Триллионы клеток в человеческом теле встречаются во всех формах и размерах. Эти крошечные структуры являются основной единицей живых организмов. Клетки формируют ткани органов, которые образуют системы органов, работающих вместе для поддерживания жизнедеятельности организма.

В теле есть сотни различных типов клеток, и каждый тип клетки подходит для той роли, которую он выполняет. Клетки пищеварительной системы, к примеру, отличаются по структуре и функции от клеток костной системы. Независимо от различий, клетки тела зависят друг от друга, прямо или косвенно, чтобы организм функционировал как единое целое. Ниже приведены примеры различных типов клеток в организме человека.

Стволовые клетки

Стволовые клетки являются уникальными клетками организма, поскольку они неспециализированы и обладают способностью развиваться в специализированные клетки для определенных органов или тканей. Стволовые клетки способны к многоразовому делению, чтобы пополнить и восстановить ткань. В области исследований стволовых клеток ученые пытаются использовать преимущества возобновляемых свойств, применяя их в создании клеток для восстановления тканей, трансплантации органов и лечения болезней.

Костные клетки


Кости являются типом минерализованной соединительной ткани и основным компонентом скелетной системы. Костные клетки образуют кость, которая состоит из матрицы минералов коллагена и фосфата кальция. В организме есть три основных типа костных клеток. Остеокласты представляют собой крупные клетки, которые разлагают кости для резорбции и ассимиляции. Остеобласты регулируют минерализацию кости и производят остеоид (органическое вещество костной матрицы). Остеобласты созревают для образования остеоцитов. Остеоциты помогают в формировании кости и поддерживают баланс кальция.

Клетки крови

От транспортировки кислорода по всему телу до борьбы с инфекцией, клетки крови жизненно важны для жизни. Есть три основных типа клеток в крови — это эритроциты, лейкоциты и тромбоциты. Эритроциты определяют тип крови и также ответственны за транспортировку кислорода в клетки. Лейкоциты являются клетками иммунной системы, которые разрушают патогены и обеспечивают иммунитет. Тромбоциты помогают сгущать кровь и предотвращают чрезмерную потерю крови из поврежденных кровеносных сосудов. Клетки крови продуцируются костным мозгом.

Мышечные клетки

Мышечные клетки образуют мышечную ткань, что важно для телесного движения. Скелетная мышечная ткань прикрепляется к костям, способствуя движению.
елетные мышечные клетки покрыты соединительной тканью, которая защищает и поддерживает пучки мышечных волокон. Сердечные мышечные клетки образуют непроизвольную сердечную мышцу. Эти клетки помогают в сокращении сердца и соединяются друг с другом посредством интеркалированных дисков, позволяющих синхронизировать сердечный ритм. Гладкая мышечная ткань не стратифицирована как сердечная или скелетная мышцы. Гладкая мышца — непроизвольная мышца, которая образует полости тела и стенки многих органов (почек, кишечника, кровеносных сосудов, дыхательных путей легких и т.д.).

Жировые клетки

Жировые клетки, также называемые адипоцитами, являются основным клеточным компонентом жировой ткани. Адипоциты содержат триглицериды, которые могут быть использованы для получения энергии. Во время хранения жира, жировые клетки набухают и приобретают круглую форму. Когда жир используется, эти клетки уменьшаются в размерах. Жировые клетки также обладают эндокринной функцией, поскольку они продуцируют гормоны, влияющие на метаболизм половых гормонов, регуляцию кровяного давления, чувствительность к инсулину, хранение или использование жиров, свертывание крови и сигнализацию клеток.

Клетки кожи

Кожа состоит из слоя эпителиальной ткани (эпидермиса), который поддерживается слоем соединительной ткани (дермы) и подкожным слоем. Самый внешний слой кожи состоит из плоских эпителиальных клеток, которые плотно укомплектованы вместе. Кожа защищает внутренние структуры организма от повреждений, предотвращает обезвоживание, действует как барьер против микробов, сохраняет жир, вырабатывает витамины и гормоны.

Нервные клетки (нейроны)


Клетки нервной ткани или нейроны являются основной единицей нервной системы. Нервы осуществляют передачу сигналов между мозгом, спинным мозгом и органами тела посредством нервных импульсов. Нейрон состоит из двух основных частей: тело клетки и нервные процессы. Тело центральной клетки включает нейронное ядро, ассоциированную цитоплазму и органеллы. Нервные процессы — это «пальцеобразные» проекции (аксоны и дендриты), простирающиеся от клеточного тела и способны проводить или передавать сигналы.

Эндотелиальные клетки

Эндотелиальные клетки образуют внутреннюю оболочку сердечно-сосудистой системы и структур лимфатических систем. Эти клетки составляют внутренний слой кровеносных сосудов, лимфатических сосудов и органов, включая мозг, легкие, кожу и сердце. Эндотелиальные клетки ответственны за ангиогенез или создание новых кровеносных сосудов. Они также регулируют движение макромолекул, газов и жидкости между кровью и окружающими тканями, а также помогают регулировать кровяное давление.

Половые клетки

Половые клетки или гаметы представляют собой репродуктивные клетки, продуцируемые в мужских и женских половых органах. Мужские половые клетки или сперматозоиды являются подвижными и имеют длинное хвостообразное формирование, называемое жгутиком. Женские половые клетки или яйцеклетки являются не подвижными и относительно большими по сравнению с мужской гаметой. При половом размножении половые клетки объединяются во время оплодотворения, образовывая зиготу. В то время как другие клетки организма реплицируются митозом, гаметы размножаются мейозом.

Раковые клетки


Рак является результатом развития аномальных свойств в нормальных клетках, что позволяет им неконтролируемо делиться и распространяться в других местах организма. Развитие раковых клеток может быть вызвано мутациями, которые происходят от таких факторов, как химикаты, радиация, ультрафиолетовое излучение, ошибки репликации хромосом или вирусная инфекция. Раковые клетки теряют чувствительность к сигналам против роста, быстро размножаются и утрачивают способность проходить апоптоз или запрограммированную гибель клеток.

Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

 Исторические открытия
                                                                                            
1609 — изготовлен первый микроскоп (Г. Галилей)

1665 — обнаружена клеточная структура пробковой ткани (Р. Гук)

1674 — открыты бактерии и простейшие (А. Левенгук)

1676 — описаны пластиды и хроматофоры (А. Левенгук)

1831 — открыто клеточное ядро (Р. Броун)


1839 — сформулирована клеточная теория  (Т. Шванн, М. Шлейден)

1858- сформулировано положение «Каждая клетка из клетки» (Р. Вирхов)

1873 — открыты хромосомы  (Ф. Шнейдер)

1892 — открыты вирусы (Д. И. Ивановский)

1931 — сконструирован электронный микроскоп (Е. Руске, М.Кноль)

1945 — открыта эндоплазматическая сеть (К. Портер)

1955 — открыты рибосомы (Дж. Палладе)



Раздел:Учение о клетке
Тема: Клеточная теория. Прокариоты и эукариоты

Клетка (лат.»цкллюла» и греч. «цитос») — элементарная жи
вая система, основная структурная единица растительных и животных организмов, способная к самовозобнавлению, саморегуляции и самовоспроизведению. Открыта английский ученым  Р. Гуком в 1663г., им же предложена этот термин. Клетка эукариотов представлена двумя системами — цитоплазмой и ядром. Цитоплазма состоит из различных органелл, которые можно классифицировать  на: двухмембраные  — митохондрии и пластиды;  и одномембранные — эндоплазматическая сеть (ЭПС), Аппарат Гольджи, плазмалемма, тонопласты, сферосомы, лизосомы; немембранные — рибосомы, центросомы, гиалоплазма. Ядро состоит из ядерной оболочки (двухмембранной) и немембранных структур — хромосом, ядрышка и ядерного сока. Кроме того, в клетках имются различные включения.


 КЛЕТОЧНАЯ ТЕОРИЯ: Создатель этой теории — немецкий ученый Т. Шванн, который опираясь на работы М. Шлейдена, Л. Окена, в 1838 -1839 гг. сформулировал следующие положения:

  1. все организмы растений  и животных состоят из клеток
  2. каждая клетка функционирует независимо от других,  но вместе со всеми
  3. все клетки возникают из безструктурного вещества неживой материи.

 Позднее Р. Вирхов ( 1858 ) внес существенное уточнение в последнее положение теории:
     4. все клетки возникают только из клеток путем их деления.

СОВРЕМЕННАЯ КЛЕТОЧНАЯ ТЕОРИЯ:

  1. клеточная организация возникла на заре жизни и прошла длительный путь эволюции от прокариотов до эукариотов, от предклеточных организмов до одно- и многоклеточных.
  2. новые клетки образуются путем деления от ранее существовавших
  3. клетка является микроскопической живой системой, состоящей из цитоплазмы и ядра, окруженных мембраной(за исключением прокариотов)
  4. в клетке осуществляются : 

  • метаболизм — обмен веществ;
  • обратимые физиологические процессы — дыхание, поступление и выделение веществ, раздражимость , движение;
  • необратимые процессы — рост и развитие.

    5. клетка может быть самостоятельным организмом. Все многоклеточные организм также состоят из клеток и их производных. Рост, развитие и размножение  многоклеточного организма — следствие жизнедеятельности одной или нескольких клеток.


Прокариоты (предъядерные, доядерные) составляют надцарство, включающее одно царство — дробянки, объединяющее подцарство архебактерии, бактерии и оксобактерии (отдел цианобактерий и хлороксибактерии)


Эукароты(ядерные) также составляют надцарство. Оно объединяет царства грибы, животные, растения.
 


Тема: Строение и функции клетки

 


                          Растительная клетка :                                              Животная клетка :




 Органеллы  Строение  Функции
 Наружная клеточная мембрана
 ультромикроскопическая пленка, состоящая из бимолекулярного слоя липидов. Цельность липидного слоя может прерываться белковыми молекулами — порами. Кроме того, белки лежат мозаично по обе стороны мембраны, образуя ферментные системы.
 изолирует клетку от окружающей среды, обладает избирательной проницаемостью, регулирует процесс поступления веществ в клетку; обеспечивает обмен веществ и энергии с внешней средой, способствует соединению клеток в ткани, участвует в пиноцитозе и фагоцитозе; регулирует водный баланс клетки и выводит из нее конечные продукты жизнедеятельности.
 Эндоплазматичкская сеть ЭПС

 Ультрамикроскопическая система мембран, образующих трубочки, канальцы, цистерны пузырьки. Строение мембран универсальное, вся сеть объединена в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭПС несет рибосомы, гладкая лишена их.
Обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками.  Делит клетку на отдельные секции, в которых одновременно происходят различные физиологические  процессы и химические реакции. Гранулярная ЭПС участвует в синтезе белка. В каналах ЭПС молекулы белка приобретают вторичную, третичную и четвертичную структуры, синтезируются жиры, транспортируется АТФ
 Митохондрии

 Микроскопические органеллы, имеющие двухмембраное строение. Внешняя мембрана гладкая, внутренняя — образует различной формы выросты — кристы. В матриксе митохондрий (полужидкое вещество) находятся ферменты, рибосомы, ДНК, РНК. Размножаются делением.
Универсальная органелла, являющаяся дыхательным и энергетическим центром. В процессе кислородного этапа диссимиляции в матриксе с помощью ферментов происходит  расщеплении органических веществ с освобождением энергии, которая идет на синтез  АТФ (на кристах)
 Рибосомы

 Ультрамикроскопические органеллы округлой или грибовидной формы, состоящие из двух частей- субъединиц. Они не имеют мембранного строения и состоят из белка и рРНК. Субъединицы образуются в ядрышке. Объединяются вдоль молекул иРНК в цепочки -полирибосомы — в цитоплазме  Универсальные органеллы всех клеток животных и растений. Находятся в цитоплазме в свободном состоянии или на мембранах ЭПС; кроме того, содержаться в митохондриях и хлоропластах. В рибосомах синтезируются белки по принципу матричного синтеза; образуется полипептидная цепочка — первичная структура молекулы белка.
 Лейкопласты

 Микроскопические органеллы, имеющие двухмембранное строение. Внутренняя мембрана образует 2-3 выроста Форма округлая. Бесцветны. Как и все пластиды, способны к делению. Характерны для растительных клеток. Служат местом отложения запасных питательных веществ, главным образом крахмальных зерен. На свету их строение усложняется и они преобразуют  в хлоропласты. Образуются из пропластид.
 Аппарат Гольджи (диктиосома)

 микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по кроям которых ответвляются трубочки, отделяющие мелкие пузырьки. Имеет два полюса : строительный и секреторный  наиболее подвижная и изменяющаяся органелла. В цистернах накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а так же вещества, которые выводятся из клетки. Упакованные в пузырьки, они поступают в цитоплазму. в растительной клетке участвуют в построении клеточной стенки.
 Хлоропласты  Микроскопические органеллы, имеющие двухмембранное строение. Наружная мембрана гладкая. Внутренняя мембрана образует систему  двухслойных пластин — тилакоидов  стромы и тилакоидов гран.  В мембранах тилакоидов гран между слоями молекул белков и липидов           сосредоточены  пигменты — хлорофилл и каротиноиды. В белково — липидном матриксе находятся собственные рибосомы, ДНК, РНК. Форма хлоропластов чечевицеобразная. Окраска зеленая.
 Характерны для растительных клеток. Органеллы фотосинтеза, способные создавать из неорганических веществ (СО2 и Н2О) при наличии световой энергии и пигмента хлорофилла  органические вещества — углеводы и свободный кислород. Синетз собственных белков. Могут образовываться из пропластид или лейкопластов, а осенью преобразоваться в хромопласты (красные и оранжевые плоды, красные и желтые листья). Способны к делению.
 Хромопласты

Микр-ие органеллы, имеющие двухмембранное строение. Собственно хромопласты имеют  шаровидную форму, а образовавшиеся из хлоропластов принимают форму кристаллов каротиноидов, типичную для данного вида растения. Окраска красная. оранжевая, желтая 
 Характерны для растительных клеток.  Придают лепесткам цветков окраску, привлекательную для насекомых —  опылителей. В осенних листьях и зрелых плодах,  отделяющихся от растения, содержатся кристаллические каротиноиды — конечные продукты обмена
 Лизосомы   

   Микроскопические одномембраные органеллы  округлой формы. их число зависит от жизнедеятельности клетки и ее физиологического состояния. в лизосомах находится лизируещее (растворяющее) ферменты, синтезированные на рибосомах. обособляются от диктисом в виде пузырьков                       
 Клеточный центр   
(Центросома)

  Ультромикроскопическая органелла немембраного строения. состоит из двух центриолей. каждая имеет цилиндрическую форму ,  стенки образованы девятью                           триплетами трубочек, а в середине находится однородное вещество. центриоли расположены перпендикулярно друг другу. 
     Принимает участие в деление клеток животных и низших растений . в начале деления центриоли расходятся к разным полюсам клетки. от центриолей к центромерам хромосом отходят нити веретена деления. в анафазе эти нити притягиваются хроматидами к полюсам. после окончания деления центриоли остаются в дочерних клетках, удваиваются и образуют клеточный центр.
 Органоиды движения
реснички — многочисленные цитоплазматические выросты на поверхности мембраны

жгутики — единичные цитоплазматические  выросты на поверхности клетки

ложные ножки (псевдоподии)- амебовидные выступы цитоплазмы



миофибриллы — тонкие нити длиной 1 см и более

цитоплазма осуществляющая струйчатое и круговое движение

 удаление частичек пыли. передвижение

передвижение

образуются у одноклеточных животных в разных местах цитоплазмы для захвата пищи, для передвижения. Характерны для лейкоцитов крови, а так же клеток энтодермы кишечнополостных.

служат для сокращения мышечных волокон

перемещение органелл клетки по отношению к источнику света, тепла, химического раздражителя.

                

Источник: www.sites.google.com

Структурные особенности

Учёные занимаются изучением особенности строения клетки и принципов ее работы. Детально рассмотреть особенности структуры клетки можно только при помощи мощного микроскопа.

Все наши ткани — кожные покровы, кости, внутренние органы состоят из клеток, которые являются строительным материалом, бывают разных форм и размеров, каждая разновидность выполняет определённую функцию, но основные особенности их строения сходны.

Сначала выясним, что лежит в основе структурной организации клеток. В ходе проведенных исследований ученые установили, что клеточным фундаментом является мембранный принцип. Получается, что все клетки образованы из мембран, которые состоят из двойного слоя фосфолипидов, куда с наружной и внутренней стороны погружены молекулы белков.

Какое свойство характерно для всех типов клеток: одинаковое строение, а также функционал — регулирование процесса обмена веществ, использование собственного генетического материала (наличие ДНК и РНК), получение и расход энергии.

В основе структурной организации клетки выделяются следующие элементы, выполняющие определенную функцию:

  • мембрана — клеточная оболочка, состоит из жиров и протеинов. Ее основная задача – отделять вещества, находящиеся внутри, от внешней среды. Структуру имеет полупроницаемую: способна пропускать кислород и оксид углерода;
  • ядро – центральная область и главный компонент, отделяется от других элементов мембраной. Именно внутри ядра находится информация о росте и развитии , генетический материал, представленный в виде молекул ДНК, входящих в состав хромосом;
  • цитоплазма — это жидкая субстанция, образующая внутреннюю среду, где происходят разнообразные жизненно важные процессы, содержит в себе очень много важных компонентов.

Из чего состоит клеточное содержимое, каковы функции цитоплазмы и ее основных компонентов:

  1. Рибосома — важнейший органоид, который необходим для процессов биосинтеза белков из аминокислот, белки выполняют огромное количество жизненно важных задач.
  2. Митохондрии – ещё один компонент, находящийся внутри цитоплазмы. Его можно описать одним словосочетанием – энергетический источник. Их функция заключается в обеспечении компонентов питанием для дальнейшего производства энергии.
  3. Аппарат Гольджи состоит из 5 – 8 мешочков, которые соединены между собой. Основная задача этого аппарата – передача протеинов в другие части клетки для обеспечения энергетического потенциала.
  4. Очистку от повреждённых элементов производят лизосомы.
  5. Транспортировкой занимается эндоплазматическая сеть, по которой белки перемещают молекулы полезных веществ.
  6. Центриоли отвечают за воспроизводство.

Ядро

Поскольку ядро — клеточный центр, поэтому следует уделить его строению и функциям особое внимание. Данный компонент является важнейшим элементом для всех клеток: содержит наследственные признаки. Без ядра стали бы невозможными процессы размножения и передачи генетической информации. Посмотрите на рисунок, изображающий строение ядра.

  • Ядерная оболочка, которая выделена сиреневым цветом, пропускает внутрь нужные веществам и выпускает обратно через поры — маленькие отверстия.
  • Плазма представляет собой вязкую субстанцию, в ней находятся все остальные ядерные компоненты.
  • ядро размещается в самом центре, имеет форму сферы. Его главная функция – образование новых рибосом.
  • Если рассмотреть центральную часть клетки в разрезе, то можно увидеть малозаметные синие переплетения — хроматин, главное вещество, который состоит из комплекса белков и длинных нитей ДНК, несущих в себе необходимую информацию.

Из чего состоит клетка человека: строение и функции

Клеточная мембрана

Давайте подробнее рассмотрим работу, строение и функции этого компонента. Ниже представлена таблица, наглядно показывающая важность внешней оболочки.

Хлоропласты

Это ещё один наиважнейший компонент. Но почему о хлоропластах не было упомянуто раньше, спросите вы. Да потому, что этот компонент содержится только в клетках растений. Главное различие между животными и растениями заключается в способе питания: у животных оно гетеротрофное, а у растений автотрофное. Это означает, что животные не способны создавать, то есть синтезировать органические вещества из неорганических – они питаются готовыми органическими веществами. Растения же, напротив, способны осуществлять процесс фотосинтеза и содержат особые компоненты — хлоропласты. Это пластиды зеленого оттенка, содержащие вещество хлорофилл. С его участием энергия света преобразуется в энергию химических связей органических веществ.

Если вам зададут вопрос: назовите важную особенность строения органических соединений клетки, то ответ можно дать следующий.

  • многие из них содержат атомы углерода, которые обладают различными химическими и физическими свойствами, а также способны соединяться друг с другом;
  • являются носителями, активными участниками разнообразных процессов, протекающих в организмах, либо являются их продуктами. Имеются ввиду гормоны, разные ферменты, витамины;
  • могут образовывать цепи и кольца, что обеспечивает многообразие соединений;
  • разрушаются при нагревании и взаимодействии с кислородом;
  • атомы в составе молекул объединяются друг с другом с помощью ковалентных связей, не разлагаются на ионы и потому медленно взаимодействуют, реакции между веществами протекают очень долго — по нескольку часов и даже дней.

Ткани

Клетки могут существовать по одной, как в одноклеточных организмах, но чаще всего они объединяются в группы себе подобных и образуют различные тканевые структуры, из которых и состоит организм. В теле человека существует несколько видов тканей:

  • эпителиальная – сосредоточена на поверхности кожных покровов, органов, элементов пищеварительного тракта и дыхательной системы;
  • мышечная — мы двигаемся благодаря сокращению мышц нашего тела, осуществляем разнообразные движения: от простейшего шевеления мизинцем, до скоростного бега. Кстати, биение сердца тоже происходит за счёт сокращения мышечной ткани;
  • соединительная ткань составляет до 80 процентов массы всех органов и играет защитную и опорную роль;
  • нервная — образует нервные волокна. Благодаря ей по организму проходят различные импульсы.

Процесс воспроизводства

На протяжении всей жизни организма происходит митоз – так называют процесс деления, состоящий из четырёх стадий:

  1. Профаза. Две центриоли клетки делятся и направляются в противоположные стороны. Одновременно с этим хромосомы образуют пары, а оболочка ядра начинает разрушаться.
  2. Вторая стадия получила название метафазы. Хромосомы располагаются между центриолями, постепенно внешняя оболочка ядра полностью исчезает.
  3. Анафаза является третьей стадией, на протяжении которой продолжается движение центриолей в противоположном друг от друга направлении, а отдельные хромосомы также следуют за центриолями и отодвигаются друг от друга. Начинает сжиматься цитоплазма и вся клетка.
  4. Телофаза – окончательная стадия. Цитоплазма сжимается до тех пор, пока не появятся две одинаковые новые клетки. Формируется новая мембрана вокруг хромосом и появляется одна пара центриолей у каждой новой клетки.

Строение клетки

 

Строение клетки. Строение и функции клетки. Жизнь клетки.

Вывод

Вы узнали каково строение клетки — самой важной составляющей организма. Миллиарды клеток составляют удивительно мудро организованную систему, которая обеспечивает работоспособность и жизнедеятельность всех представителей животного и растительного мира.

Источник: uchim.guru

Органоиды клетки.

В клетках живых организмов постоянно присутствуют специализированные структуры — органоиды. Они имеют определенное строение и осуществляют строго определенные функции. Органоиды могут быть мембранными, которые отграниченны от гиалоплазмы мембранами, и немембранными. Кроме того, органоиды подразделяют на общие, имеющиеся у большинства клеток (митохондрии, эндоплазматическая сеть, рибосомы и т.д.), и специальные, которые характерны только для некоторых специализированных клеток (реснички, жгутики).

Клеточный центр (центросома).

Клеточный центр или центросома — органоид цитоплазмы, который не отделен от нее мембраной. Он играет важную роль и при делении клетки, и непосредственно участвует в формировании ахроматинового веретена, необходимого для правильной ориентации и расхождения хромосом. В промежутках между делениями клетки клеточный центр участвует в образовании внутриклеточного цитоскелета, который состоит из микротрубочек и микрофиламентов. Основной частью клеточного центра являются центриоли — два небольших цилиндрических тельца, состоящих из 27 микротрубочек, которые сгруппированны в девять групп по три в каждой. Обычно оси двух центриолей перпендикулярны относительно друг друга. От них отходят короткие микротрубочки, участвующие в формировании цитоскелета. Хорошо выраженный клеточный центр есть в клетках животных, грибов и некоторых растений (например, водоросли, мхи или папоротники). В клеточном центре клеток покрытосеменных растений центриоли отсутствуют.

Рибосомы.

Рибосомы — очень важный обязательный органоид всех клеток, как эукариот, так и прокариот, так он обеспечивает одно из основных проявлений жизни — синтез белка. У рибосом нет мембраны, они состоят из рибосомальной РНК (рРНК) и большого количества белков. В составе каждой рибосомы есть две субъединицы: большая и малая. Основная функция малой субъединицы — «расшифровка» генетической информации. Она связывает информационную РНК (иРНК) и транспортную РНК (тРНК), несущие аминокислоты. Функция большой субъединицы — образование пептидной связи между аминокислотами, принесенными в рибосому двумя соседними молекулами тРНК. Белки и рРНК, входящие в состав рибосом, синтезируются в ядре (в ядрышке), а затем поступают в цитоплазму. Кроме этого рибосомы находятся в органоидах, имеющих свой собственный генетический аппарат, — в митохондриях и пластидах. Рибосомы располагаются в цитоплазме клеток либо свободно, либо на поверхности шероховатой эндоплазматической сети. Иногда, на одной молекуле иРНК собирается несколько рибосом (подобная структура называется полисомой). По размеру цитоплазматические рибосомы эукариот несколько больше рибосом прокариот и рибосом митохондрий и пластид.

Эндоплазматическая сеть (эндоплазматический ретикулум).

Эндоплазматическая сеть (эндоплазматический ретикулум) пронизывает всю цитоплазму большинства клеток. Она состоит из многочисленных однослойных мембранных трубочек, цистерн и каналов самой разнообразной формы и размера, которые соединяются с плазматической и ядерной мембранами.

Эндоплазматическая сеть

Эндоплазматические сети делятся на два типа: гладкие и шероховатые. На мембранах шероховатой сети располагаются рибосомы. В этих рибосомах синтезируются белки, поступающие затем в полости эндоплазматической сети и транспортирующиеся по ним к комплексу Гольджи. На мембранах гладкой эндоплазматической сети расположены ферментные комплексы, участвующие в синтезе углеводов, жиров, пигментов. В некоторых специализированных клетках эндоплазматическая сеть выполняет специальные функции. Так, в мышечных клетках в эндоплазматической сети накапливается кальций, который освобождается в процессе мышечного сокращения и удаляется обратно при расслаблении. Некоторые клетки (например, эритроциты) при созревании теряют эндоплазматическую сеть.

Комплекс Гольджи.

Комплекс Гольджи (аппарат Гольджи) расположен обычно вблизи ядра и состоит из сложной сети однослойных мембранных образований разной формы и размера. Как правило, это группа крупных плоских полостей, расположенных стопками, с отходящими от них трубочками и пузырьками.

Комплекс Гольджи

В комплексе Гольджи происходит накопление продуктов синтетической деятельности клеток (белков, углеводов и жиров) и веществ, поступающих в клетку из окружающей среды. Здесь может происходить дополнительная модификация этих веществ, например, к белкам присоединяются углеводные компоненты с образованием гликопротеинов. После этого вещества могут поступать в цитоплазму в виде капель или зерен, или выводиться (секретироваться) из клетки. В образовании лизосом и вакуолей принимают участие мембранные трубочки и пузырьки комплекса Гольджи.

Лизосомы.

Лизосомы — мелкие однослойные мембранные пузырьки, которые образуются в комплексе Гольджи. Они содержат большое количество ферментов (приблизительно 40), и способны расщеплять и переваривать различные вещества — белки, полисахариды, жиры и нуклеиновые кислоты, как поступающие в клетку извне, так и образующиеся в самой клетке. Т.е. лизосомы выполняют функцию «пищеварительных центров» клетки. Много лизосом обнаруживается в лейкоцитах, где они участвуют в переваривании микроорганизмов. Отслужившие свой срок и поврежденные макромолекулы (белки, РНК и т.д.) также поступают в лизосомы, где расщепляются до мономеров и вновь выходят в цитоплазму, чтобы включиться в обмен веществ. Если мембраны лизосом разрушаются, их пищеварительные ферменты начинают разрушение клеточных органоидов и других структур, приводя к гибели клетки. Такой процесс, например, имеет место при рассасывании временных органов эмбрионов или личинок (жабры и хвост у головастика).

Митохондрии.

Митохондрии представляют собой микроскопические тельца различной формы, окруженные двухслойной мембраной. Их размеры варьируются от 0,2 до 7 нм.

Схема митохондрии

Наружная мембрана метохондрий гладкая, а внутренняя образует многочисленные ветвящиеся складки, направленные внутрь митохондрии, так называемые кристы, значительно увеличивающие площадь внутренней мембраны. Матрикс —  внутреннее содержимое метохондрии, т.е. пространство, ограниченное внутренней мембранной. В матриксе метохондрии присутствуют многочисленные ферменты. В процессе кислородного этапа энергетического обмена (клеточного дыхания) эти ферменты участвуют в окислительном расщеплении жиров, белков и углеводов до воды и углекислого газа. Во внутренней мембране митохондрий содержатся белки-переносчики электронов и другие ферменты, которые участвуют в окислении биологических субстратов и образовании АТФ в процессе окислительного фосфорилирования. Внутренняя мембрана митохондрий практически непроницаема для протонов, поэтому на ней в процессе окисления субстратов возникает градиент концентрации протонов, энергия которого используется для синтеза АТФ. Таким образом, митохондрии представляют собой «энергетические станции» клеток, основной функцией которых является окисление различных веществ, сопряженное с синтезом АТФ. В митохондриях имеется своя собственная кольцевая молекула ДНК и весь аппарат, необходимый для синтеза белка (рибосомы, иРНК и тРНК). Количество митохондрий в клетках может варьироваться от одной или нескольких до многих десятков. Они способны делиться, образуя дочерние митохондрии.  Митохондрии встречаются в клетках всех аэробных (обитающих в кислородных условиях) эукариот, т.е. в растениях, грибах и животных.

Пластиды.

Пластиды — цитоплазматические органоиды, окруженные двухслойной мембраной,  присутствуют только в растительных клетках. В клетках животных и грибов пластиды отсутствуют. Как и в митохондриях, в пластидах есть свой собственный генетический аппарат — кольцевая молекула ДНК, рибосомы и различные типы РНК. Различают три типа пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты — зеленые пластиды. Их зеленый цвет следствие того, что в них присутствует зеленый пигмент хлорофилла. Хлоропласты присутствуют в фотосинтезирующих клетках всех зеленых растений. По своей форме они похожи на линзу. Хлоропласты водорослей  называют хроматофорами. Они имеют разнообразную форму (спиральную, сетчатую, звездчатую).

Хлоропласт

Хлоропласты окружены двухслойной мембраной. Наружная мембрана гладкая, а во внутренней образуются многочисленные выросты, которые формируют линзовидные образования — тилакоиды, собранные в стопки — граны. Название внутреннего содержимого хлоропластов — строма. В мембранах тилакоидов расположены пигменты и белки-переносчики электронов, участвующие в световой фазе фотосинтеза. Под действием света они разлагают воду. При этом выделяется свободный кислород, а освобождающиеся электроны переносятся на молекулу НАДФ+, восстанавливая ее до НАДФН. Процесс переноса электронов сопряжен с синтезом АТФ (фотофосфорилирование). В строме локализуются ферменты, участвующие в темновой фазе фотосинтеза. С использованием АТФ и НАДФН, образующихся в световой фазе, они синтезируют глюкозу из воды и углекислого газа. Хлоропласты могут терять хлорофилл и превращаться в хромопласты и лейкопласты. Такой процесс происходит, например, осенью при пожелтении и покраснении листвы и при созревании зеленых плодов.

Хромопласты — это пластиды, окрашенные в желтые, красные и оранжевые цвета, могут быть различной формы и размера. Их цвет обусловлен присутствием различных пигментов (каротинов, ксантофиллов, ликопина и др.). Хромопласты могут определять окраску различных частей растений: стеблей, цветков, плодов, листьев. Под воздействием света хромопласты могут превращаться в хлоропласты. Например, это происходит при позеленении корнеплодов моркови.

Лейкопласты — это бесцветные пластиды, лишенные пигментов,  по форме и размерам близкие к хлоропластам. В них происходит накопление запасных веществ (крахмала, жиров, белков). Лейкопласты содержатся в разных частях растений: корнях, клубнях и т.д. Под воздействием света они также, как и хромопласты, могут превращаться в хлоропласты. Например, клубни картофеля зеленеют на свету.

Вакуоли.

Вакуоли представляют собой окруженные однослойной мембраной округлые полости, заполненные клеточным соком, содержащим различные минеральные и органические вещества (углеводы, белки, алкалоиды, пигменты, дубильные вещества, различные соли и их кристаллы и т.д.). Вакуоли образуются из пузырьков комплекса Гольджи. Крупные вакуоли типичны для растительных клеток, где они участвуют в поддержании тургора; в животных клетках они обычно не встречаются. У одноклеточных организмов вакуоли выполняют специальные функции пищеварения (пищеварительные вакуоли) и выведения из клеток излишков воды и продуктов обмена (сократительные вакуоли).

Специальные органоиды.

Специальные органоиды присутствуют в специализированных клетках, выполняющих определенные функции. Так, реснички и жгутики отвечают за различные виды движения. С их помощью осуществляется движение одноклеточных и многоклеточных организмов, зооспор водорослей, сперматозоидов млекопитающих и т.д. Реснитчатый эпителий покрывает пищевод и дыхательные пути животных и человека, жабры рыб, а также, поверхность тела ресничных червей. Миофибриллы — нити, состоящие из белков актина и миозина, и обеспечивающие сократительную активность всех типов мышц.

Кроме органоидов, в клетках могут присутствовать различные включения (крахмальные зерна, капли жиров, гранулы белка или гликогена). Как правило, они выполняют запасные функции. Иногда в виде включений могут накапливаться продукты жизнедеятельности клеток — кристаллы органических кислот и пигментов.

В следующем разделе мы рассмотрим ядро клеток эукариот.

Источник: www.studentguru.ru

[править] История

Обнаружены Робертом Гуком в 1665 году. В 1839 году Теодор Шванн и Маттиас Шлейден сформулировали клеточную теорию строения живого, но неправильно доказали воспроизведение клетки.

[править] Строение

Существует множество разнообразных по форме и размерам клеток. Клетки могут быть плоскими, веретенообразными, шарообразными, иметь отростки. Как правило, их форма зависит от положения в организме и той функции, которую они выполняют. А функции, в свою очередь, определяются наружным и внутренним строением.

Почти все клетки организма человека и животных имеют принципиально схожую структуру. Снаружи они покрыты плазматической мембраной, которая отграничивает содержимое клеток от внешней среды. Внутри находятся ядро и цитоплазма с органоидами.

Плазматическая мембрана обеспечивает восприятие и передачу сигналов, поступающих из окружающей среды, внутрь клетки. Через мембрану осуществляется поступление в клетку одних веществ и выведение из нее — других. Все эти процессы отличаются особым строением мембраны и позволяют сохранять неорганические и органические вещества внутри клетки в строго определенных концентрациях, то есть поддерживать постоянство химического состава клетки.

Все живые клетки состоят из цитоплазмы (заполняет внутреннее пространство клетки) в которой размещаются различные органоиды и клеточные включения, а также генетический материал в виде молекулы ДНК. Цитоплазма — полужидкая (студнеподобная) внутренняя среда клетки. В ней располагаются постоянные специализированные структуры — органоиды, а также непостоянные компоненты, или включении (жиры, гликоген, пигменты). К органоидам клетки относятся: Эндоплазматическая сеть, рибосомы, митохондрии, лизосомы, комплекс Гольджи и др. Они выполняют жизненно важные функции, обеспечивая все виды деятельности клетки.

В органоидах, которые называются митохондрии, вырабатываются соединения, являющиеся источником энергии. В лизосомах благодаря активности специфических белков (ферментов) происходят процессы расщепления сложных органических молекул, попавших в клетку, до более простых. Так клетка синтезирует необходимые ей соединения.

Обязательной частью любой способной к делению клетки является ядро. Оно контролирует практически все функции клетки, включая деление. Обычно в клетке имеется одно ядро, реже — несколько или много. В ядре располагаются хромосомы, содержащие ДНК, в которой заключена наследственная информация. Все клетки человеческого тела имеют по 46 хромосом. Исключением являются половые, в которых содержится лишь 23 хромосомы.

У некоторых клеток имеются жгутики, реснички, сократительные нити — органоиды специального назначения.

Пространство клетки ограничивается клеточной оболочкой[1]. Растительные клетки покрыты твердой оболочкой из пор, содержат хлоропласт.

Существование в клетке ядра является основой разделения клеток на ядерные и безъядерные, но на самом деле разница в строении клеток этих групп касается не только ядер.

Организмы могут состоять как из одной так и из многих клеток. В многоклеточных организмах клетки различных органов значительно отличаются друг от друга как по морфологическому, так и по биохимическому строению.

[править] Состав

Клетки живых организмов содержат несколько видов химических соединений с разным строением и свойствами. Состав этих сочетаний может отличаться в разных групп организмов. Большая часть клетки состоит из воды (70 — 80 %)[2]. Она создает благоприятную среду осуществления биохимических реакций, а также может быть результатом биохимических реакций. Состав остальных элементов обычно подается в далях к массе клетки без учета воды.

40-60 % сухой массы клетки состоит из белков, выполняющих различные функции, от строительной и регулятивными к транспортной и многих других[3]. В свою очередь белки состоят из аминокислот. В большинстве белков к аминокислотам присоединены другие элементы, что придает им специфические свойства.

Кроме белков, аминокислоты составляют пептиды и полипептиды. Они выполняют различные функции, являются гормонами, натуральными антибиотиками и т. д.

Нуклеиновые кислоты (ДНК и РНК), играют важную роль в передаче наследственной информации, а также в биосинтезе белков.

Углеводы выполняют главную энергетическую функцию, и функцию накопления энергии.

Липиды составляют основу клеточной оболочки, но кроме этого они участвуют почти во всех клеточных процессах (регулятивных, транспортных, коммуникационных, метаболических).

Клетка состоит из следующих химических элементов: кислород (65 % массы тела человека), углерод (18 % массы тела человека), водород (10 % массы тела человека), азот (3 % массы тела человека) и другие элементы, которые составляют менее 2 % массы тела человека.

[править] Свойства клетки

Большинство клеток многоклеточного организма не имеют непосредственной связи с внешней средой. Средой обитания клеток является межклеточная, тканевая жидкость. Между клеткой и этой жидкостью постоянно осуществляется обмен различными соединениями. Совокупность всех видов превращений веществ и энергии в клетках, а значит, и в организме, называется обменом веществ. Обмен веществ и энергии обеспечивает процессы жизнедеятельности клетки и ее связь с окружающей средой.

Всем живым клеткам свойственна раздражительность — способность реагировать на действие раздражителей (света, температуры, механических и химических воздействий).

Некоторые клетки (например, нервные) могут переходить из состояния покоя в состояние возбуждения или торможения. Способность клеток к возбуждению — специфической реакции, которая выражается в быстром изменении электрического заряда плазматической мембраны, получила название возбудимости.

Принципиальным отличием всех возбудимых клеток от невозбудимых является их способность изменять проницаемость своей мембраны в ответ на действие раздражителей.

Нервные и мышечные клетки могут проводить электрический импульс. Эта способность называется проводимостью.

Мышечным волокнам, кроме возбудимости и проводимости, свойственна возможность сокращаться. Благодаря ей они изменяют свою форму и размеры и таким образом выполняют двигательную функцию.

Для клеток внутренних органов характерна секреция — образование и выведение определенных веществ (секретов) из клетки за ее пределы. Различают внешнюю (например, желудочный сок, молоко, слюна) и внутреннюю (вещества из клеток попадают в кровь или лимфу) секреции.

В основе роста тканей и восстановления количества клеток лежит процесс деления. Все новые клетки образуются путем деления существующих. Однако некоторые клетки в результате высокой специализации функцию деления потеряли. К таким клеткам относятся отдельные клетки крови, нервной системы, мышечные клетки сердца и др.

Специализация клеток закрепилась в процессе эволюции. Одни из них приобрели способность охранять организм от факторов внешней среды, вторые — передавать информацию органам и тканям, третьи — обеспечивать движение, четвертые — опору, пятые — выработку необходимых для организма биологических соединений. Специализация отразилась на форме клеток, их строении, продолжительности жизни. Мышечные и большинство нервных клеток стали вытянуты в длину, клетки кожи приобрели плоскую форму. Мужские половые клетки (сперматозоиды) имеют жгутик и способны перемещаться, а белые клетки крови могут двигаться благодаря способности образовывать ложноножки (как амеба). Кроме внешних различий, в клетках изменилось количество органоидов. Например, способные к сокращению или к секреции клетки имеют большое количество митохондрий, которые накапливают энергию. Таким образом, по внешнему виду и количеству органоидов можно судить о функции клетки.

[править] Жизнедеятельность

Для любой живой клетки характерен обмен веществ. Это значит, что клетка питается, дышит и выделяет в окружающую среду различные вещества. При этом идет накопление энергии, которая тратится клеткой на поддержание процессов жизнедеятельности и на размножение.

Поступление веществ в клетку идет через всю ее поверхность и только в растворенном состоянии. Цитоплазматическая мембрана обладает избирательным проницаемостью. Некоторые вещества могут поступить в клетку только в том случае, если на них перенос будет затрачено энергия самой клетки. Это чаще всего сложные органические вещества, молекулы которых имеют большие размеры. Многие неорганические вещества цитоплазматическая мембрана способна пропускать беспрепятственно. Такие вещества могут попасть в клетку без затрат энергии только в том случае, если их концентрация внутри клетки будет ниже, чем снаружи, а такой путь поступления веществ в клетку называется диффузионным.

Вода поступает в клетку при помощи осмоса. Это одностороннее проникновение воды через избирательно проникающую мембрану клетки. Вода переходит из менее концентрированного раствора в более концентрированный. Чем больше концентрация веществ в клетке, тем больше поступает в нее воды. Поступившая в клетку вода увеличивает ее объем. В клетке растений и грибов вода проходит через цитоплазму и накапливается в вакуоли. Объем вакуоли при этом увеличивается, она давит на цитоплазму. Цитоплазма в свою очередь давит на оболочку. В клетке возникает давление, которое называется тургорным, и поступление воды в клетку прекращается. Если же вода частично расходуется, тургорное давление снизится, и вода снова осмотическим путем будет поступать в клетку.

Живые клетки дышат на протяжении всей их жизни. В результате клетки получают энергию для всех жизненных процессов. Больше всего энергии выделяется, когда в таких реакциях участвует кислород. Поэтому большинство видов живых организмов используют для дыхания именно этот газ. Внутри клетки кислород, поступившем в процессе диффузии, вступает в реакции с органическими веществами. При этом происходит выделение энергии и превращение органических веществ в неорганические: воду и углекислый газ. Последний путем диффузии выходит из клетки. Таким образом, кислородному дыханию всегда сопутствует газообмен, при котором кислород входит в клетку, а углекислый газ выходит из нее.

Разрушая органические вещества до неорганических в процессе дыхания, клетка получает энергию для поддержания процессов своей жизнедеятельности. Гетеротрофные организмы (животные, грибы) вынуждены получать органические вещества из окружающей среды. Автотрофы (растения) способны самостоятельно синтезировать их из простых неорганических веществ. При этом используется энергия света. Этот процесс происходит только в хлоропластах клеток растений и называется фотосинтезом.

[править] Деление и рост клеток

В основе размножения лежит способность клеток удваиваться при наличии определенных условий. Доказано, что ни одна клетка не может возникнуть заново из неживых компонентов. Все новые клетки образуются из уже существующих.

Перед делением клетки в ядре происходит удвоение количества хромосом. При этом образуются два набора хромосом, несущих одинаковую информацию о жизненных процессах. Это и есть основа того, что две новые клетки будут похожи на ту клетку, из которой они образуются. Затем все хромосомы уплотняются и превращаются в похожие на палочки структуры. В таком виде хромосомы становятся видимыми в световой микроскоп. Ядерная мембрана растворяется, и хромосомы оказываются в цитоплазме клетки. Все другие органоиды перемещаются к цитоплазматической мембраны. Это позволяет хромосомы разместиться в центре клетки. После этого хромосомы разделяются на две группы, которые имеют одинаковый состав. Именно поэтому обе возникшие в результате деления клетки будут нести совсем одинаковую информацию. Каждая из двух групп хромосом перемещается от центра клетки к одному из ее полюсов. После этого начинается деление клетки пополам.

В клеток растений перегородка начинает формироваться с середины центральной части клетки. Она растет во все стороны, пока не достигнет наружной цитоплазматической мембраны. В этот момент из одной клетки образуются две дочерние, причем перегородка, которая разделила клетку, получается такой же по прочности и строению, как и вся оболочка исходной клетки. Одновременно с постройкой перегородки вокруг каждой группы хромосом, находящихся около полюсов, формируется новая ядерная мембрана. Затем хромосомы превращаются из палочковидные в нитевидные. После этого они начинают выполнять свои функции. На этом процесс деления клетки заканчивается.

Две дочерние клетки, которые являются копиями друг друга и исходной материнской клетки, начинают собственную жизнь. В каждой из дочерних клеток после деления уже есть часть всех необходимых для существования органоидов. Это позволяет клеткам сразу после окончания деления осуществлять все жизненно важные функции. Обычно после деления клетки немного увеличиваются в размерах и продолжают жить или к гибели, или до следующего деления. В многоклеточных организмов дочерние клетки, возникающие при делении исходной материнской клетки, далее могут иметь различную структуру и выполнять различные функции. Это будет зависеть от того, какая часть информации, заключенной в хромосомах, будет использоваться клетками в течение жизни.

Организм человека состоит приблизительно из 220 млрд клеток. Их разделяют на две основные категории: 20 млн «долгожителей» (в основном это нервные клетки) и 200 млрд «смертных» (клетки, которые постоянно замещаются). Значит, большая часть клеток организма человека постоянно обновляется. Например, продолжительность жизни клеток кишечника составляет от 3 до 5 дней, а скорость их замещения равно 1 млн/мин. Таким образом, слизистая оболочка кишечника полностью обновляется 90 раз в течение одного года.

Источник: cyclowiki.org