Ядро занимает центральную область земного геоида, составляет 68% массы Земли и разделяется на две части:

— внешнее;

— внутреннее.

Внешнее ядро располагается в интервале 2900 – 5100 км. Между внешним и внутренним ядром нет чёткой границы. Предполагают, что внешнее ядро состоит из железа (52%) и жидкой смеси твёрдых веществ, образуемую железом и серой (48%). Температура плавления такой смеси оценивается примерно равной 32000С. Вещество внешнего ядра находится «по-видимому» в жидком состоянии, однако плотность его достигает 9,9 – 12,2 г/см3. Давление у нижней граници внешнего ядра достигает свыше 300 млн. кПа или 3 млн. атм.

С жидким состоянием внешнего ядра связывают представления о природе, земного магнетизма, полагая, что магнитное поле Земли зарождается в глубинах планеты. Магнитное поле изменчиво. Из года в год меняется положение магнитных полюсов. Убедительные эксперименты показали, что на протяжении последних 80 миллионов лет имело место не только изменение напряжения поля, но и многократное систематическое перемагничивание, в результате которого северный и южный магнитные полюса Земли менялись местами.


Представляют, что причиной этого явления является масса жидкого ядра, перемещающаяся при вращении Земли вокруг своей оси.

Внутреннее ядро располагается в интервале 5100 – 6371 км. и находится предположительно в твёрдом состоянии, причём плотность его достигает 13,6 г/см3, а давление в центре Земли достигает 350 млн. кПа или 3,5 млн. атм.

Предполагают, что ядро состоит из железа (80%) и никеля (20%), что идентично составу железных метеоритов. Этот сплав при давлении земных недр должен иметь температуру в интервале 22500 – 50000С.

10. Строение и химический состав атмосферы Земли.

Атмосфера (от греческого «атмос» — пар, «сфера» — шар) — это воздушная внешняя газовая оболочка планеты, которая окружает Земной шар, вращается вместе с ним, защищает всё живое на Земле от губительного влияния радиации.

По поводу возникновения атмосферы учёные выделяют две гипотезы.

Согласно первой гипотезе – атмосфера газообразная выплавка первичного материала, когда-то покрывавшему раскалённую Землю. Большинство учёных придерживаются второй гипотезы, которая утверждает, что атмосфера является вторичным образованием, возникшем при образовании газовых химических элементов и соединений из расплавленного вещества.


Первая атмосфера образовалась вокруг Земли во время сгущения пыли и газа, она превосходила нашу нынешнюю в 100 раз. Источниками газообразных веществ, из которых состояла первичная атмосфера, были расплавленные горные породы Земной коры, мантии и ядра. Это говорит о том, что атмосфера возникла уже после того, как Земля разделилась на оболочки.

Крупнейшие учёные предполагают, что ранняя атмосфера состояла из смеси водяного пара, водорода, углекислого газа, угарного газа и серы. Следовательно, первичная атмосфера состояла из лёгких газов, которые удерживались у Земной поверхности силами тяготения. Если сравнить древнейшую атмосферу с современной, то в ней отсутствовали привычные азот и кислород. Эти газы, вместе с парами воды находились тогда в глубоких недрах

Земли. Мало в то время было воды: она в виде гидроксилов входила в состав мантийного вещества. Только после того, как из пород верхней мантии стали интенсивно высвобождаться водяной пар и различные газы, возникла гидросфера, а толщина атмосферы и её состав изменился.

Кстати, эти процессы продолжаются до сих пор.


Например, при извержении вулканов гавайского типа, при температуре 10000 -12000С в газовых выбросах содержится до 80% паров воды и менее 6% углекислого газа. Кроме того, в современную атмосферу выбрасывается большое количество хлора, метана, аммиака, фтора, брома, сероводорода. Можно себе представить, какое огромное количество газов выбрасывалось в глубокой древности во время грандиозных извержений.

Первичная атмосфера была очень агрессивной средой и действовала на горные породы как сильная кислота. Да и температура её была очень высокой. Но как только температура понизилась, произошла конденсация пара. Первичная атмосфера Земли сильно отличалась от современной. Она была значительно более плотной и состояла в основном из углекислого газа. Резкое изменение состава атмосферы произошло 2 – 2,5 млрд. лет назад и связанно с зарождением жизни.

Растения каменноугольного периода в истории Земли поглотили большую часть углекислого газа и насытили атмосферу кислородом. С появлением первоначальной жизни появляются цианобактерии, которые начали перерабатывать компоненты атмосферы, выделяя кислород. При создании атмосферы выделение кислорода произошло из за более масштабного процесса связанного с «перемещением» многочисленных океанических вулканов

из под воды на поверхность Земли. Подводный вулкан выбрасывает магму, которая подвергается охлаждению водой. При этом выделяется сероводород и формируются минералы, в химический состав которых входит кислород.


Земные вулканы выбрасывают продукты, которые не реагируют с атмосферным кислородом, а только пополняют его содержание в воде. Последние 200 млн. лет состав земной атмосферы практически остаётся неизменным.

Источник: StudFiles.net

Результаты нового исследования команды геофизиков из США и Китая свидетельствуют о том, что наше представление о внутреннем устройстве Земли было не совсем верным. Выяснилось, что внутреннее земное ядро в свою очередь делится на два принципиально разных слоя.

В исследовании принимали участие ученые из Университета Иллинойса в США и Нанкинского университета в Китае. Работа была весьма объемной, как отмечают сами геофизики, проводились изучения как новых сейсмических волн, так и анализ данных прошлых сейсмических колебаний за последние 20 лет. Подробнее с результатами можно ознакомиться в журнале Nature Geoscience.

Согласно общепризнанной теории, внутреннее устройство Земли имеет следующий вид: земная кора → мантия → внешнее ядро → внутреннее ядро. Относительно трех первых слоев революции не произошло: их порядок, глубина и толщина были только в лишний раз подтверждены.

А вот анализ прохождения сейсмических волн через внутреннее ядро оказался не таким однозначным. Оно, по всей видимости, состоит из двух разных слоев: внешнего с радиусом 1250 км, и внутреннего с радиусом около 600 км. Внешний слой внутреннего ядра имеет точно такие же свойства как и «старое ядро»: оно твердое, состоит преимущественно из железа и никеля, а кристаллы в нем ориентированы вдоль направления магнитного поля планеты, т.е. север-юг.


Для самого глубокого слоя ядра характерны принципиальные отличия. Он также как и внешний пребывает в твердом состоянии, однако его плотность заметно выше, а кристаллы в его структуре ориентированы по направлению восток-запад.

устройство внутреннего ядра Земли

Устройство внутреннего ядра Земли

Внутренняя часть внутреннего ядра несмотря на малые размеры имеет очень интересные свойства. Их понимание и трактовка, вероятно, займут немало времени, но в итоге мы сможем получить новые пикантные сведения о истории формирования нашей планеты.

Рассказал профессор Сяодун Сун из Нанкинского университета.

Как правильно трактовать полученные результаты ученые пока не знают. На вопрос о составе внутренней части ядра также ответов пока нет, впрочем уже понятно, что это не железо-никелевая смесь. Остается ждать новых исследований в этой области.

внутренняя структура Земли

Если результаты работы ученых верны, то именно такое изображение мы увидим в учебниках по геологии и географии уже совсем скоро.

Источник: wildwildworld.net.ua

История изучения


Вероятно одним из первых предположение о существовании внутри Земли области повышенной плотности высказал Генри Кавендиш, который вычислил массу и среднюю плотность Земли и установил, что она значительно больше, чем плотность характерная для пород выходящих на земную поверхность.

Существование было доказано в 1897 немецким сейсмологом Э. Вихертом, а глубина залегания (2900 км) определена в 1910 американским геофизиком Б. Гутенбергом.

Основоположник геохимии В. М. Гольдшмидт в 1922 году предположил, что ядро образовалось путём гравитационной дифференциации первичной Земли в период её роста или позже.

Альтернативную гипотезу, что железное ядро возникло ещё в протопланетном облаке, развивали немецкий учёный А. Эйкен (1944), американский учёный Э. Орован и советский учёный А. П. Виноградов (60-70-е гг.).

В 1941 г. Кун и Ритман, основываясь на гипотезе идентичности состава Солнца и Земли и на расчетах фазового перехода в водороде, предположили, что земное ядре состоит из металлического водорода. Эта гипотеза не прошла экспериментальную проверку. Эксперименты по ударному сжатию показали, что плотность металлического водорода примерно на порядок меньше, чем плотность ядра. Однако эта гипотеза позже эта гипотеза была адаптирована для объяснения строения планет гигантов — Юпитера, Сатурна и тп. Сейчас предполагается, что их магнитное поле возникает именно в металлическом водородном ядре.

Кроме того В. Н. Лодочников и У. Рамзей предположили, что нижняя мантия и ядро имеют одинаковый химический состав — на границе ядро-мантия при 1.36 Мбар мантийные силикаты переходят в жидкую металлическую фазу (металлизованное силикатное ядро).

Состав ядра


Состав ядра непосредственно не известен, и может быть предположительно оценён из нескольких источников. Во-первых, видимо, наиболее близкими веществу ядра образцами являются железные метеориты, которые, представляют собой фрагменты ядер астероидов и протопланет. Однако железные метеориты не могут быть полностью эквивалентны веществу земного ядра, так как они образовались в гораздо меньших телах, а значит при других физико-химических параметрах.

С другой стороны из данных гравиметрии известна плотность ядра, и это накладывает на его состав дополнительные ограничения. Так как плотность ядра примерно на 10% меньше, чем плотность сплавов железо-никель, то предполагается, что ядро Земли содержит больше легких элементов, чем железные метеориты.

Наконец состав ядра можно оценить исходя из геохимических соображений. Если мы каким либо рассчитаем первичный состав Земли и вычислим какая доля элементов находится в других геосферах, то тем самым могут быть построены оценки состава ядра. Большую помощь в таких вычислениях оказывают высокотемпературные и высокобарические эксперименты по распределению элементов между расплавленным железом и силикатными фазами.

Химический состав ядра.


Источник Si, wt.% Fe, wt.% Ni, wt.% S, wt.% O, wt% Mn, ppm Cr, ppm Co,ppm P, ppm
Allegre et al., 1995 7.35 79.39 4.87 2.30 4.10 5820 7790 2530 3690
Mc Donough 2003 6.0 85.5 5.20 1.90 0 300 9000 2500 2000

Образование ядра

Время формирования ядра

Образование ядра является одним из ключевых моментов истории Земли. Для определения возраста ядра были использованы следующие соображения:

  • в веществе, из которого образовалась Земля, был изотоп 182Hf, который с периодом полураспада 9 миллионов лет превращается в изотоп 182W. Гафний является литофильным элементом, то есть при разделении первичного вещества Земли на силикатную и металлическую фазы он предпочтительно концентрировался в силикатной фазе, а вольфрам — сидерофильный элемент, и концентрировался в металлической фазе. В металлическом ядре Земли отношение Hf/W близко к нулю, тогда как в силикатной оболочке это отношение около 15.
  • Из анализа не фракционированных хондритов и железных метеоритов известно первичное соотношение изотопов гафния и вольфрама.

  • Если ядро образовалось через время много большее, чем период полураспада 182Hf, то он бы успел почти полностью превратиться в 182W, и изотопный состав вольфрама в силикатной части Земли и её ядре был бы одинаковый, такой же как в хондритах.
  • Если ядро формировалось пока 182Hf ещё не распался, то силикатная оболочка Земли должна содержать некоторый избыток 182W по сравнению с хондритами, что реально и наблюдается.

Основываясь на этой модели можно рассчитать время разделения металлической и силикатной части Земли. Расчёты показали (см. Jacobsen, 2005), что ядро сформировалось за время меньше 30 миллионов лет, с момента образования появления в Солнечной Системе первых твёрдых частиц, CAI.

Аналогичные расчеты можно сделать для металлических метеоритов, которые являются фрагментами ядер мелких планетарных тел. Оказалось, что в них формирования ядра происходило значительно быстрее, за время порядка нескольких миллионов лет.

Теория Сорохтина и Ушакова

Описанная модель не является единственной. Так по модели Сорохтина и Ушакова, изложенной в книге «Развитие Земли» процесс формирования земного ядра растянулся приблизительно на 1,6 млрд лет (от 4 до 2,6 млрд лет назад). По мнению авторов образование ядра происходило в два этапа. Сначала планеты была холодной, и в её глубинах не происходило никаких движений. Затем она прогрелось радиоактивным распадом достаточно для того, чтобы начало плавиться металлическое железо.
о стало стекаться к центру земли, при этом за счет гравитационной дифференциации выделялось большое количество тепла, и процесс отделения ядра только ускорялся. Этот процесс шел только до некоторой глубины, ниже которой вещество было такое вязкое, что железо погружаться уже не могло. В результате образовался плотный (тяжелый) кольцевой слой расплавленного железа и его окиси. Он располагался над более легким веществом первозданной “сердцевины” Земли.

Затем произошло выдавливание силикатного вещества из центра Земли, причем оно было выдавлено на экваторе и тем самым дало начало асимметрии планеты.

Механизм формирования ядра

Об механизме образования ядра известно очень мало. Согласно различным оценкам формирование ядра происходило при давлениях и температурах близких, тем какие сейчас в верхней и средней мантии, а не в планетозималях и астероидах. Это не значит, что акреция земли происходила из не дифференцированного вещества. Просто при акреции происходила его новая гомогенизация.

Литература

  • Петрографический словарь, В. Рыка, А.Малишевская, М:»Недра», 1989
  • Allegre, C.J., Poirier, J.P., Humler, E. and Hofmann, A.W. (1995). The Chemical-Composition of the Earth. Earth and Planetary Science Letters 134(3-4): 515-526. doi: 10.1016/0012-821X(95)00123-T.
  • Treatise on Geochemistry, 2003, Volume 2 The Mantle and Core:
    • Partition Coefficients at High Pressure and Temperature K. Righter and M. J. Drake
    • Experimental Constraints on Core Composition J. Li
    • Compositional Model for the Earth’s Core W. F. Mc Donough.
  • Jacobsen S.B. (2005). The Hf-W isotopic system and the origin of the Earth and Moon. Annu. Rev. Earth Planet. Sci. 2005. 33:18.1–18.40.

Статьи

  • Geochemical Evidence for Excess Iron in the Mantle Beneath Hawaii Munir Humayun, Liping Qin, Marc D. Norman

Источник: wiki.web.ru

Мантия Земли имеет особый состав, отличаясь от состава покрывающей ее земной коры. Данные о химическом составе мантии получены на основании анализов наиболее глубинных магматических горных пород, поступивших в верхние горизонты Земли в результате мощных тектонических поднятий с выносом мантийного материала. К таким породам относятся ультраосновные породы — дуниты, перидотиты, залегающие в горных системах. Горные породы островов Св. Павла в средней части Атлантического океана, по всем геологическим данным, относятся к мантийному материалу. Также к мантийному материалу относятся обломки пород, собранные советскими океанографическими экспедициями со дна Индийского океана в области Индоокеанского хребта. Что касается минералогического состава мантии, то здесь можно ожидать существенных изменений, начиная от верхних горизонтов и кончая основанием мантии в связи с ростом давления. Верхняя мантия сложена преимущественно силикатами (оливинами, пироксенами, гранатами), устойчивыми и пределах относительно низких давлений. Нижняя мантия сложена минералами высокой плотности.

Размер ядра земли

Наиболее распространенным компонентом мантии является окись кремния в составе силикатов. Но при высоких давлениях кремнезем может перейти в более плотную полиморфную модификацию — стишовит. Этот минерал получен советским исследователем Стишовым и назван так по его имени. Если обычный кварц имеет плотность 2,533 r/см3, то стишовит, образующийся из кварца при давлении 150 000 бар, имеет плотность 4,25 г/см3.

Кроме того, в нижней мантии вероятны и более плотные минеральные модификации других соединений. Исходя из изложенного выше, можно с достаточным основанием полагать, что с ростом давления обычные железисто-магнезиальные силикаты оливины и пироксены разлагаются на окислы, которые в отдельности имеют более высокую плотность, чем силикаты, которые оказываются устойчивыми в верхней мантии.

Верхняя мантия состоит преимущественно из железисто-магнезиальных силикатов (оливинов, пироксенов). Некоторые алюмосиликаты могут переходить здесь в более плотные минералы типа гранатов. Под материками и океанами верхняя мантия имеет разные свойства и, вероятно, различный состав. Можно только предположить, что в области континентов мантия более дифференцирована и имеет меньше SiO2 за счет концентрации этого компонента в алюмосиликатной коре. Под океанами мантия менее дифференцирована. В верхней мантии могут возникать более плотные полиморфные модификации оливина со структурой шпинели и др.

Переходной слой мантии характеризуется постоянным возрастанием скоростей сейсмических волн с глубиной, что свидетельствует о появлении более плотных полиморфных модификаций вещества. Здесь, очевидно, появляются окислы FeO, MgO, GaO, SiO2 в форме вюстита, периклаза, извести и стишовита. Количество их с глубиной возрастает, а количество обычных силикатов уменьшается, и глубже 1000 км они составляют ничтожную долю.

Нижняя мантия в пределах глубин 1000—2900 км практически полностью состоит из плотных разновидностей минералов — окислов, о чем свидетельствует ее высокая плотность в пределах 4,08—5,7 г/см3. Под влиянием возросшего давления плотные окислы сжимаются, еще более увеличивая свою плотность. В нижней мантии также, вероятно, увеличивается содержание железа.

Ядро Земли. Вопрос о составе и физической природе ядра нашей планеты относится к наиболее волнующим и загадочным проблемам геофизики и геохимии. Только за последнее время наметилось небольшое просветление в решении этой проблемы.

Обширное центральное ядро Земли, занимающее внутреннюю область глубже 2900 км, состоит из большого внешнего ядра и малого внутреннего. По сейсмическим данным, внешнее ядро обладает свойствами жидкости. Оно не пропускает поперечных сейсмических волн. Отсутствие сил сцепления между ядром и нижней мантией, характер приливов в мантии и коре, особенности перемещения оси вращения Земли в пространстве, характер прохождения сейсмических волн глубже 2900 км говорят о том, что внешнее ядро Земли жидкое.

Некоторыми авторами состав ядра для химически однородной модели Земли допускался силикатным, причем под влиянием высокого давления силикаты перешли в «металлизированное» состояние, приобретая атомную структуру металлов, у которых внешние электроны являются общими. Однако перечисленные выше геофизические данные противоречат предположению о «металлизированном» состоянии силикатного материала в ядре Земли. В частности, отсутствие сцепления между ядром и мантией не может быть совместимо с «металлизированным» твердым ядром, что допускалось в гипотезе Лодочникова—Рамзая. Очень важные косвенные данные о ядре Земли получены во время опытов с силикатами под большим давлением. При этом давления достигали 5 млн. атм. Между тем в центре Земли давление 3 млн. атм., а на границе ядра — приблизительно 1 млн. атм. Таким образом, экспериментальным путем удалось перекрыть давления, существующие в самых глубинах Земли. При этом для силикатов наблюдалось только линейное сжатие без скачка и перехода в «металлизированное» состояние. Кроме того, при высоких температурах и давлениях в пределах глубин 2900—6370 км силикаты не могут находиться в жидком состоянии, как и окислы. Их температура плавления возрастает с увеличением давления.

За последние годы получены весьма интересные результаты исследований по влиянию очень высоких давлений на температуру плавления металлов. Оказалось, что ряд металлов при высоких давлениях (300 тыс. атм. и выше) переходит в жидкое состояние при относительно невысоких температурах. По некоторым расчетам, сплав железа с примесью никеля и кремния (76% Fe, 10% Ni, 14% Si) на глубине 2900 км под влиянием высокого давления должен находиться в жидком состоянии уже при температуре 1000° С. Но температура на этих глубинах, по самым скромным оценкам геофизиков, должна быть значительно выше.

Поэтому в свете современных данных геофизики и физики высоких давлений, а также данных космохимии, указывающих на ведущую роль железа как наиболее обильного металла в космосе, следует допустить, что ядро Земли в основном сложено жидким железом с примесью никеля. Однако расчеты американского геофизика Ф. Берча показали, что плотность земного ядра на 10% ниже, чем железоникелевый сплав при температурах и давлениях, господствующих в ядре. Отсюда следует, что металлическое ядро Земли должно содержать значительное количество (10—20%) какого-то легкого элемента. Из всех наиболее легких и распространенных элементов максимально вероятными |оказываются кремний (Si) и сера (S). Наличие одного или другого способно объяснить наблюдаемые физические свойства земного ядра. Поэтому вопрос о том, что является примесью земного ядра — кремний или сера, оказывается дискуссионным и связан со способом формирования нашей планеты в делом.

А. Ридгвуд в 1958 г. допустил, что земное ядро содержит кремний в качестве легкого элемента, аргументируя такое предположение тем, что элементарный кремний в количестве нескольких весовых процентов встречается в металлической фазе некоторых восстановленных хондритовых метеоритов (энстатитовых). Однако других доводов в пользу присутствия кремния в земном ядре нет.

Предположение о том, что в земном ядре имеется сера, вытекает из сравнения ее распространения в хондритовом материале метеоритов и мантии Земли. Так, сопоставление элементарных атомных соотношений некоторых летучих элементов в смеси коры и мантии и в хондритах показывает резкий недостаток серы. В материале мантии и коры концентрация серы на три порядка ниже, чем в среднем материале солнечной системы, в качестве которого принимаются хондриты.

Возможность потери серы при высоких температурах первичной Земли отпадает, поскольку другие более летучие элементы, чем сера (например, Н2 в виде Н2O), обнаружившие значительно меньший дефицит, были бы потеряны в значительно большей степени. Кроме того, при охлаждении солнечного газа сера химически связывается с железом и перестает быть летучим элементом.

В связи с этим, вполне возможно, большие количества серы поступают в земное ядро. Следует отметить, что при прочих равных условиях температура плавления системы Fe—FeS значительно ниже, чем температура плавления железа пли силиката мантии. Так, при давлении 60 кбар температура плавления системы (эвтектики) Fe—FeS составит 990° С, в то время как чистого железа — 1610°, а пиролита мантии — 1310. Поэтому при повышении температуры в недрах первично однородной Земли железный расплав, обогащенный серой, будет формироваться первым и ввиду своей низкой вязкости и высокой плотности будет легко стекать в центральные части планеты, образуя железисто-сернистое ядро. Таким образом, присутствие серы в железоникелевой среде действует в качестве флюса, снижая температуру ее плавления в целом. Гипотеза о присутствии в земном ядре значительных количеств серы является весьма привлекательной и не противоречит всем известным данным геохимии и космохимии.

Таким образом, современные представления о природе недр нашей планеты соответствуют химически дифференцированному земному шару, который оказался разделенным на две разные части: мощную твердую силикатно-окисную мантию и жидкое в основном металлическое ядро. Земная кора представляет собой наиболее легкую верхнюю твердую оболочку, состоящую из алюмосиликатов и имеющую наиболее сложное строение.

Подводя итог сказанному, можно сделать следующие выводы.

  1. Земля имеет слоистое зонарное строение. Она состоит на две трети из твердой силикатно-окисной оболочки — мантии и на одну треть из металлического жидкого ядра.
  2. Основные свойства Земли свидетельствуют о том, что ядро находится в жидком состоянии и только железо из наиболее распространенных металлов с примесью некоторых легких элементов (скорее всего, серы) способно обеспечить эти свойства.
  3. В верхних своих горизонтах Земля имеет асимметричное строение, охватывающее кору и верхнюю мантию. Океаническое полушарие в пределах верхней мантии менее дифференцировано, чем противоположное континентальное полушарие.

Задача любой космогонической теории происхождения Земли — объяснить эти основные особенности ее внутренней природы и состава.

Источник: www.polnaja-jenciklopedija.ru

10. Строение и химический состав атмосферы Земли.

Атмосфера (от греческого «атмос» — пар, «сфера» — шар) — это воздушная внешняя газовая оболочка планеты, которая окружает Земной шар, вращается вместе с ним, защищает всё живое на Земле от губительного влияния радиации.

По поводу возникновения атмосферы учёные выделяют две гипотезы.

Согласно первой гипотезе – атмосфера газообразная выплавка первичного материала, когда-то покрывавшему раскалённую Землю. Большинство учёных придерживаются второй гипотезы, которая утверждает, что атмосфера является вторичным образованием, возникшем при образовании газовых химических элементов и соединений из расплавленного вещества.

Первая атмосфера образовалась вокруг Земли во время сгущения пыли и газа, она превосходила нашу нынешнюю в 100 раз. Источниками газообразных веществ, из которых состояла первичная атмосфера, были расплавленные горные породы Земной коры, мантии и ядра. Это говорит о том, что атмосфера возникла уже после того, как Земля разделилась на оболочки.

Крупнейшие учёные предполагают, что ранняя атмосфера состояла из смеси водяного пара, водорода, углекислого газа, угарного газа и серы. Следовательно, первичная атмосфера состояла из лёгких газов, которые удерживались у Земной поверхности силами тяготения. Если сравнить древнейшую атмосферу с современной, то в ней отсутствовали привычные азот и кислород. Эти газы, вместе с парами воды находились тогда в глубоких недрах

Земли. Мало в то время было воды: она в виде гидроксилов входила в состав мантийного вещества. Только после того, как из пород верхней мантии стали интенсивно высвобождаться водяной пар и различные газы, возникла гидросфера, а толщина атмосферы и её состав изменился.

Кстати, эти процессы продолжаются до сих пор.

Например, при извержении вулканов гавайского типа, при температуре 10000 -12000С в газовых выбросах содержится до 80% паров воды и менее 6% углекислого газа. Кроме того, в современную атмосферу выбрасывается большое количество хлора, метана, аммиака, фтора, брома, сероводорода. Можно себе представить, какое огромное количество газов выбрасывалось в глубокой древности во время грандиозных извержений.

Первичная атмосфера была очень агрессивной средой и действовала на горные породы как сильная кислота. Да и температура её была очень высокой. Но как только температура понизилась, произошла конденсация пара. Первичная атмосфера Земли сильно отличалась от современной. Она была значительно более плотной и состояла в основном из углекислого газа. Резкое изменение состава атмосферы произошло 2 – 2,5 млрд. лет назад и связанно с зарождением жизни.

Растения каменноугольного периода в истории Земли поглотили большую часть углекислого газа и насытили атмосферу кислородом. С появлением первоначальной жизни появляются цианобактерии, которые начали перерабатывать компоненты атмосферы, выделяя кислород. При создании атмосферы выделение кислорода произошло из за более масштабного процесса связанного с «перемещением» многочисленных океанических вулканов

из под воды на поверхность Земли. Подводный вулкан выбрасывает магму, которая подвергается охлаждению водой. При этом выделяется сероводород и формируются минералы, в химический состав которых входит кислород.

Земные вулканы выбрасывают продукты, которые не реагируют с атмосферным кислородом, а только пополняют его содержание в воде. Последние 200 млн. лет состав земной атмосферы практически остаётся неизменным.

Источник: StudFiles.net