ГЕНЫ И ХРОМОСОМЫ

 

Клетки живых организмов содержат генетический материал в виде гигантских молекул, которые называются нуклеиновыми кислотами. С их помощью генетическая информация передаётся из поколения в поколение. Кроме того, они регулируют большинство клеточных процессов, управляя синтезом белков.

 

Существует два типа нуклеиновых кислот: ДНК и РНК. Они состоят из нуклеотидов, чередование которых позволяет кодировать наследственную информацию о самых различных признаках организмов разных видов. ДНК «упакована» в хромосомы. Она несёт информацию о структуре всех белков, которые функционируют в клетке. РНК управляет процессами, которые переводят генетический код ДНК, представляющий собой определённую последовательность нуклеотидов, в белки.

 

Ген – это участок молекулы ДНК, которая кодирует один определённый белок. Наследственные изменения генов, выражающиеся в замене, выпадении или перестановке нуклеотидов, называются генными мутациями. В результате мутаций могут возникнуть как полезные, так и вредные изменения признаков организма.


 

Хромосомы – нитевидные структуры, находящиеся в ядрах всех клеток. Они состоят из молекулы ДНК и белка. У каждого вида организмов своё определённое число и своя форма хромосом. Набор хромосом, характерный для конкретного вида, называют кариотипом.

 

Исследования кариотипов различных организмов показали, что в их клетках может содержаться двойной и одинарный наборы хромосом. Двойной набор хромосом состоит всегда из парных хромосом, одинаковых по величине, форме и характеру наследственной информации. Парные хромосомы называют гомологичными. Так, все неполовые клетки человека содержат 23 пары хромосом, т.е. 46 хромосом представлены в виде 23 пар.

 

В некоторых клетках может быть одинарный набор хромосом. Например, в половых клетках животных парные хромосомы отсутствуют, гомологичных хромосом нет, а есть негомологичные.

 

Каждая хромосома содержит тысячи генов, в ней хранится определённая часть наследственной информации. Мутации, изменяющие структуру хромосомы, называют хромосомными. Неправильное расхождение хромосом при образовании половых клеток может привести к серьёзным наследственным заболеваниям. Так, например, в результате такой геномной мутации, как появление в каждой клетке человека 47 хромосом вместо 46, возникает болезнь Дауна.

Источник: bio-oge.sdamgia.ru

Что такое хромосомы


Функции хромосом в клетке

Функции хромосом в клетке

Хромосомы – это отдельные цепи ДНК (дезоксирибонуклеиновой кислоты), которые свернуты в двойную спираль и образуют плотные нитевидные кусочки. Поэтому их еще называют нитевидными молекулами.

История открытия хромосом

Классическая биология подразумевает, что открытие хромосомы неразрывно связано с открытиями клетки и ядра. Все находки стали возможными только после изобретения микроскопа Левенгуком в 1674 году.

Функции хромосом в клетке

В 1831 году Роберт Браун первым определил, что в клетках растений есть клеточное ядро. Он опубликовал множество научных трудов по этому вопросу.

В 1838 М. Дж. Шлейдена выдвинул неверную эпигенетическую теорию. Она утверждает, что клеточное ядро создается из жидкости клетки. Это послужило классической противоположностью открытию Эдуарда ван Бенедена в 1883 году, что нитевидные молекулы – это отдельные объекты.


В 1842 году Карл Вильгельм фон Нагели обнаружил субклеточные структуры. Он наблюдал «идиоплазму», сеть струноподобных тел. Ученый ошибочно предполагал, что они образуют взаимосвязанную сеть во всем организме.

В 1873 году Шнайдер описал косвенное деление ядра с помощью «Kernfigur» (ядерная фигура) и «ахроматического веретена». В 1883 году Эдуард ван Бенеден обнаружил, что после оплодотворения половых клеток нематоды Ascaris megalocephala не сливаются с нитевидными молекулами ядра ооцита. Следовательно, они являются отдельными сущностями.

Правила Менделя были основаны на суждениях Бенедена, но эта связь была обнаружена только через несколько лет.

Определение «хромосома» было придумано Уолдиером в 1888 году. Термин происходит от греческих слов «цвет» и «тело». Термин имеет такое название, потому что хромосома обладает способностью окрашиваться красителями.

А уже в 1960 году была создана первая Денверская международная классификация, которая помогает в построении кариограммы человека — совокупности всех хромосом диплоидного набора клетки.

Из чего состоит хромосома

У хромосом выявлено нитевидное строение, обнаруженное в ядрах как животных, так и растений. Они сделаны из белка и одной молекулы дезоксирибонуклеиновой кислоты.

Функции хромосом в клетке

iv>

ДНК – это хранилище генетических инструкций, позволяющее производить белки и клеточные процессы, которые необходимы для жизни и передаются из поколения в поколение. Все фрагменты ДНК состоят из последовательностей генов, содержащих инструкции для развития, размножения и, в конечном итоге, гибели каждой клетки. Каждая из цепей ДНК может содержать от 10000 до 100000000 нуклеотидов.

ДНК разбивается на одноцепочечные полинуклеотидные цепи, чтобы обнажить генные последовательности, которые можно скопировать в РНК (мРНК, рибонуклеиновая кислота). Эта мРНК имеет четыре нуклеотидных основания, расположенных в различных комбинациях из трех, и похожа на ДНК.

Рибосомы читают эти три основанные на нуклеотиде последовательности и переводят их, чтобы сформировать аминокислотную последовательность белка. Каждая последовательность кодирует одну из 20 аминокислот.

Сначала аминокислоты образуют длинную цепь, называемую полипептидной цепью. Затем эта цепь претерпевает конформационные и структурные изменения, сворачиваясь и складываясь над собой, пока не будет достигнута окончательная сложная структура белка.

Нитевидные молекулы также содержат ДНК-связанные белки или гистоны, которые консолидируют и стабилизируют ДНК и регулируют ее функции.

Они могут иметь конденсированную ДНК, организованную вокруг гистоновых белков с образованием хроматина. Хроматин позволяет встраивать длинные цепи ДНК в ядро. При делении они образуют плотные небольшие нитевидные структуры, которые необходимо реплицировать, прежде чем они будут равномерно разделены на две новые клетки, чтобы каждая из них имела одинаковое количество нитевидных молекул.

Детальный процесс образования и структура представлена на рисунке ниже.


Функции хромосом в клетке

Когда клетки тела делятся (митоз), образуется метафазная нитевидная молекула (у строения дополнительно имеется вторичная перетяжка и спутник). Две копии 23 хромосом передаются на каждую дочернюю клетку, давая им обоим полный набор из 46 хромосом.

Когда гаметы (яйцеклетки или сперматозоиды) делятся (мейоз), только половина передается на дочерние, так как они образуют полный набор при слиянии с другой гаметой во время оплодотворения, после чего полученная зигота будет иметь 23 пары нитевидных молекул с половиной от каждого родителя.

Типы хромосом

Классификация зависит от положения центромеры (первичной перетяжки). Она необходима для процесса деления и обеспечивает точное разделение нитевидных молекул.

Исследования показали, что нитевидные молекулы без первичной перетяжки выделяются случайным образом и в конечном итоге теряются из клеток. Рисунок с подписями наглядно отображает расположение центромеры.

Функции хромосом в клетке

Существует четыре основных типа:

>
  1. Метацентрические — в этом случае центромеры расположены в центре, так что оба участка имеют одинаковую длину. Человеческие нитевидные молекулы 1 и 3 являются метацентрическими.
  2. Субметацентрические — центромера слегка сдвинута от центра, что приводит к небольшой асимметрии в длине плеч. Хромосомы человека с 4 по 12 являются субметацентрическими.Функции хромосом в клетке
  3. Акроцентрические — в этом типе первичная перетяжка сильно смещена от центра, что приводит к одному очень длинному и одному очень короткому плечу. Человеческие хромосомы 13, 15, 21 и 22 являются акроцентрическими.
  4. Телоцентрические — первичная перетяжка находится в самом конце структуры. Люди не обладают телоцентрическими нитевидными молекулами, но они встречаются у животных, например, у мышей.

Функции хромосом

Поскольку генетический материал передается от родителей к ребенку, они ответственны за содержание инструкций, которые делают потомство уникальным, в то же время сохраняя черты от родителей. У большинства организмов одна хромосома наследуется от матери, а другая наследуется от отца.


Функции хромосом в клетке

Крайне важно, чтобы определенные клетки, такие как репродуктивные, имели правильное количество нитевидных молекул для нормального функционирования.

Структура помогает гарантировать то, что ДНК остается плотно обернутой вокруг белков, иначе молекулы ДНК были бы слишком большими.

Организмы растут, подвергаясь клеточному делению, чтобы произвести новые клетки и заменить старые, изношенные. Во время этого деления ДНК должна оставаться неповрежденной и сохранять равномерное распределение. Они играют роль в этом процессе, позволяя создать точную репликацию ДНК.

Набор хромосом

Существует два типа эукариотических клеток – это гаплоидные и диплоидные. Основное отличие заключается в количестве хромосомных наборов, обнаруженных в ядре.

Функции хромосом в клетке

Гаплоидные клетки – это клетки, которые содержат только один полный хромосомный набор. Наиболее распространенным типом гаплоидных клеток являются гаметы или половые клетки. Гаплоидные клетки продуцируются мейозом. Это генетически разнообразные клетки, которые используются при половом размножении.


Когда гаплоидные клетки от родительских доноров собираются и оплодотворяются, потомство имеет полный набор и становится диплоидной клеткой.

Диплоидные клетки имеют две гомологичные (парные) копии каждой нитевидной молекулы, унаследованные от матери и отца. Все млекопитающие являются организмами этого типа, за исключением нескольких видов.

Диплоидные клетки обозначены как 2n = 2x, а гаплоидные клетки обозначены как n, где n – количество нитевидных молекул, а x – число моноплоидов.

Количество, присутствующее в организме, помогает отличить один вид от другого. Например, антилопа, как и человек, имеет 46, а у макаки 42 хромосомы. 48 хромосом имеют гориллы, а также картофель.

Но у кого больше всего нитевидных молекул? Ophioglossum reticulatum из семейства папоротниковых имеет их 1260. Есть даже те, у кого 2 хромосомы – это муравьи и аскариды. Ясно, что количество не коррелирует со сложностью организма.

Фактически количество нитевидных молекул у животных или растений определяется случайно. Количество может уменьшаться в результате слияния или увеличиваться в результате полиплоидии.

Количество хромосом у человека

Интересно, сколько пар хромосом у человека? Нормальный набор нитевидных молекул у людей имеет 23 пары, что в сумме составляет 46 штук.

Функции хромосом в клетке

Исключением являются половые клетки: яйцеклетки и сперматозоиды. У них в наличии лишь одна нитеобразная структура из каждой пары. Каждая из них может иметь от сотен до тысяч генов.

Женщина обычно владеет двумя X-хромосомами (XX), а у мужчин должно быть по одной X и Y-хромосом (XY). Именно поэтому Y считаются мужскими, а Х – это женские.


Болезни генетики, связанные с хромосомами

Аномалии могут влиять на любую нитевидную молекулу, включая и половые.

Функции хромосом в клетке

Значительные аномалии можно увидеть под микроскопом. Такой тест называется кариотипирование. Меньшие хромосомные аномалии могут быть идентифицированы с помощью специального генетического теста, который сканирует хромосомы человека на наличие отсутствующих или лишних частей.

Числовые отклонения появляются, если в набор добавляется одна или несколько дополнительных нитевидных молекул (появление одной называется трисомия, а двух копий – тетрасомия) или их недостача (известна как моносомия).

Трисомия может поражать любую пару, но более распространенными являются ошибки в 21 (синдром Дауна), в 13, а также в 18 парах. Эти аномалии видны с помощью микроскопа при кариотипировании.

Чем больший возраст у беременной женщины, тем больше вероятность возникновения у плода каких-то аномалий. Когда мужчина становится старше, вероятность зачатия ребенка с аномалией лишь незначительно увеличивается.

Структурные нарушения происходят, когда есть ошибки в строении какой-то части хромосомы. Бывает, когда часть одной создает неправильное соединение с другой нитевидной молекулой (такое называется транслокацией).


Функции хромосом в клетке

Порой случается так, что части вообще не существует (это называется делеция) или они дублируются.

Одни нарушения являются источником гибели эмбриона еще до его рождения. А некоторые отклонения приводят к проблемам, таким как низкий рост, судороги, отсталость в развитии или проблемы с сердцем.

Незначительные мутации происходят в конкретном гене. Такие аномалии не оказывают влияние на строение и, следовательно, их нельзя увидеть во время проведения анализа кариотипа или другого теста.

Одни изменения в гене не сопровождаются проблемами, а другие могут вызвать мало или только легкие отклонения. Но некоторые мутации приводят к серьезным расстройствам, таким как серповидноклеточная анемия, гипертихоз и мышечная дистрофия.

Благодаря стремительному развитию медицины все чаще ученые и медики устанавливают конкретные причины заболеваний человека, которые основаны на генетике. Но остается загадкой, почему возникает множество мутаций.

Предполагается, что значительная часть заболеваний появляется самопроизвольно. Некоторые факторы в экологии и внешнем мире способны повредить и породить аномалии в генах. Такие факторы называются мутагенами.

Например, такие мутагены, как радиационное излучение, ультрафиолетовое излучение, лекарства, и химические субстанции, могут привести к некоторым врожденным дефектам или даже к раку.

Заключение

Теперь вы знаете, у кого 48 хромосом. Их значение сложно переоценить. Без них, репликация ДНК и последующее разнообразие у людей и других организмов, были бы потеряны. Эти нитевидные молекулы необходимы для управления запутанной ДНК как внутри ядра, так и во время деления клетки.

По количеству хромосом нельзя определить эволюционную сложность растения или животного. Но генетическая информация, которая в них содержится, определяет, что делает один организм отличным от всех других, населяющих планету.

Источник: 1001student.ru

Генетическая информация в клетке. Гены, генетический код и его свойства. Матричный характер реакций биосинтеза. Биосинтез белка и нуклеиновых кислот

Генетическая информация в клетке

Воспроизведение себе подобных является одним из фундаментальных свойств живого. Благодаря этому явлению существует сходство не только между организмами, но и между отдельными клетками, а также их органоидами (митохондриями и пластидами). Материальной основой этого сходства является передача зашифрованной в последовательности нуклеотидов ДНК генетической информации, которая осуществляется благодаря процессам репликации (самоудвоения) ДНК. Реализуются все признаки и свойства клеток и организмов благодаря белкам, структуру которых в первую очередь и определяют последовательности нуклеотидов ДНК. Поэтому первостепенное значение в процессах метаболизма играет именно биосинтез нуклеиновых кислот и белка. Структурной единицей наследственной информации является ген.

Гены, генетический код и его свойства

Наследственная информация в клетке не является монолитной, она разбита на отдельные «слова» — гены.

Ген — это элементарная единица генетической информации.

Работы по программе «Геном человека», которые проводились одновременно в нескольких странах и были завершены в начале нынешнего века, дали нам понимание того, что у человека всего около 25–30 тыс. генов, но информация с большей части нашей ДНК не считывается никогда, так как в ней содержится огромное количество бессмысленных участков, повторов и генов, кодирующих признаки, утратившие значение для человека (хвост, оволосение тела и др.). Кроме того, был расшифрован ряд генов, отвечающих за развитие наследственных заболеваний, а также генов-мишеней лекарственных препаратов. Однако практическое применение результатов, полученных в ходе реализации данной программы, откладывается до тех пор, пока не будут расшифрованы геномы большего количества людей и станет понятно, чем же все-таки они различаются.

Гены, кодирующие первичную структуру белка, рибосомальной или транспортной РНК называются структурными, а гены, обеспечивающие активацию или подавление считывания информации со структурных генов, — регуляторными. Однако даже структурные гены содержат регуляторные участки.

Наследственная информация организмов зашифрована в ДНК в виде определенных сочетаний нуклеотидов и их последовательности — генетического кода. Его свойствами являются: триплетность, специфичность, универсальность, избыточность и неперекрываемость. Кроме того, в генетическом коде отсутствуют знаки препинания.

Каждая аминокислота закодирована в ДНК тремя нуклеотидами — триплетом, например, метионин закодирован триплетом ТАЦ, то есть код триплетен. С другой стороны, каждый триплет кодирует только одну аминокислоту, в чем заключается его специфичность или однозначность. Генетический код универсален для всех живых организмов, то есть наследственная информация о белках человека может считываться бактериями и наоборот. Это свидетельствует о единстве происхождения органического мира. Однако 64 комбинациям нуклеотидов по три соответствует только 20 аминокислот, вследствие чего одну аминокислоту может кодировать 2–6 триплетов, то есть генетический код избыточен, или вырожден. Три триплета не имеют соответствующих аминокислот, их называют стоп-кодонами, так как они обозначают окончание синтеза полипептидной цепи.

Последовательность оснований в триплетах ДНК и кодируемые ими аминокислоты

Функции хромосом в клеткеМейоз Какие клетки вступают в деление? Соматические (2n) Первичные половые клетки (2n) Число делений 1 2 Сколько и каких клеток образуется в процессе деления? 2 соматические (2n) 4 половые (n) Интерфаза Подготовка клетки к делению, удвоение ДНК Подготовка клетки к делению, удвоение ДНК Очень короткая, удвоения ДНК не происходит Фазы   Мейоз I Мейоз II Профаза Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки, могут происходить конъюгация и кроссинговер Конденсация хромосом, исчезновение ядрышка, распад ядерной оболочки Метафаза Хромосомы выстраиваются по экватору, формируется веретено деления По экватору располагаются пары хромосом, формируется веретено деления Хромосомы выстраиваются по экватору, формируется веретено деления Анафаза К полюсам расходятся хроматиды К полюсам расходятся гомологичные хромосомы из двух хроматид К полюсам расходятся хроматиды Телофаза Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки Хромосомы деспирализуются, формируются новые ядерные оболочки и ядрышки

Интерфаза II очень короткая, так как в ней не происходит удвоения ДНК, то есть отсутствует S-период.

Мейоз II также делится на четыре фазы: профазу II, метафазу II, анафазу II и телофазу II. В профазе II протекают те же процессы, что и в профазе I, за исключением конъюгации и кроссинговера.

В метафазе II хромосомы располагаются вдоль экватора клетки.

В анафазе II хромосомы расщепляются в центромерах и к полюсам растягиваются уже хроматиды.

В телофазе II вокруг скоплений дочерних хромосом формируются ядерные оболочки и ядрышки.

После цитокинеза II генетическая формула всех четырех дочерних клеток — 1n1c, однако все они имеют различный набор генов, что является результатом кроссинговера и случайного сочетания хромосом материнского и отцовского организмов в дочерних клетках.

Развитие половых клеток у растений и животных

Гаметогенез (от греч. гамете — жена, гаметес — муж и генезис — происхождение, возникновение) — это процесс образования зрелых половых клеток.

Так как для полового размножения чаще всего необходимы две особи — женская и мужская, продуцирующие различные половые клетки — яйцеклетки и спермии, то и процессы образования этих гамет должны быть различны.

Характер процесса в существенной степени зависит и от того, происходит ли он в растительной или животной клетке, поскольку у растений при образовании гамет происходит только митоз, а у животных — и митоз, и мейоз.

Развитие половых клеток у растений. У покрытосеменных растений образование мужских и женских половых клеток происходит в различных частях цветка — тычинках и пестиках соответственно.

Перед образованием мужских половых клеток — микрогаметогенезом (от греч. микрос — маленький) — происходит микроспорогенез, то есть формирование микроспор в пыльниках тычинок. Этот процесс связан с мейотическим делением материнской клетки, в результате которого возникают четыре гаплоидные микроспоры. Микрогаметогенез сопряжен с митотическим делением микроспоры, дающим мужской гаметофит из двух клеток — крупной вегетативной (сифоногенной) и мелкой генеративной. После деления мужской гаметофит покрывается плотными оболочками и образует пыльцевое зерно. В некоторых случаях еще в процессе созревания пыльцы, а иногда только после переноса на рыльце пестика генеративная клетка делится митотически с образованием двух неподвижных мужских половых клеток — спермиев. Из вегетативной клетки после опыления формируется пыльцевая трубка, по которой спермии проникают в завязь пестика для оплодотворения.

Функции хромосом в клеткеИсточник: examer.ru

Что такое хромосомы?

Хромосомой называют структурные элементы клеточного ядра, которые содержат ДНК. В данном веществе заключена вся наследственная информация организма. Непосредственно в хромосомах располагаются гены в линейном порядке. Каждая клетка человеческого организма содержит 46 хромосом, которые разделены на 23 пары. 22 из них – аутосомы, а последняя пара состоит из Х- или Y-хромосомы, которые определяют пол человека.

Где находятся хромосомы и сколько их всего в организме, ученые узнали в 1956 году. С того времени установлено, что в организме каждого человека хромосомы находятся в ядрах и это соматические или половые хромосомы. Последние определяют пол будущего ребенка при зачатии. Женская яйцеклетка содержит две Х-хромосомы, а сперматозоид – одну Х и одну Y. Если передается Х-хромосома, родится девочка, а если Y – мальчик.

Строение хромосомы

Выяснив сколько хромосом у человека, рассмотрим основы их строения. Хромосома является палочковидной структурой, которая состоит из двух сестринских хроматид. Они удерживаются центромерой, располагающейся в области первичной перетяжки. Каждая из хроматид строится из хроматиновых петель. Сам хроматин не подвергается репликации, в отличие от ДНК. С началом этого процесса прекращается синтез РНК. При этом хромосомы находятся в организме в двух состояниях:

  • конденсированном (неактивное);
  • деконденсированном (активное).

В зависимости от строения генетики выделяют следующие виды хромосом:

  • телоцентрические;
  • акроцентрические – второе плечо короткое и практически незаметное;
  • субметацентрические – внешне напоминают букву L;
  • метацентрические – плечики равной длины.

где находятся хромосомы

Гомологичные хромосомы

Парные хромосомы человека принято называть гомологичными. При зачатии одна хромосома наследуется от отца, вторая – от матери. На гомологичных хромосомах располагаются гены, которые отличаются по строению, однако выполняют одинаковую функцию. Гомологичные хромосомы имеют схожую последовательность нуклеотидов. Такие хромосомы, расположенные в диплоидных клетках, имеют одинаковые гены. Количество наборов гомологичных хромосом обозначается термином «плоидность». В половых клетках она равна одному (1n), в соматических – двум (2n).

Негомологичные хромосомы

Негомологичные хромосомы – это структуры, которые содержат несхожие гены. Данные структурные элементы не подвергаются конъюгации в процессе мейоза. Негомологичные хромосомы независимо друг от друга комбинируются в клетке. Этот факт был доказан в процессе изучения характеристик наследования признаков путем использования прямого цитологического метода.

Количество хромосом у человека

О том, сколько хромосом содержится в клетке организма человека, известно со школьного курса биологии. Набор всех хромосом называется кариотипом. Он является видоспецифичным признаком – одинаков для всех отдельно взятых представителей рода живых существ. Так, в клетке человека содержится 23 пары хромосом, 22 из которых – аутосомы, а 1 пара – половые хромосомы (XX у женщин, XY – у мужчин).

Изменение общего количества хромосом в организме ведет к необратимым последствиям. В результате наблюдается развитие генных заболеваний, которые могут приводить к врожденным аномалиям развития и даже к гибели плода еще на внутриутробном этапе развития. Врачи стараются выявить возможные нарушения на ранних этапах, чтобы исключить появление на свет малышей с генными болезнями.

Количество хромосом в соматических клетках человека

Для начала необходимо определить, что означает термин «соматическая клетка». Этим понятием обозначают любые клетки человеческого организма, которые не относятся к половым. Они определяют основные параметры человеческого организма, такие как:

  • рост;
  • телосложение;
  • цвет волос;
  • цвет глаз.

Каждая соматическая клетка имеет в своем составе 22 пары хромосом, которые являются диплоидными (двойными). В результате несложных подсчетов можно установить, что всего в такой клетке 44 хромосомы (диплоидный набор). В результате развития генных мутаций общее количество хромосом в соматических клетках может увеличиваться или уменьшаться, что приводит к развитию хромосомного заболевания.

Количество хромосом в половых клетках человека

Половые хромосомы мужчины и женщины имеют отличия. У женщин это ХХ-хромосомы, а у представителей мужского пола – XY. Исследования генетиков показали, что Y-хромосома отличается отсутствием некоторых аллелей (к примеру, аллеля, отвечающего за свертываемость крови). Все половые клетки имеют гаплоидный набор.

Это означает, что каждая такая клетка содержит только 23 гаплоидные хромосомы (1n). В процессе слияния мужской и женской половых клеток образуется полный диплоидный набор. Это означает, что от каждого родителя будущий плод наследует по 23 хромосомы, которые вместе образуют затем диплоидный набор, необходимый для нормального образования зиготы.

хромосомы человека

Количество хромосом у мужчин и женщин

Даже знающие сколько хромосом у человека в организме содержится, думают, что между женским и мужским полом в этом плане имеются различия. Мужской и женский организмы содержат практически одинаковый набор хромосом, за небольшим исключением. Так, в клетках женского организма содержатся 23 одинаковые пары хромосом.

Все половые клетки содержат обе Х-хромосомы. У мужчин же 22 пары ХХ, а 23 – ХY. Непосредственно половые хромосомы обеспечивают различие в составе. В общем же количество хромосом у представителей обоих полов одинаковое – 46. Изменение этого количества является следствием мутации, которая приводит к развитию болезни.

Почему количество хромосом в клетке постоянно?

Число хромосом в клетке является определяющим фактором. Непосредственно от их количества зависит принадлежность живого организма к тому или иному виду. Известный факт, что дерево не может превратиться в овощ, овощ – в рыбу, а рыба – в гриб. Это невозможно благодаря тому, что все клетки организма на протяжении жизни организма имеют постоянный состав и неизменный набор хромосом.

Однако в отдельных случаях в составе половых клеток возможны изменения. Если хромосомы, в них содержащиеся, мутируют, наблюдаются проблемы с зачатием. В случае если оно происходит, плод с большой долей вероятности будет иметь врожденные аномалии развития или окажется нежизнеспособным и погибнет на одном из этапов своего развития. Зная сколько хромосом у здорового человека, генетики могут определить патологию путем анализа образца генетического материала.

Изменение структуры или количества хромосом

Изменение количества или структуры хромосом ведет к нарушению генетической информации, которую они несут. В большинстве случаев хромосомные изменения наследуются от родителей и возникают на этапе формирования половой клетки или при оплодотворении. Подобные изменения не поддаются контролю. Генетики выделяют два основных типа изменения хромосом:

  1. Нарушение числа хромосом – наблюдается увеличение или уменьшение числа копий одной из хромосом.
  2. Изменение структуры хромосом – происходит повреждение структуры или последовательности генетического материала. Появляется дополнительная часть или утрачивается имеющаяся.

Среди существующих типов изменения структуры хромосом выделяют:

  • транслокации – изменение последовательности генетического материала;
  • делеции – часть хромосомы утрачивается или становится короче;
  • дупликации – удвоение части хромосомы, что приводит к избытку генетического материала;
  • инсерции – вставка части хромосомы в другую, деление хромосом на части;
  • кольцевые хромосомы – когда концы хромосомы соединяются;
  • инверсии – часть хромосомы развернута, и гены в этом участке идут в обратном порядке.

Анеуплоидия у человека

Анеуплоидия – это хромосомная аномалия, при которой происходит увеличение или уменьшение числа хромосом. Существует несколько типов этой патологии:

  1. Нуллисомия – отсутствие в наборе хромосом одной из гомологичных хромосом. Эмбрионы с данной аномалией погибают внутриутробно.
  2. Моносомия – ситуация, при которой отсутствует одна хромосома из пары.

Полиплоидия у человека

Полиплоидия – это кратное увеличение хромосомных наборов в клетке. Соматические клетки содержат диплоидный набор, однако возможны и триплоидные (3n), тетраплоидные (4n). Полиплоиды с повторенным несколько раз одним и тем же набором хромосом называют аутополиплоидами, а полученные от скрещивания организмов, принадлежащих к различным видам, – аллопполиоидами. Большая роль данных хромосомных аномалий отмечается в растениеводстве. У человека патология наблюдается редко и практически несовместима с жизнью.

Источник: womanadvice.ru