Дыхание(respiration)многоплановый термин.

В биохимии и биоэнергетике дыхание – это многоступенчатый ферментативный процесс окисления субстратов для внутриклеточного освобождения энергии. Если в качестве акцептора электронов выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным. Если в качестве конечного акцептора используется молекула кислорода – то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений (АТФ).

В физиологии термином дыхание обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды.

У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание.


Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющее ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление вентиляции легких.

В случае легочного дыхания выделяется 5 основных этапов процесса дыхания:

1) внешнее дыхание, или вентиляция легких – обмен газов между альвеолами легких и атмосферным воздухом;

2) обмен газов в легких между альвеолярным воздухом и кровью;

3) транспорт газов кровью, т.е. процесс переноса О2 от легких к тканям и СО2 от тканей к легким;

4) обмен газов между кровью капилляров большого круга кровообращения и клетками тканей;

5) внутреннее дыхание – биологическое окисление в митохондриях клетки.

Последний этап в основном изучается биохимиками, а первые 4 являются объектами физиологических исследований. Ещё одним важнейшим объектом физиологического исследования процесса дыхания является нейрогуморальный аппарат его регуляции.


Помимо лёгочной существуют и иные формы внешнего дыхания.

Кожное дыхание у человека в покое обеспечивает около 1,5 – 2,0 % всего газообмена организма за счет кожи, общая поверхность которой составляет 1,5 – 2,0 м2 (зависит от роста, масса тела, пола, возраста). В сутки через кожу в организм попадает около 4 г кислорода и выделяется около 8 г углекислого газа. Эти количества зависят от чистоты кожных покровов, температуры окружающего воздуха и кожи, степени физической нагрузки, давления и др.

То, что газообмен осуществляется в основном в легких, определяется рядом факторов: а) поверхность легких значительно больше поверхности кожи (общая поверхность альвеол по мнению различных авторов составляет от 40 до 140 м2); б) толщина легочной мембраны значительно меньше (0,3-2,0 мкм), чем толщина кожи; в) объемная скорость кровотока легких в 313 раз выше, чем в коже.

Дыхание через слизистые желудка и кишечника. На ранних стадиях эволюции животных пищеварительный тракт выполнял по совместительству дыхательную функцию. В дальнейшем, по мере появления специфических органов дыхания, пищеварительная и дыхательная функции полностью разделились, а дыхательная функция желудочно-кишечного тракта перешла в категорию атавистической. Однако в желудке в обычных условиях может всасываться до 5% кислорода, необходимого для жизнедеятельности организма, в тонком кишечнике – 0,15 мл кислорода на 1 см2 за 1 час, в толстом кишечнике – 0,11 мл. В толстом кишечнике человека в покое всасывается 0,02-0,04 мл кислорода на 1 см2.


Влияние кишечника на дыхание может состоять и в том, что наполнение толстого кишечника газами приводит к подъему диафрагмы и затруднению дыхательных движений.

Искусственное дыхание – это искусственные пути введения кислорода и выведения углекислого газа:

1) подкожное и внутривенное введение кислорода;

2) введение О2 в крупные полости (плевральную, перитонеальную, в суставную сумку);

3) осуществление дыхания с подключением экстракорпорального кровообращения в системе аппарата искусственного кровообращения (оксигенатор-инжектор).

Лёгкие – парные дыхательные органы, расположенные в плевральных полостях. Состоят из разветвлений бронхов, образующих бронхиальное дерево (воздухоносные пути легкого), и системы альвеол, которые вместе с дыхательными бронхиолами, альвеолярными ходами и альвеолярными мешочками составляет альвеолярное дерево (дыхательную паренхиму легкого). На стенках альвеолярных ходов и альвеолярных мешочков, а также дыхательных бронхиол располагаются открывающиеся в их просвет альвеолы легкого. Морфофункциональной единицей респираторного отдела легкого является ацинус. В понятие «ацинус» включаются все разветвления одной концевой бронхиолы – дыхательные бронхиолы всех порядков, альвеолярные ходы и альвеолы. Кровоснабжение легкого осуществляется легочными и бронхиальными сосудами.
гочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание легких и принадлежат большому кругу кровообращения. Между этими двумя системами существуют достаточно выраженные анастомозы. Капилляры образуют 4-12 петель на стенке альвеол и сливаются в посткапилляры. Сеть капилляров в легких очень густая. Общая площадь капиллярной сети одного легкого составляет 35-40 м2.

Основная функция лёгких – дыхательная. Но существуют и недыхательные функции лёгких:

1. Метаболическая. Участие в обмене жиров для образования сурфактантов, синтез простагландинов, синтез тромбопластина и гепарина, синтез протеолитических и липолитических ферментов.

2. Терморегуляторная. При снижении температуры в легких активируются экзотермические процессы (химическая теплопродукция), одновременно уменьшается капиллярный кровоток, а значит и физическая теплоотдача.

3. Барьерная. При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия. Для крови – инактивация серотонина, простагландинов, ацетилхолина, брадикина, а также очистка крови от механических примесей.

4. Секреторная. Железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета (защита). Эндокринная функция: продукция простагландинов и других биологически активных веществ.


5. Экскреторная. Удаляется углекислый газ, летучие метаболиты, вода (до 500 мл в сутки).

6. Всасывательная. Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных веществ.

7. Очистительная. Секреторная деятельность. Активность ресничного эпителия, сосудисто-лимфатический путь.

 

Источник: poznayka.org

готовых белков, жиров, углеводов 3.организмы, используемые химическую энергию неорганических веществ 4. организмы, используюшие энергию солнечного света 5.название биологического окисления органических вещестив 6. хемосинтетики представлены исключительно 7. к фотосинтезу способны следующие организмы 8. количество стадий фотосинтеза 9. для фотосинтеза необходим растительный пигмент 10. местонахождение молекул хлорофила в хлоропласте 11. стадия фотосинтеза на которой растения используют воду 12. стадия фотосинтеза на которой растения используют СО2 атмосферы 13. кислород растения выделяют на стадии фотосинтеза 14. АТФ растения синтезируют на стадии фотосинтеза 15. энергию света растения используют на стадии фотосинтеза 16. глюкозу растения синтерзирую на стадии фотосинтеза 17. фотолиз происходит на стадии фотосинтеза 18. разложение воды под действием света называется 19.
я синтеза глюкозы в темновой фазе используется энергия 20. темновая фаза происходит 21 световая фаза происходит 22. благодаря растениям все живые организмы как внешний источник энергии использует 23. организмы, первые осуществившие фотосинтез 24. количество этапов процесса дыхания 25. 1- этап дыхания — количество Е в виде АТФ 26. 2 — этап дыхания — количество Е в виде АТФ 27. 3- этап дыхания — количество Е в виде АТФ 28. из 1 молекулы глюкозы при ее полном разложении образуется … молекул АТФ 29. О2 необходим на этапе дыхания 30. СО2 выделяется на этапе дыхания 31. органические вещества взаимодействуют с пищеварительными ферментами этапе дыхания 32. из одной молекулы глюкозы образуются 2 молекулы пировиноградной или молочной кислоты на этапе дыхания 33. брожение может происходить на этапе дыхания 34. бескислородное разложение глюкозы называется 35. организмы живущие в бескислородной среде не нуждающиеся в О2 и использующие только а 1 и 2 этапе дыхания 36.организмы живущие а бескислородной среде и осуществляющие все этапы дыхания 37. по способу получения энергии цинобактерии ( синезеленые водоросли ) относятся 38. по способу получения энергии грибы относятся 39. по способу получения энергии зеленые растения относятся 40. по способу получения энергии болезнетворные растения относятся 41. по способу получения энергии бактерии гниения относятся 42. молочная кислота- результат этапа 43. 3 этап дыхания происходит 44. какой энергетический органоид характерен для растений и для животных 45. системы органов обеспечивающие саморегуляцию у человека и у животных


Источник: biologia.neznaka.ru

Основные этапы дыхания и газообмена (рис. 68):

Первый — внешнее дыхание — это обмен воздуха между атмосферой и лёгочными альвео­лами (лёгочная вентиляция). К этому процессу относятся дыхательные движения — вдох и выдох, направленные на поступление воздуха в дыхательные пу­ти, а из них — к лёгким и в обратном направлении (рис. 69).

Второй этап — переход (путём диф­фузии) кислорода из лёгких в кровь и углекислого газа в обратном направ­лении.

Третий этап — транспортировка га­зов кровью — заключается в перенесе­нии кислорода к клеткам всего организ­ма, а углекислого газа, образующегося в клетках, к лёгким.

Четвёртый этап — газообмен между кровью и клетками. Кровь отдаёт клет­кам кислород в результате его диффу­зии из капилляров в межклеточную жидкость, а оттуда — к клеткам. Кисло­род проникает сквозь тоненькую стенку капилляра, потому что в межклеточной жидкости его концентрация меньше. Из межклеточной жидкости в клетку кис­лород попадает так же, потому что в клетках его концентрация ещё солее низкая. Венозная кровь забирает углекис­лый газ путём диффузии. Клетка, в процессе жизнедеятельности которой на­копилось много С02, отдаёт его в межклеточную жидкость, где его меньше, а оттуда — в капилляры.

И последний, пятый этап — клеточное дыхание. Материал с сайта http://worldofschool.ru


Количество этапов процесса дыхания
Рис. 68. Этапы газообмена: 1 — кислород; 2 — углекислый газ; 3 — лёгкое; 4 — альвеолы; 5 — аорта, 6 — лёгочные артерии; 7 — лёгочные вены; 8 — сердце; 9 — вена; 1и — ар­терия; 11 — капилляры; 12 — клетки тела
Количество этапов процесса дыхания
Рис. 69. Газообмен в лёгких и тканях: а) газообмен в лёгких; б) газообмен в тканях: 1 — лёгочный пузырёк; 2 — арте­риальная кровь; 3 — венозная кровь; 4 — клетки; 5 — межклеточная жидкость; 6 — полость альвеолы; 7 — стенка капилля­ра; 8 — плазма; 9 — эритроцит

Источник: WorldOfSchool.ru

Главной частью дыхательной системы организма человека являются легкие, которые выполняют основную функцию дыхания — обмен кислородом и углекислым газом между организмом и внешней средой обитания. Такой обмен возможен благодаря сочетанию вентиляции, диффузии газов через альвеолярно-капиллярную мембрану и легочного кровообращения.

Регуляция дыхания контролируется ЦНС и периферической нервной системой. Кровеносные сосуды содержат специальные хеморецепторы, которые реагируют на концентрацию продуктов обмена, парциальное напряжение кислорода и углекислого газа, pH организма. Благодаря этому осуществляется регуляция объема вентиляции легких, частоты, глубины, длительности вдоха и выдоха.

Условно процесс дыхания делится на 3 этапа:

  1. Внешнее дыхание.
  2. Диффузия кислорода и его транспортировка к тканям.
  3. Тканевое дыхание.

Первый этап дыхания — внешнее дыхание

В процессе внешнего дыхания кислород из внешней среды доставляется в альвеолы легких. На адекватность внешнего дыхания влияют многие факторы. Процесс внешнего дыхания начинается с верхних дыхательных путей, которые очищают, согревают и увлажняют вдыхаемый воздух. Эффективность очищения вдыхаемого воздуха зависит от количества и качественного состояния макрофагов, которые содержатся в слизистых оболочках дыхательных путей. Изнутри поверхность верхних дыхательных путей выстлана реснитчатым псевдомногослойным эпителием, который эвакуирует мокроту из верхних дыхательных путей. В норме из трахеи и бронхов за сутки удаляется до 100 мл мокроты (при некоторых патологиях эта цифра возрастает более, чем на порядок).


Очень важную функцию в нормальной работе верхних дыхательных путей играет кашлевый рефлекс, при нарушении которого не происходит своевременного освобождения верхних дыхательных путей от патологического секрета.

Дыхательные пути подразделяются на:

  • верхние дыхательные пути: нос, рот, глотка, гортань;
  • нижние дыхательные пути: трахея, бронхи.

Емкость верхних дыхательных путей образует анатомически мертвое пространство, воздух которого не участвует в газообмене. Объем анатомически мертвого пространства приблизительно равен 150 см3 (2,2 см3 на 1 кг массы тела человека).

Вентиляция легких зависит от дыхательного обмена и частоты дыхания. Величина вдоха определяется как разница между силой сокращения дыхательных мышц и эластичностью легких, которая зависит от поверхностного натяжения жидкости, покрывающей альвеолы и эластичности самой легочной ткани.

Значимость (по убыванию) вентилируемости легких во время дыхания:

  • нижний отдел;
  • передний отдел;
  • задний отдел;
  • верхушка.

Работа дыхания увеличивается при заболеваниях легких, которые сопровождаются повышением эластичного и неэластичного сопротивления.

Второй этап дыхания — диффузия и транспортировка кислорода к тканям

Диффузия кислорода осуществляется через ацинус — структурную единицу легкого, который состоит из дыхательной бронхиолы и альвеол. Диффузия кислорода осуществляется за счет парциальной разности содержания кислорода в альвеолярном воздухе и венозной крови, после чего незначительная часть кислорода растворяется в плазме, а основная часть кислорода связывается с гемоглобином, и транспортируется с током крови к органам и тканям организма. Соседние альвеолы сообщаются между собой порами межальвеолярных перегородок, через которые возможна незначительная вентиляция альвеол с закупоренными слизью ходами, например, при астме.

Альвеолы изнутри покрыты сурфактантом — сложным белковым поверхностно-активным веществом, который очень чувствителен к снижению кровообращения, вентиляции легких, уменьшению парциального напряжения кислорода в артериальной крови, что вызывает уменьшение количества сурфактанта, из-за чего нарушается стабильность поверхности альвеол. Сурфактантный комплекс препятствует спадению терминальных бронхиол, осуществляет противоотечную функцию, играет важную роль в регуляции водного баланса, оказывает защитное действие за счет противоокислительной активности.

Третий этап дыхания — утилизация кислорода в тканях

Кислород утилизируется в цикле Кребса — биологическое окисление белков, жиров и углеводов, с целью выработки энергии. Молекулярной основой клеточного дыхания является окисление углерода до углекислого газа и перенос атома водорода на атом кислорода с образованием молекулы воды. Это аэробный путь получения энергии, который в организме человека является ведущим (примерно 98% всей энергии, которую получает организм, образуется в условиях аэробного окисления; остальное приходится на анаэробное окисление).

Сосудистое русло легких состоит из двух систем: легочной и бронхиальной. Давление в легочной артерии составляет 17..23 мм рт. ст. Общая поверхность стенок капилляров — 30..60 м2 (при физической нагрузке увеличивается до 90 мм2). Диастолическое давление в левом желудочке составляет 0,2 мм рт. ст. Поэтому, нормальный кровоток в системе легочной артерии зависит от величины венозного возврата крови в сердце, сократительной способности миокарда, функционирования клапанов сердца, тонуса артеирол и прекапиллярных сфинктеров. Поскольку малый круг кровообращения относится к системе сосудов с низким давлением, то его объем может колебаться в значительных пределах, в зависимости от конкретных условий.

 

ВНИМАНИЕ! Информация, представленная сайте DIABET-GIPERTONIA.RU носит справочный характер. Администрация сайта не несет ответственности за возможные негативные последствия в случае приема каких-либо лекарств или процедур без назначения врача!

Источник: diabet-gipertonia.ru

Дыхание — это совокупность процессов, благодаря которым организм потребляет кислород из окружающей среды и выделяет углекислый газ.

Этапы дыхания:

— Внешнее дыхание (вентиляция легких) — обмен газов между атмосферным воздухом и альвеолярным, легочная вентиляция.

— Диффузия газов в легких — обмен газов между альвеолярным воздухом и кровью в капиллярах легких.

— Транспорт газов кровью — этот этап осуществляется за счет деятельности сердечно-сосудистой системы, в результате чего кислород доставляется к тканям, а углекислый газ — к легким.

— Диффузия газов в тканях — обмен газов между кровью и тканями.


— Тканевое дыхание — окислительно-восстановительные реакции, протекающие с потреблением кислорода и выделением углекислого газа.

Первые 4 этапа изучает физиология, последний, 5-ый — биохимия.


Обеспечение тканей О2 и удаление из организма СО2 зависит от четырех процессов:

— Вентиляции легких

— Диффузии газов в альвеолы и ткани из крови и в кровь.

— Перфузии легких кровью (интенсивность кровотока в легких).

— Перфузии тканей кровью

 

Количество этапов процесса дыхания

Внешнее дыхание необходимо для обновления альвеолярного воздуха, т.к. в процессе жизнедеятельности идет постоянный процесс потребления О2 и выделения СО2, это поддерживает концентрацию дыхательных газов в нем на постоянном уровне.

Интенсивность внешнего дыхания подчинена задачам обеспечения оптимальных условий для газообмена в организме. Оптимальные условия сохраняются в организме определенное время (3-4 секунды). Этим и определяется частота дыхания (14-18 в минуту). Таким образом, аппарат дыхания обладает резервами, которые позволяют обменивать воздух с определенной периодичностью.

Процесс газообмена состоит из 3-х этапов дыхания:

— Обмен газов между альвеолярным воздухом и кровью.


— Транспорт газов кровью.


— Обмен газов между кровью и тканями.

 

107.) Механизм лёгочной вентиляции. Лёгочный резистанс и компланс. Эластическая тяга лёгких, две её составляющие. Лёгочные объёмы и ёмкости, основные параметры лёгочной вентиляции.

Грудная клетка и легкие разделены плевральной полостью, которая представляет собой герметичную щель, содержащую небольшое количество жидкости (5 мл). Объем грудной клетки больше, чем объем легких. Поэтому легкие все время растянуты. Степень растяжения легких определяется транспульмональным давлением — разница между давлением в легких (альвеолах) и плевральной полости. В области диафрагмы это давление обозначается как трансдиафрагмальное.

При этом в легких постоянно действует сила, стягивающая их, которая получила название "эластической тяги легких". Она зависит не только от эластичности легких, но, в значительной степени, и от силы поверхностного натяжения слизи, покрывающей альвеолы. Жидкость покрывает огромную поверхность альвеол и тем самым стягивает их. Однако сила поверхностного натяжения альвеол уменьшается за счет вырабатываемого в легких вещества сурфактанта. Благодаря этому легкие становятся более растяжимыми.

Эластичная тяга легких создает отрицательное давление в плевральной полости. При выдохе оно равно — 6 мм рт.ст. На вдохе при растяжении грудной клетки давление в плевральной полости становится еще более отрицательным — 10 мм рс.ст.

Понятие о пневмотораксе. Попадание воздуха в плевральную полость извне (открытый пневмоторакс) или из полости легких (закрытый пневмоторакс) уравновешивает давление в плевральной полости с атмосферным и легкое за счет эластической тяги спадается. У человека в связи с особенностями грудной полости происходит спадание одного легкого.

Наличие газообмена между легкими и кровью постоянно требует обновления воздуха в легких альвеолярного воздуха, т.к. газовый состав воздуха будет постоянно изменяться в сторону снижения концентрации О2 и накопления СО2.


Вентиляция легких, т.е. обмен газов между внешней средой и альвеолярным воздухом обеспечивается за счет вдоха (инспирация) и выдоха (экспирация), которые характеризуются глубиной вдоха и выдоха и частотой дыхания.

Выделяют два вида дыхательных движений — спокойный вдох и выдох и форсированный вдох и выдох. Для нормального газообмена в атмосфере с обычным газовым составом здоровому взрослому человеку в спокойном состоянии необходимо 14-18 дыхательных движений в минуту, при длительности вдоха 2 с, объемной скорости вдоха 250 мл/с.

При вдохе преодолевается ряд сил:

— эластическое сопротивление грудной клетки;

-эластическое сопротивление внутренних органов, оказывающих давление на диафрагму;

— эластическое сопротивление легких;

— вязко-динамическое сопротивление всех перечисленных выше тканей;

— аэродинамическое сопротивление дыхательных путей;

— силу тяжести грудной клетки;

— силы инерции перемещаемых масс (органов).

Воздухоносные пути. Верхняя часть воздухоносных путей представлена полостью носа и носоглотки.


Функции воздухоносных путей (полости носа, носоглотки, респираторной зоны трахеобронхиального дерева):

— Кондиционирование воздуха.

— Проведение потока воздуха.

— Иммунная защита.

Биомеханика спокойного вдоха. В развитии спокойного вдоха играют роль: сокращение диафрагмы и сокращение наружных косых межреберных и межхрящевых мышц.
Под влиянием нервного сигнала диафрагма (наиболее сильная мышца вдоха) сокращается, ее мышцы расположены радиально по отношению к сухожильному центру, поэтому купол диафрагмы уплощается на 1,5-2,0 см, при глубоком дыхании — на 10 см, растет давление в брюшной полости. Размер грудной клетки увеличивается в вертикальном размере.
Под влиянием нервного сигнала сокращаются наружные косые межреберные и межхрящевые мышцы. Возникает разница давлений между окружающей средой и легкими (трансреспираторное давление).

Трансреспираторное давление (Ртрр) — это разница между давлением в альвеолах (Ральв) и внешним (атмосферным) давлением (Рвнеш). Ртрр= Ральв. — Рвнешн, Равняется на вдохе — 4 мм рт. ст.

Эта разница и заставляет войти порцию воздуха через воздухоносные пути в легкие. Это и есть вдох.

Биомеханика спокойного выдоха. Спокойных выдох осуществляется пассивно, т.е. не происходит сокращения мышц, а грудная клетка спадается за счет сил, которые возникли при вдохе.

Причины, вызывающие выдох:

— Тяжесть грудной клетки. Поднятые ребра опускаются под действием тяжести

— Органы брюшной полости, оттесненные диафрагмой вниз при вдохе, поднимают диафрагму

— Эластичность грудной клетки и легких. За счет них грудная клетка и легкие занимают исходное положение Трансреспираторное давление в конце выдоха составляет =+ 4 мм.рт.ст.

Биомеханика форсированного вдоха. Форсированный вдох осуществляется за счет участия дополнительных мышц.

Легочные объемы:

— Общая емкость легких (ОЕЛ) — количество воздуха, находящееся в легких после максимального вдоха. ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки.
ОЕЛ состоит из 2 частей:

— Жизненная емкость легких (ЖЕЛ) — объема, который человек может максимально выдохнуть после глубокого вдоха (в норме ЖЕЛ=Должная ЖЕЛ±10%),
и остаточного объема (ОО) — объема воздуха, который остается в дыхательной системе даже после максимального выдоха (N=1-1,2 л). Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем (выходит при спадании легкого) и минимальный объем (истинный остаточный).

Увеличение ЖЕЛ свидетельствует о повышении функциональных возможностей дыхательного аппарата.

ЖЕЛ подразделяют на 3 составные части:

— Дыхательный объем (ДО) — это объем воздуха, который человек вдыхает и выдыхает при каждом дыхательном цикле. В покое он составляет в среднем 20% от ЖЕЛ (0,3-0,6 л). Является показателем глубины дыхания.

— Резервный объем вдоха (РОвд) — воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха /40% от ЖЕЛ/ (1,5-2,5 л).

— Резервный объем выдоха (РОвд) — воздух, который пациент может максимально выдохнуть после спокойного выдоха /40% от ЖЕЛ/ (1,5-2,5 л).

Соотношение составных частей ЖЕЛ очень изменчиво. При физической нагрузке ДО может увеличиться до 80%, что сопровождается уменьшением РОвд и РОвыд до 10 %.

Источник: studopedia.info