельные локусы хромосом (хромомеры).
Рис. 7. Хромосомный набор в культуре лейкоцитов периферической крови мужчины (2n=46).

Вскрытие механизмов функционирования политенных хромосом типа ламповых щеток и других типов спирализации и деспирализации хромосом имеет решающее значение для понимания обратимой дифференциальной активации генов.

Хромосомы человека. В 1922 г. Пейнтер (Т. S. Painter) установил диплоидное число хромосом человека (в сперматогониях), равное 48. В 1956 г. Тио и Леван (Н. J. Tjio, A. Levan) использовали комплекс новых методов исследования хромосом человека: культуру клеток; исследование хромосом без гистологических срезов на тотальных препаратах клеток; колхицин, приводящий к остановке митозов на стадии метафазы и накоплению таких метафаз; фитогемагглютинин, стимулирующий вступление клеток в митоз; обработку метафазных клеток гипотоническим солевым раствором. Все это позволило уточнить диплоидное число хромосом у человека (оно оказалось равным 46) и дать описание кариотипа человека. В 1960 г. в Денвере (США) международная комиссия разработала номенклатуру хромосом человека. Согласно предложениям комиссии, термин «кариотип» следует применять к систематизированному набору хромосом единичной клетки (рис. 7 и 8). Термин «идиотрамма» сохраняется для представления о наборе хромосом в виде диаграммы, построенной на основании измерений и описания морфологии хромосом нескольких клеток.

Хромосомы человека пронумерованы (отчасти серийно) от 1 до 22 в соответствии с особенностями морфологии, допускающими их идентификацию. Половые хромосомы не имеют номеров и обозначаются как Х и Y (рис. 8).

Обнаружена связь ряда заболеваний и врожденных дефектов в развитии человека с изменениями в числе и структуре его хромосом. (см. Наследственность).

См. также Цитогенетические исследования.

Все эти достижения создали прочную базу для развития цитогенетики человека.

Источник: www.medical-enc.ru