Эндоплазматическая сеть в разных клетках может быть представлена в форме уплощенных цистерн, канальцев или отдельных везикул. Стенка этих образований состоит из билипидной мембраны и включенных в нее некоторых белков и отграничивает внутреннюю среду эндоплазматической сети от гиалоплазмы.

Различают две разновидности эндоплазматической сети:

На наружной поверхности мембран зернистой эндоплазматической сети содержатся прикрепленные рибосомы. В цитоплазме могут быть обе разновидности эндоплазматической сети, но обычно преобладает одна форма, что и обуславливает функциональную специфичность клетки. Следует помнить, что названные две разновидности являются не самостоятельными формами эндоплазматической сети, так как можно проследить переход зернистой эндоплазматической сети в гладкую и наоборот.

Функции зернистой эндоплазматической сети:


Гладкая эндоплазматическая сеть представлена цистернами, более широкими каналами и отдельными везикулами, на внешней поверхности которых отсутствуют рибосомы.

Функции гладкой эндоплазматической сети:

Пластинчатый комплекс Гольджи (сетчатый аппарат) представлен скоплением уплощенных цистерн и небольших везикул, ограниченных билипидной мембраной. Пластинчатый комплекс подразделяется на субъединицы — диктиосомы. Каждая диктиосома представляет собой стопку уплощенных цистерн, по периферии которых локализуются мелкие пузырьки. При этом, в каждой уплощенной цистерне периферическая часть несколько расширена, а центральная сужена.

В диктиосоме различают два полюса:

Установлено, что к цис-полюсу подходят транспортные вакуоли, несущие в пластинчатый комплекс продукты, синтезированные в зернистой эндоплазматической сети. От транс-полюса отшнуровываются пузырьки, несущие секрет к плазмолемме для его выведения из клетки. Однако часть мелких пузырьков, заполненных белками-ферментами, остается в цитоплазме и носит название лизосом.

Функции пластинчатого комплекса:

Среди многочисленных функций пластинчатого комплекса на первое место ставят транспортную функцию. Именно поэтому его нередко называют транспортным аппаратом клетки.


Лизосомы наиболее мелкие органеллы цитоплазмы (0,2-0,4 мкм) и поэтому открытые (де Дюв, 1949 г.) только с использованием электронного микроскопа. Представляют собой тельца, ограниченные липидной мембраной и содержащие электронноплотный матрикс, состоящий из набора гидролитических белков-ферментов (50 гидролаз), способных расщеплять любые полимерные соединения (белки, липиды, углеводы и их комплексы) на мономерные фрагменты. Маркерным ферментом лизосом является кислая фосфатаза.

Функция лизосом — обеспечение внутриклеточного пищеварения, то есть расщепления как экзогенных, так и эндогенных веществ.

Классификация лизосом:

Истинными лизосомами являются мелкие электронноплотные тельца, образующиеся в пластинчатом комплексе.

Пищеварительная функция лизосом начинается только после слияния лизосомы с фагосомой, то есть фагоцитированным веществом, окруженным билипидной мембраной. При этом образуется единый пузырек — фаголизосома, в которой смешивается фагоцитированный материал и ферменты лизосомы. После этого начинается расщепление (гидролиз) биополимерных соединений фагоцитированного материала на мономерные молекулы (аминокислоты, моносахара и так далее). Эти молекулы свободно проникают через мембрану фаголизосомы в гиалоплазму и затем утилизируются клеткой, то есть используются или для образования энергии или на построение биополимерных структур. Но не всегда фагоцитированные вещества расщепляются полностью.


Дальнейшая судьба оставшихся веществ может быть различной. Некоторые из них могут быть выведены из клетки посредством экзоцитоза, по механизму, обратному фагоцитозу. Некоторые вещества (прежде всего липидной природы) не расщепляются лизосомальными гидролазами, а накапливаются и уплотняются в фаголизосоме. Такие образования называются третичными лизосомами или остаточными тельцами.

В процессе фагоцитоза и экзоцитоза осуществляется регуляция мембран в клетке:

Установлено, что некоторые клетки в течение часа полностью обновляют плазмолемму.

Кроме рассмотренного механизма внутриклеточного расщепления фагоцитированных экзогенных веществ, таким же способом разрушаются эндогенные биополимеры — поврежденные или устаревшие собственные структурные элементы цитоплазмы. Вначале такие органеллы или целые участки цитоплазмы окружаются билипидной мембраной и образуется вакуоль аутофаголизосома, в которой осуществляется гидролитическое расщепление биополимерных веществ, как и в фаголизосоме.

Следует отметить, что все клетки содержат в цитоплазме лизосомы, но в различном количестве. Имеются специализированные клетки (макрофаги), в цитоплазме которых содержится очень много первичных и вторичных лизосом. Такие клетки выполняют защитные функции в тканях и называются клетками-чистильщиками, так как они специализированы на поглощение большого числа экзогенных частиц (бактерий, вирусов), а также распавшихся собственных тканей.


Пероксисомы — микротельца цитоплазмы (0,1-1,5 мкм), сходные по строению с лизосомами, однако отличаются от них тем, что в их матриксе содержатся кристаллоподобные структуры, а среди белков-ферментов содержится каталаза, разрушающая перекись водорода, образующуюся при окислении аминокислот.

Источник: www.medkurs.ru

Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной. Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению. Известны два ее типа — гранулярная и гладкая.

На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец — рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. ЭПС выполняет много разнообразных функций. Основная функция гранулярной эндоплазматической сети — участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов. Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. ЭПС связывает между собой основные органоиды клетки(рис. 2.13).


Функции гладкой эндоплазматической сети

Рис. 2.13. Строение эндоплазматической сети (ЭПС) или ретикулума

Д) Аппарат Гольджи

Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы. Выполняет много важных функций.

Одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи). Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПС, и по периферии стопок. Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации.

Все эти вещества сначала накапливаются, химически усложняются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме (рис. 2.14-2.15).

Функции гладкой эндоплазматической сети


Рис. 2.14. Строение аппарата Гольджи

Функции:

— накопление белков, липидов, углеводов;

— модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов;

— место образования лизосом.

— секреторная функция, поэтому аппарат Гольджи хорошо развит в секреторных клетках.

Функции гладкой эндоплазматической сети

Рис. 2.15. Комплекс Гольджи

Е) Лизосомы

Представляют собой небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.

Одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов. Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов. Расщепление веществ с помощью ферментов называют лизисом. Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи. Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.


Функции лизосом:

— переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток),

— аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки,

— автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток) (рис. 2.16-2.17).

Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.

Функции гладкой эндоплазматической сети

Рис. 2.16. Образование лизосом

Функции гладкой эндоплазматической сети

Рис. 2.17. Функционирование лизосом

Источник: studopedia.ru

6. Строение и функции эпс.


Эндоплазматическая сеть, или эндоплазматический ретикулум, представляет собой систему плоских мембранных цистерн и мембранных трубочек. Мембранные цистерны и трубочки соединяются между собой и образуют мембранную структуру с общим содержимым. Это позволяет изолировать определенные участки цитоплазмы от основной ниалоплазмы и реализовать в них некоторые специфические клеточные функции. В результате происходит функциональная дифференцировка различных зон цитоплазмы. Строение мембран ЭПС соответствует жидкостно-мозаичной модели. Морфологически различают 2 вида ЭПС: гладкую (агранулярную) и шероховатую (гранулярную). Гладкая ЭПС представлена системой мембранных трубочек. Шероховатая ЭПС является системой мембранных цистерн. На наружной стороне мембран шероховатой ЭПС находятся рибосомы. Оба вида ЭПС находятся в структурной зависимости – мембраны одного вида ЭПС могут переходить в мембраны другого вида.

Функции эндоплазматической сети:

  1. Гранулярная ЭПС участвует в синтезе белков, в каналах образуются сложные молекулы белков.

  1. Гладкая ЭПС участвует в синтезе липидов, углеводов.

  1. Транспорт органических веществ в клетку (по каналам ЭПС).

  2. Делит клетку на секции, – в которых могут одновременно идти разные химические реакции и физиологические процессы.

Гладкая ЭПС является полифункциональной.
ее мембране имеются белки-0ферменты, которые катализируют реакции синтеза мембранных липидов. В гладкой ЭПС синтезируются и некоторые не мембранные липиды (стероидные гормоны). В состав мембраны этого типа ЭПС включены переносчики Са2+. Они транспортируют кальций по градиенту концентрации (пассивный транспорт). При пассивном транспорте происходит синтез АТФ. С их помощью в гладкой ЭПС регулируется концентрация Са2+ в гиалоплазме. Этот параметр важен для регуляции работы микротрубочек и микрофибрилл. В мышечных клетках гладкая ЭПС регулирует сокращение мускулатуры. В ЭПС происходит детоксикация многих вредных для клетке веществ (лекарственные препараты). Гладкая ЭПС может образовывать мембранные пузырьки, или микротельца. Такие пузырьки осуществляют специфические окислительные реакции изолированно от ЭПС.

Главной функцией шероховатой ЭПС является синтез белков. Это определяется наличием на мембранах рибосом. В мембране шероховатой ЭПС имеются специальные белки рибофорины. Рибосомы взаимодействуют с рибофоринами и фиксируются на мембране в определенной ориентации. Все белки синтезирующиеся в ЭПС имеют концевой сигнальный фрагмент. На рибосомах шероховатой ЭПС идет синтез белков.

В цистернах шероховатой ЭПС происходит посттрансляционная модификация белков.

7. Комплекс Гольджи и лизосомы. Строение и функции.

Комплекс Гольджи является универсальным мембранным органоидом эукариотических клеток. Структурная часть комплекса Гольджи представлена системой мембранных цистерн, образуя стопку цистерн. Эту стопку называют диктиосомой. От них отходят мембранные трубочки и мембранные пузырьки.


Строение мембран комплекса Гольджи соответствует жидкостно-мозаичной структуре. Мембраны различных полюсов разделяются по количеству гликолипидов и гликопротеинов. На проксимальном полюсе происходит образование новых цистерн диктиосомы. От участков гладкой ЭПС отрываются мелкие мембранные пузырьки и передвигаются в зону проксимального полюса. Здесь они сливаются и образуют более крупную цистерну. В результате этого процесса в цистерны комплекса Гольджи могут транспортироваться вещества, которые синтезируются в ЭПС. От боковых поверхностей дистального полюса отрываются пузырьки, которые участвуют в энджоцитозе.

Комплекс Гольджи выполняет 3 общих клеточных функции:

  1. Накопительную

  1. Секреторную

  1. Агрегационную

В цистернах комплекса Гольджи протекают определенные биохимические процессы. В результате осуществляется химическая модификация компонентов мембраны цистерн комплекса Гольджи и молекул внутри этих цистерн. В мембранах цистерн проксимального полюса имеются ферменты, которые осуществляют синтез углеводов (полисахаридов) и их присоединение к липидам и белкам, т.е. происходит гликозилирование. Наличие этого, или другого углеводного компонента у гликозилированных белков определяет их судьбу. В зависимости от этого белки попадают в разные районы клетки и секретируются. Гликозилирование является одним из этапов созревания секрета. Кроме того, белки в цистернах комплекса Гольджи могут фосфорилироваться и ацетилироваться. В комплексе Гольджи могут синтезироваться свободные полисахариды. Часть их подвергается сульфатированию с образованием мукополисахаридов (гликозаминогликанов). Еще одним вариантом созревания секрета является конденсация белков. Этот процесс заключается в удалении молекул воды из секреторных гранул, что приводит к уплотнению секрета.

Так же универсальность комплекса Гольджи в эукариотичсеких клетках является его участие в формировании лизосом.

Лизосомы являются мембранными органоидами клетки. Внутри лизосом находится лизосомальный матрикс из мукополисахаридов и белки ферменты.

Мембрана лизосом производной мембраны ЭПС, но имеет свои особенности. Это касается структуры билипидного слоя. В мембране лизосом он не сплошной (не непрерывный), а включает липидные мицеллы. Эти мицеллы составляют до 25% поверхности лизосомальной мембраны. Такое строение называется пластинчато-мицеллярное. В мембране лизосом локализуются разнообразные белки. К ним относятся ферменты: гидролазы, фосфолипазы; и низкомолекулярные белки. Гидролазы являются специфическими для лизосом ферментами. Они катализируют реакции гидролиза (расщепления) высокомолекулярных веществ.

Функции лизосом:

  1. Переваривание частиц при фагоцитозе и пиноцитозе.

  1. Защитная при фагоцитозе

  1. Аутофагия

  2. Аутолиз в онтогенезе.

Основной функцией лизосом является участие в гетерофаготических циклах (гетерофагия) и в аутофаготических циклах (аутофагия). При гетерофагии расщепляются чужеродные для клетки вещества. Аутофагия связана с расщеплением собственных веществ клетки. Обычный вариант гетерофагии начинается с эндоцитоза и образования эндоцитарного пузырька. В этом случае пузырек называют гетерофагосомой. В другом варианте гетерофагии отсутствует этап эндоцитоза чужеродных веществ. В этом случае первичная лизосома сразу включается в экзоцитоз. В результате гидролазы матрикса оказываются в гликокаликсе клетки и способны расщеплять внеклеточные чужеродные вещества.

Источник: StudFiles.net

В отличие от шЭПС эта разновидность сети имеет два существен­ных отличия:

· мембранные пузыри имеют форму сложной системы трубочек;

· поверхность мембраны гладкая, лишена рибосом.

Функции гладкой эндоплазматической сети

Схема расположения трубочек гладкой ЭПС (саркоплазматиче­ского ретикулюма) мышц.

М – митохондрии. (по Fawcett, McNutt, 1969)

Этот органоид также относится к органоидам общего назначения, но в некоторых клетках составляет основную массу цитоплазмы таких клеток. Это связано с тем, что эти клетки участвуют в обра­зовании не мембранных липидов. Примером таких клеток служат клетки коры надпочечников, специализирующихся на выработке стероидных гормонов. В цитоплазме этих клеток наблюдается сплошная масса трубочек гладкой ЭПС. Гладкая ЭПС обычно за­нимает в клетке строго определенное место: в клетках кишечника – в апикальной зоне, в клетках печени в зоне отложения гликогена, в интерстециальных клетках семенника она равномерно распреде­лена по всему объему цитоплазмы.

Происхождение гладкой ЭПС – вторичное. Этот органоид образу­ется из шЭПС в результате утери последним рибосом, либо за счет роста шЭПС в виде трубочек, лишенных рибосом..

 

Механизм функционирования гладкой ЭПС

1. Участие в синтезе не мембранных липидов.

Эта функция связана с секрецией этих веществ, например сте­роидных гормонов.

2. Детоксикация (внутри мембранное хранение токсических отхо­дов метаболизма).

Эта функция связана со способностью трубочек гладкой ЭПС клеток печени накапливать во внутри мембранном простран­стве ядовитых продуктов метаболизма, например некоторых лекарств (явление известное для барбитуратов).

3. Накопление двухвалентных катионов.

Эта функция характерна для L-каналов мышечных волокон. Внутри этих каналов накапливаются двухвалентные ионы Ca+2,которые участвую в процессах образования кальциевых мостиков между молекулами актина и миозина в процессе мы­шечного сокращения.

 

Комплекс (или аппарат) Гольджи

Аппарат Гольджи – органоид общего назначения, участвующий в выведении веществ из клетки (путем экзоцитоза).

Он был описан в 1898 г. К. Гольджи при использовании его спо­собности избирательно осаждать на поверхности своих мембран ионы тяжелых металлов (Os, Mg).

Местоположение этого органоида в клетке строго упорядочено. В полярных клетках его элементы находятся между ядром и апи­кальным полюсом. В неполярных клетках диктиосомы комплекса Гольджи сосредоточены в пространстве вокруг ядра.

Функции комплекса Гольджи: участие в секреции, в образовании лизосом, в образовании гликокаликса плазматической мембраны.

 

Морфология аппарата Гольджи.

Функции гладкой эндоплазматической сетиДиктиосома – это отдельный элемент комплекса Гольджи. Одна диктиосома состоит из центральной стопки плоских мембранных мешков, разделенных тонкими прослойками гиалоплазмы. На пе­риферии цистерны имеют либо ампулообразные расширения, либо систему ветвящихся трубочек (пластинчатая и сетчатая разновид­ности диктиосом). И, наконец, вокруг этих структур сосредоточена группа крупных и мелких вакуолей, которые имеют разную тол­щину. Одна из особенностей организации комплекса Гольджи – его полярность.



На схеме видно, что синтезированный липидный секрет накапли­вается в комплексе Гольджи (8), а затем в зоне завершения преоб­разуется в секреторные пузырьки(5, 10, 9) и покидают клетку на боковой поверхности (11) и в области микроворсинок (4). 3 – ми­тохондрия.

 

 

Функции гладкой эндоплазматической сети

Две формы комплекса Гольджи, вверху – сетчатая форма, внизу – пластинчатая разновидность (по Альбертсу с соавт и по Кристичу с изменениями).

 

Лизосомы

Были открыты Де Дювом при изучении микросомной фракции, полученной из гомогената клеток. Оказалось, что после несколь­ких дней хранения в холодильнике содержимое центрифужных пробирок самопроизвольно разрушалось. При расследовании этого явления, оказалось, что разрушение микросомной фракции проис­ходит в результате самопереваривания, из-за разрушения мембран лизосомных вакуолей. Поскольку в клетке имеется достаточно много однородных по строению маленьких округлых вакуолей, то достаточно трудно определить, какие из них являются лизосо­мами. Методика определения лизосом была разработана Дж. Го­мори. Суть этого метода заключается в инкубации срезов клеток в среде содержащей ионы Pb2+. Фермент кислая и щелочная фосфа­таза отщепляет остатки фосфорной кислоты, которые соединяются с ионами свинца, образую нерастворимый фосфорнокислый сви­нец. Его нерастворимый осадок образует внутри лизосом скопле­ния электронноплотного характера. Именно по этому признаку и можно отличить лизосомы от множества прочих клеточных вакуо­лей.

Первичные, вторичные, третичные лизосомы. Аутофагосомы.

Функции лизосом.

Главная функция лизосом – внутриклеточное пищеварение.

Функции гладкой эндоплазматической сетиСхема строения и функциониро­вания лизосом (возможные пути формирования вторичных лизосом путем соединения мише­ней с пер­вичными лизосомами, содержа­щими вновь синтезиро­ванные протеолитические фер­менты).

1 – фагоцитоз; 2 – вторичная ли­зосома; 3 – фагосома; 4 – остаточ­ное тельце; 5 – мультивезикуляр­ное тельце; 6 – очистка лизосомы от мономеров; 7 – пиноцитоз; 8 – аутофагосома; 9 – начало аутофа­гии; 10 – участок гладкой ЭПС; 11 – шероховатая ЭПС; 12 – протон­ный насос; 13 – первичные лизо­сомы; 14 – комплекс Гольджи; 15 – рециклирование мембраны; 16 – плазмалемма; 17 – кринофагия .

Пунктирные стрелки – направление движения (по Де Дюву с соав­торами, с изменениями).

Механизм внутриклеточного пищеварения включает этапы:

· Адгезия – прилипание частиц к поверхности клеточного гли­кокаликса;

· Рецепция частиц для определения пищевой пригодности;

· Фагоцитоз – поглощение пищевой частицы (или жидкости во время пиноцитоза);

· Слияние фагосомы с первичной лизосомой, или запасаю­щей гранулой;

· Переваривание и диффузия питательных веществ через мем­брану гетерофагосомы в гиалоплазму;

· Выбрасывание непереваренных остатков из клетки наружу путем экзоцитоза.

 

Система ядерных оболочек

 

Это плоские мембранные мешки, которые образуют оболочку во­круг истинного ядра в клетках эукариот. Расстояние между мем­бранами системы ядерных оболочек может достигать величины около 20 нм, при этом наружная поверхность мембраны, обращен­ная в сторону гиалоплазмы почти всегда покрыта прикрепленными рибосомами.

Функции гладкой эндоплазматической сети

Ядро и околоядерная часть цитоплазмы в электронном микроскопе.

1 – шероховатая ЭПС; 2 – поровые комплексы; 3 – внуренняя ядерная мембрана; 4 – наружная ядерная мембрана; 5 – ядерная ламина и субмембранный хроматин. (по Альбертсу, с изменениями).

Функции гладкой эндоплазматической сети

Поверхностные структуры ядра

1 – внутренняя ядерная мембрана; 2 – интегральные белки; 3 – белки ядерной ламины; 4 – хроматиновая фибрилла (часть хромосомы. (по Альбертсу, с изменениями).

 

Функции гладкой эндоплазматической сети

Поровый комплекс

А – пространственная организация; В – схема основных структур; С – схема молеклярной организации;

1 – периферические гранулы; 2 – центральная гранула; 3 – диафрагма поры. (по Альбертсу, с изменениями).

Главной морфологической особенностью строения системы ядер­ных оболочек является наличие структур, получивших название ядерные поры. Их площадь может достигать до 10% от поверхно­сти ядра. Функция ядерных пор связана с регуляцией процессов транспорта веществ из объема ядра в гиалоплазму и из гиало­плазмы в ядро.

Система ядерных оболочек изменяется в течение жизненного цикла клетки. С наступлением профазы система ядерных оболочек подвергается разборке на мелкие мембранные пузырьки, которые смешиваются с такими же пузырьками ЭПС. В телофазе митоза происходит восстановление системы ядерных оболочек, которая собирается вокруг двух новых ядер из мелких мембранных вакуо­лей микросомной фракции. Таким образом, связь системы ядерных оболочек с ЭПС выражается в схеме взаимопревращений компо­нентов вакуолярной системы двумя взаимно направленными стрелками. Эти стрелки отражают возможность взаимопереходов этих органоидов в жизненном цикле клетки, что описано выше. А также описывает возможность сообщения внутримембранного от­сека системы ядерных оболочек и пространства внутри шЭПС, с которой внутренний объем этого органоида соединен системой перемычек (анастомозов).

 

Взаимосвязь компонентов вакуолярной системы

 

ШЭПС – глЭПС – кГ – Л

СЯО

Эта схема описывает взаимоотношения между компонентами ва­куолярной системы в процессе их функционирования.

Центральное место в вакуолярной системе занимает шероховатая эндоплазматическая сеть, которая является местом образования новой мемебраны, а также местом, в котором происходит накоп­ление синтезированных экспортных белков.

Из шЭПС экспортные белки перемещаются в гладкую сеть, а затем в комплекс Гольджи, в котором происходит их упаковка в экто­плазматическую мембрану и подготовка к процессу секреции. Кроме того, одной из функций комплекса Гольджи является обра­зование лизосом, в которых также накапливаются протеолитиче­ские ферменты, необходимые для их функционирования.

Стрелка, которая связывает шероховатую эндоплазматическую сеть с системой ядерных оболочек характеризует их обоюдную связь. Эта связь проявляется в процессе разборки и сборки новой системы ядерных оболочек в митотической фазе жизненного цикла клетки. При разборке СЯО в профазе митоза – она превра­щается в комплекс мелких мембранных пузырьков, из которых в телофазе происходит реконструкция двух новых ядерных оболо­чек после окончания митоза.

Схема секреторного пути и обновления мембран

 

Функции гладкой эндоплазматической сети1 – шероховатая ЭПС; 1.1 – область, где происходит синтез экспортных белков; 1.2 – область где происходит синтез белков, предназначенных для обновления мембраны; 1.3 – область где происходит гликозилирование; 2 – транспортные пузыри; 3 – комплекс Гольджи; 4 — пресекреторная гранула; 5 – секреторная гранула, в которой происходит концентрация секрета; 6 – плазмалемма; 7 – экзоцитоз; 8 – встраивание в мембрану; 9 – сборка элементов мембраны.

 

Источник: studopedia.su

История открытия

Впервые эндоплазматический ретикулум был обнаружен американским учёным К. Портером в 1945 году посредством электронной микроскопии.

Строение

Эндоплазматический ретикулум состоит из разветвлённой сети трубочек и карманов, окружённых мембраной. Площадь мембран эндоплазматического ретикулума составляет более половины общей площади всех мембран клетки.

Мембрана ЭПР морфологически идентична оболочке клеточного ядра и составляет с ней одно целое. Таким образом, полости эндоплазматического ретикулума открываются в межмембранную полость ядерной оболочки. Мембраны ЭПС обеспечивают активный транспорт ряда элементов против градиента концентрации. Нити, образующие эндоплазматический ретикулум имеют в поперечнике 0,05-0,1 мкм (иногда до 0,3 мкм), толщина двухслойных мембран, образующих стенку канальцев составляет около 50 ангстрем (5 нм, 0.005 мкм). Эти структуры содержат ненасыщенные фосфолипиды, а также некоторое количество холестерина и сфинголипидов. В их состав также входят белки.

Трубочки, диаметр которых колеблется в пределах 0.1-0.3 мкм, заполнены гомогенным содержимым. Их функция — осуществление коммуникации между содержимым пузырьков ЭПС, внешней средой и ядром клетки.

Эндоплазматический ретикулум не является стабильной структурой и подвержен частым изменениям.

Выделяют два вида ЭПР:

  • гранулярный эндоплазматический ретикулум
  • агранулярный (гладкий) эндоплазматический ретикулум

На поверхности гранулярного эндоплазматического ретикулума находится большое количество рибосом, которые отсутствуют на поверхности агранулярного ЭПР.

Гранулярный и агранулярный эндоплазматический ретикулум выполняют различные функции в клетке.

Функции эндоплазматического ретикулума

При участии эндоплазматического ретикулума происходит трансляция и транспорт белков, синтез и транспорт липидов и стероидов. Для ЭПС характерно также накопление продуктов синтеза. Эндоплазматический ретикулум принимает участие в том числе и в создании новой ядерной оболочки (например после митоза). Эндоплазматический ретикулум содержит внутриклеточный запас кальция, который является, в частности, медиатором сокращения мышечной клетки. В клетках мышечных волокон расположена особая форма эндоплазматического ретикулума — саркоплазматическая сеть.

Функции агранулярного эндоплазматического ретикулума

Агранулярный эндоплазматический ретикулум участвует во многих процессах метаболизма. Ферменты агранулярного эндоплазматического ретикулума участвуют в синтезе различных липидов и фосфолипидов, жирных кислот и стероидов. Также агранулярный эндоплазматический ретикулум играет важную роль в углеводном обмене, обеззараживании клетки и запасании кальция. В частности, в связи с этим в клетках надпочечников и печени преобладает агранулярный эндоплазматический ретикулум.

Синтез гормонов

К гормонам, которые образуются в агранулярном ЭПС, принадлежат, например, половые гормоны позвоночных животных и стероидные гормоны надпочечников. Клетки яичек и яичников, ответственные за синтез гормонов, содержат большое количество агранулярного эндоплазматического ретикулума.

Накопление и преобразование углеводов

Углеводы в организме накапливаются в печени в виде гликогена. Посредством гликолиза гликоген в печени трансформируется в глюкозу, что является важнейшим процессом в поддержании уровня глюкозы в крови. Один из ферментов агранулярного ЭПС отщепляет от первого продукта гликолиза, глюкоза-6-фосфата, фосфогруппу, позволяя таким образом глюкозе покинуть клетку и повысить уровень сахаров в крови.

Нейтрализация ядов

Гладкий эндоплазматический ретикулум клеток печени принимает активное участие в нейтрализации всевозможных ядов. Ферменты гладкого ЭПР присоединяют встретившиеся молекулы активных веществ, которые таким образом могут быть растворены быстрее. В случае непрерывного поступления ядов, медикаментов или алкоголя, образуется большее количество агранулярного ЭПР, что повышает дозу действующего вещества, необходимую для достижения прежнего эффекта.

Саркоплазматический ретикулум

Особую форму агранулярного эндоплазматического ретикулума, саркоплазматический ретикулум, образует ЭПС в мышечных клетках, в которых ионы кальция активно закачиваются из цитоплазмы в полости ЭПР против градиента концентрации в невозбуждённом состоянии клетки и освобождаются в цитоплазму для инициации сокращения. Концентрация ионов кальция в ЭПС может достигать 10−3 моль, в то время как в цитозоле порядка 10−7 моль (в состоянии покоя). Таким образом, мембрана саркоплазматического ретикулума обеспечивает активный перенос против градиентов концентрации больших порядков. И приём и освобождение ионов кальция в ЭПС находится в тонкой взаимосвязи от физиологических условий.

Концентрация ионов кальция в цитозоле влияет на множество внутриклеточных и межклеточных процессов, таких как: активация или торможение ферментов, экспрессия генов, синаптическая пластичность нейронов, сокращения мышечных клеток, освобождение антител из клеток имунной системы.

Функции гранулярного эндоплазматического ретикулума

Гранулярный эндоплазматический ретикулум имеет две функции: синтез белков и производство мембран.

Синтез белков

Белки, производимые клеткой, синтезируются на поверхности рибосом, которые могут быть присоединены к поверхности ЭПС. Полученные полипептидные цепочки помещаются в полости гранулярного эндоплазматического ретикулума (куда попадают и полипептидные цепочки, синтезированные в цитозоле), где впоследствии правильным образом обрезаются и сворачиваются. Таким образом, линейные последовательности аминокислот получают после транслокации в эндоплазматический ретикулум необходимую трёхмерную структуру, после чего повторно перемещаются в цитозоль.

Синтез мембран

Рибосомы, прикреплённые на поверхности гранулярного ЭПР, производят белки, что, наряду с производством фосфолипидов, среди прочего расширяет собственную поверхность мембраны ЭПР, которая посредством транспортных везикул посылает фрагменты мембраны в другие части мембранной системы.

Источник: dic.academic.ru