Хромосомы лучше всего изучать во время метафазы митоза, т.к. в этой фазе они:

— располагаются в центре клетки, образуя метафазную пластинку;

— максимально конденсированы и легко различимы с использованием световой микроскопии;

— являются двухроматидными, а сестринские хроматиды соединены между собой в области центромеры, что позволяет различить их морфологию.

Морфологическими элементами метафазной хромосомы являются:

— 2 хроматиды;

— центромера;

— теломеры;

— вторичная перетяжка;

— спутник (сателлит);

— ломкие (фрагильные) участки.

Хроматида представлена одной линейной молекулой ДНК, ассоциированной с гистоновыми и негистоновыми белками и максимально конденсированной. Метафазная хромосома состоит из двух сестринских хроматид, являющихся результатом репликации ДНК в фазе S и, таким образом, генетически идентичных. Хроматиды одной хромосомы соединены в области центромеры и остаются в таком состоянии до анафазы.


Центромера,или первичная перетяжка, представляет собой специфический участок хромосомы из ДНК и специальных центромерных белков (CENP-A,B,C,D,E). Центромерная ДНК состоит из высокоповторяющихся последовательностей (сателлитная ДНК), практически одинаковых для всех хромосом. Положение центромеры в хромосоме постоянно и специфично для каждой хромосомы/пары гомологичных хромосом. Центромера делит хромосому на два плеча: р (проксимальное) и q (дистальное). По положению центромеры хромосомы делятся на:

— метацентрические— центромера расположена посередине и плечи равные;

— субметацентрические —центромера несколько смещена к одному из концов, а плечи имеют разную длину;

— акроцентрические —центромера значительно смещена к концу хромосомы, из-за чего одно плечо намного короче другого.

Центромеры выполняют следующие функции:

— созревание кинетохоров для прикрепления хромосом к нитям веретена деления;

— продольное расщепление и разделение сестринских хроматид с образованием из одной двухроматидной хромосомы двух однохроматидных хромосом;

— точное и равное распределение генетического материала во время митоза, точная передача генетической информации от клетки к клетке.


Теломерыпредставлены специфическими последовательностями ДНК на концах хромосом в комплексе со специальными белками. В состав теломерной ДНК входят: (а) тандемно и многократно повторяющиеся короткие последовательности (TTAGGG), одинаковые у всех хромосом, (b) специфические для каждой хромосомы последовательности ДНК.

Теломеры выполняют следующие функции:

— защищают концы хромосом от действия нуклеаз;

— предотвращают слипание концов хромосом;

— обеспечивают репликацию всей ДНК;

— предотвращают укорачивание хромосом благодаря активности теломеразы;

— контролируют процессы старения клеток и многоклеточного организма;

— регулируют фиксацию хроматина к ядерной мембране в интерфазе, обеспечивая тем самым нормальную архитектуру интерфазных хромосом;

— обеспечивают правильную конъюгацию гомологичных хромосом в мейозе.

Вторичные перетяжки(h)представляют собой деспирализованные и слабо окрашенные участки повторяющейся ДНК. Вторичные перетяжки акроцентрических хромосом образуют область ядрышкового организатора. Длина вторичной перетяжки может варьировать в пределах нормального индивидуального полиморфизма.

Сателлиты— это терминальные участки коротких плеч акроцентрических хромосом 13, 14, 15, 21, 22, отделенные вторичной перетяжкой и состоящие из конститутивного гетерохроматина; число и размеры сателлитов варьируют от индивида к индивиду.


Ломкие (фрагильные)участкипредставляют собой деконденсированные сегменты хромосом, отличающиеся повышенной чувствительностью к действию мутагенных факторов, под влиянием которых в них легко происходят разрывы и, в результате этого, хромосомные перестройки.

Фрагильные участки:

— являются маркерами нормального индивидуального полиморфизма;

— ассоциированы с некоторыми моногенными синдромами (например, FRAXA и семейная умственная отсталость);

— могут участвовать в опухолевой прогрессии (путем инактивации генов-супрессоров)

Источник: cyberpedia.su

Что такое хромосомы

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

iv>

Еще в середине позапрошлого XIX века многие биологи изучая в микроскопе строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» – окраска и «somo» – тело.

Хромосомы

Хромосомная теория наследственности

Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности – генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.


В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при митозном делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

строение хромосомы

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

>

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом

Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у обезьян – 48, а хромосомный набор человека составляет 46 хромосом.


В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара – половых хромосом – разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

хромосомный набор человека

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами


Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Источник: www.poznavayka.org

 

Все хромосомы имеют два плеча и расположенный между ними истонченный участок – центромеру, или первичную перетяжку. В области первичной перетяжки расположенкинетохор – плоская структура, белки которой, взаимодействуя с микротрубочками веретена деления, обеспечивают перемещения хромосом во время деления клетки.

Метафазная хромосома состоит из

Строение метафазной хромосомы: 5 — центромера; 6 — вторичная перетяжка; 7 — спутник; 8 — хроматиды; 9 — теломеры.

1 — метацентрическая; 2 — субметацентрическая; 3, 4 — акроцентрические.

Метафазная хромосома состоит из двух хроматид. Любая хромосома имеет первичную перетяжку (центромеру) (5), которая делит хромосому на плечи.


Центромера(первичная перетяжка) — участок хромосомы, характеризующийся специфическими последовательностью нуклеотидов и структурой. Центромера принимает участие в соединении сестринских хроматид, формировании кинетохора, конъюгации гомологичных хромосом и вовлечена в контроль экспрессии генов.

Именно в области центромеры соединены сестринские хроматиды в профазе и метафазе митоза и гомологичные хромосомы в профазе и метафазе первого деления мейоза. На центромерах же происходит формирование кинетохоров: белки, связывающиеся с центромерой, формируют точку прикрепления для микротрубочек веретена деления в анафазе и телофазе митоза и мейоза.

Отклонения от нормального функционирования центромеры ведут к проблемам во взаимном расположении хромосом в делящемся ядре, и в результате —  к нарушениям процесса сегрегации хромосом (распределения их между дочерними клетками). Эти нарушения приводят к анеуплоидии, которая может иметь тяжёлые последствия (например, синдром Дауна у человека, связанный с анеуплоидией (трисомией) по 21-й хромосоме).

 

Когда говорят о морфологии хромосом, то принимают во внимание следующие признаки: положение центромеры, длину плеч, наличие вторичной перетяжки и спутника.

В зависимости от положения центромеры в кариотипе человека  выделяют хромосомы трех типов:


1. Метацентрические, равноплечие хромосомы: первичная перетяжка (центромера) расположена в центре (посередине) хромосомы, плечи хромосомы одинаковые.

2. Субметацентрические, почти равноплечие хромосомы: центромера находится недалеко от середины хромосомы, плечи хромосомы незначительно отличаются по длине.

3. Акроцентрические, очень неравноплечие хромосомы: центромера находится очень далеко от центра (середины) хромосомы, плечи хромосомы существенно различаются по длине.

 

Метафазная хромосома состоит из

 

Короткое плечо обозначают буквой –

Длинное плечо обозначают буквой —

 

Некоторые хромосомы имеют вторичную перетяжку (6) и спутник(сателлит) (7).

Вторичная перетяжка— участок хромосомы, соединяющий спутник с телом хромосомы. В области вторичной перетяжки расположены гены рибосомных РНК, происходит синтез рРНК и происходит формирование и сборка ядрышка. Такая вторичная перетяжка поэтому называется еще ядрышковым организатором.Вторичные перетяжки могут быть у одних хромосом на длинном плече, у других — на коротком.

От первичной вторичная перетяжка отличается отсутствием заметного угла между сегментами хромосомы.

У человека вторичную перетяжку имеют хромосомы9, 13, 14, 15, 21 и 22.

Спутник (сателлит) — это хромосомный сегмент, чаще всего гетерохроматический, расположенный дистально от вторичной перетяжки. По классическим определениям спутник – сферическое тельце с диаметром, равным диаметру хромосомы или меньше его, которое связано с хромосомой тонкой нитью. Выделяют следующие5 типов спутников:

микроспутники– сфероидальной формы, маленькие спутники с диаметром вдвое или еще меньше диаметра хромосомы;

макроспутники – довольно крупные формы спутников с диаметром, превышающим половину диаметра хромосомы;

линейные — спутники, имеющие форму длинного хромосомного сегмента. Вторичная перетяжка значительно удалена от терминального конца;

терминальные – спутники, локализованные на конце хромосомы;

интеркалярные – спутники, локализованные между двумя вторичными перетяжками.

 

Хромосомы, имеющие спутник, называются спутничными, их принято обозначать SAT-хромосомами. Форма, величина спутника и связывающей его нити постоянны для каждой хромосомы.

Спутник вместе с вторичной перетяжкой составляют спутничный район.

 

Концы хромосом называются теломерами (9).

Теломе́ры (от др.-греч. τέλος- конец и μέρος- часть) — концевые участки хромосом. Теломерные участки хромосом характеризуются отсутствием способности к соединению с другими хромосомами или их фрагментами и выполняют защитную функцию.

Термин «теломера» предложил Г. Мёллер в 1932 г.

У человека ДНК теломерного участка представляет собой многократно повторяющуюся нуклеотидную последовательность 5′ ТТАГГГ 3′ в одной из нуклеотидных цепей ДНК.

Функции хромосом:

1) хранение наследственной информации,

2) реализация наследственной информации,

3) передача генетического материала от материнской клетки к дочерним.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы — 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну — от отца, другую — от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны — от хромосомы образуется хромосома.

 

Метафазная хромосома состоит из Метафазная хромосома состоит из

 

Источник: studopedia.ru

Хромосомы — это основные структурные элементы клеточного ядра, являющиеся носителями генов, в которых закодирована наследственная информация. Обладая способностью к самовоспроизведению, хромосомы обеспечивают генетическую связь поколений.

Метафазная хромосома состоит из двух продольных субъединиц — хроматид.

Так как к моменту деления хромосомы удвоены, то сост. из двух нитей – хроматид. Обе хроматиды объединены между собой в области первичной перетяжки – центромеры. Центромера делит хромосому поперек на две части – плечи, которые бывают короткими (p) и длинными (q). В зависимости от расположения центромеры различают 3 типа хромосом

Метацентрические или равноплечие (с центромерой посередине)

Субметацентрические или неравноплечие (с центромерой,сдвинутой к одному из концов)

Субтелоцентрические или резко неравноплечие

4.акроцентрические или палочковидные (с центромерой,расположенной очень близко к концу хромосомы)
Размеры хромосом растений и животных значительно колеблются: от долей микрона до десятков микрон.
Химической основой строения хромосом являются нуклеопротеиды — комплексы нуклеиновых кислот с основными белками — гистонами и протаминами.

Метафаза занимает значительную часть периода митоза, и отличается относительно стабильным состоянием. Все это время хромосомы удерживаются в экваториальной плоскости веретена за счёт сбалансированных сил натяжения микротрубочек. В метафазе, также как и в течение других фаз митоза, продолжается активное обновление микротрубочек веретена путём интенсивной сборки и деполимеризации молекул тубулина. К окончанию метафазы наблюдается чёткое обособление сестринских хроматид, соединение между которыми сохраняется лишь в центромерных участках. Плечи хроматид располагаются параллельно друг другу, и становится отчетливо заметной разделяющая их щель.

Кариотиип — совокупность признаков (число, размеры, форма и т.д.) полного набора хромосом, присущий клеткам опр биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Видовая спец-ть кариотипазаключается в том, что каждый вид имеет определенные число, форму и размеры хромосом. Каждая хромосома внутри одной группы сцепления занимает определенный, свой локус. Если говорить о парах гомологичных хромосом с их гомологичными локусами, то они отличаются лишь характером аллельных генов, но не по форме и размерам. Хромосомы имеют определенный набор генов, и каждый ген занимает определенное место относительно других (локус-это место внутри хромосомы, в котором находится ген). Это также очень специфичный признак не только для каждой хромосомы из генофонда вида, но, тем более, для хромосом из набора различных видов.Допустим, в одной хромосоме человека есть гены А,В иС, они расположены в соответствующем порядке. Если между локусами генов А и В расстояние 8 морганид,а между генами В и С-10 морганид, следовательно между А и С будет 18 морганид

. Н-р. ген А находится в одном локусе, ген В в другом, ген С -в третьем. Тогда, если знать расстояния ,измеряемые в морганидах,между генами А и В,В и С, то можно узнать и расстояние между генами А и С- сложить 8 и 10=18

Биологические аспекты полового диморфизма.

Половой диморфизм – это анатомические различия между самками и самцами одного и того же биологического вида, помимо половых органов. Выделяют такие компоненты полового диморфизма:

генетический; гормональный; морфологический; поведенческий; психологический.

Первые три связаны со строением организма, остальные, в основном, определяются особенностями воспитания и влияния общества.

Соотносительная роль наследственной программы и факторов среды в формировании фенотипа особи может быть прослежена на примере развития признаков половой принадлежности организма.
Пол организма представляет собой важную фенотипическую характеристику, которая проявляется в совокупности свойств, обеспечивающих воспроизведение потомства и передачу ему наследственной информации. В зависимости от значимости этих свойств различают первичные и вторичные половые признаки.

Под первичными половыми признаками понимают морфофизиологические особенности организма, обеспечивающие образование половых клеток — гамет, сближение и соединение их в процессе оплодотворения. Это наружные и внутренние органы размножения.

Вторичными половыми признаками называют отличительные особенности того или другого пола, не связанные непосредственно с гаметогенезом, спариванием и оплодотворением, но играющие важную роль в половом размножении. Их развитие контролируется гормонами, синтезируемыми первичными половыми органами.

Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1:1.

Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола (гетерогаметный пол) и одного вида гамет — особями другого пола (гомогаметный пол).

У разных видов организмов хромосомный механизм определения пола реализуется по-разному. У человека и других млекопитающих, а также у дрозофилы гомогаметным является женский пол (XX), а гетерогаметным — мужской (XY). У некоторых насекомых (клопы рода Protenor) гетерогаметный мужской пол имеет лишь одну Х-хромосому (ХО). У птиц и некоторых насекомых женский пол является гетерогаметным (XY), а мужской — гомогаметным (XX).

Таким образом, хромосомный механизм определения половой принадлежности организмов обеспечивает равновероятность встречаемости представителей обоих полов. Это имеет большой биологический смысл, так как обусловливает максимальную вероятность встречи самки и самца, потомки получают более разнообразную наследственную информацию, поддерживается оптимальная численность особей в популяции.

Доказательства роли факторов среды в развитии признаков пола

У большинства видов развитие признаков пола осуществляется на основе наследственной программы, заключенной в генотипе. Однако известны примеры, когда половая принадлежность организма целиком зависит от условий, в которых он развивается. Так, у морского червя Bonellia viridis пол зависит от того, будет зигота развиваться в непосредственном контакте с материнским организмом или самостоятельно. В первом случае образуется самец, во втором —самка.

У высших организмов значение среды в определении признаков пола, как правило, невелико. Вместе с тем даже для них известны примеры, когда в определенных условиях развития происходило переопределение пола на противоположный, несмотря на имеющуюся комбинацию хромосом в зиготе.

Ведущим началом в дифференцировке пола являются гены, контролирующие уровень мужских и женских половых гормонов. Соотношение этих гормонов в организме является особенно важным для формирования и поддержания соответствующих признаков. Так как у млекопитающих и человека дифференцировка пола начинается очень рано, то полное переопределение пола в эмбриогенезе у них невозможно. (стр.230 Ярыгин)

Источник: studopedia.net