Гаплоидное числоГаплоидное число хромосом

Гаплоидное число — это количество хромосом в ядре клетки, которое составляет один набор хромосом. Это число обычно обозначается как n, где n равняется количеству хромосом. Для разных организмов, гаплоидное число будет отличатся. У людей гаплоидное число выражается как n=23.

Гаплоидные клетки человека имеют 1 набор из 23 хромосом:

  • Неполовые хромосомы: 22 аутосомы.
  • Половые хромосомы: 1 гоносома.

Диплоидные клетки людей содержат 23 пары или 46 хромосом:

  • Неполовые хромосомы: 22 пары, состоящие из 44 аутосом.
  • Половые хромосомы: 1 пара, включающая 2 гоносомы.

Репродукция гаплоидной клетки

Основная статья: Краткая характеристика и схемы фаз мейоза.


Гаплоидное число хромосом

Гаплоидные клетки продуцируются в процессе мейоза. В мейозе диплоидная клетка делится дважды, чтобы образовать четыре гаплоидных дочерних клетки. До начала мейотического цикла, клетка реплицирует ДНК, увеличивает свою массу и количество органелл в стадии, известной как интерфаза.

Когда клетка делится посредством мейоза, она проходит два этапа (мейоз I и мейоз II) профазы, метафазы, анафазы и телофазы. В конце мейоза I клетка делится на две. Гомологичные хромосомы разделены, однако сестринские хроматиды остаются вместе. Затем клетки входят в мейоз II и снова делятся.

В конце мейоза II сестринские хроматиды отделяют каждую из четырех клеток с половиной числа хромосом относительно родительской (исходной) клетки. В процессе полового размножения гаплоидные половые клетки объединяются при оплодотворении и становятся диплоидными клетками.

В организмах, таких как растения, водоросли и грибы, бесполое размножение осуществляется при помощи продуцирования гаплоидных спор.

Эти организмы имеют жизненные циклы, которые могут чередоваться между гаплоидной и диплоидной фазами. Такой тип жизненного цикла известен как чередование поколений. В растениях и водорослях гаплоидные споры развиваются в гаметофитные структуры без оплодотворения.

Гаметофит производит гаметы и считается гаплоидной фазой в жизненном цикле. Диплоидная фаза цикла состоит в образовании спорофитов. Спорофиты — диплоидные структуры, которые развиваются из оплодотворенных половых клеток.


Понравилась статья? Поделись с друзьями:

Источник: NatWorld.info

Хромосомы – органоиды делящегося клеточного ядра, являются носителями генов. Основа хромосом — непрерывная двухцепочная молекула ДНК, связана гистонами в нуклеопротеид. В хромосоме две сложенные по пдлине хроматиды соединены посередине первичной перетяжкой (центромерой).  В зоне первичной перетяжки находится кинетахор – особая белковая структура для прикрепления микротрубочек, веретена деления и последующего расхождения хроматид в анафазе митоза.

Кариотип – совок-ость признаков хромосомного  набора, т.е. число, размер, форма хр-сом, характ-ных для того или иного типа.

Функция хромосом: в хромосомах заключена наследственная информация. В хромосоме в линейном порядке расположены гены, самоудвоение и закономерное распределение хромосом в дочерней клетке при клеточном делении обеспечивает передачу наследственных свойств организма от поколения к поколению.

Гаплоидный набор хромосом. Он представляет собой скопление совершенно разных хромосом, т.е. в организме-гаплоиде есть несколько этих нуклеопротеидных структур, непохожих друг на друга. Гаплоидный набор хромосом характерен для растений, водорослей и грибов.

Диплоидный набор хромосом. Этот набор является таким собранием хромосом, при котором у каждой из них есть двойник, т.е. эти нуклепротеидные структуры расположены попарно. Диплоидный набор хромосом характерен для всех животных, в том числе и человека.


Удвоение хромосом эукариотов является сложным процессом, поскольку включает не только репликацию гигантских молекул ДНК, но также и синтез связанных с ДНК гистонов и негистоно-вых хромосомных белков. Конечным этапом является упаковка ДНК и гистонов в нуклеосомы. Считают, что удвоение хромосом также имеет полуконсервативный характер.

Репликационное поведение хромосом основывается на трех фундаментальных свойствах, а именно: непосредственно репликация, сегрегация хромосом при репликации ДНК и делении клеток, а также репликация и предохранение концов хромосом.

Источник: students-library.com

  • АУТОРЕПРОДУКЦИЯ ХРОМОСОМ — воссоздание дочерней хромосомы, тождественной с материнской, во время митоза…
  • ГАПЛОИДНЫЙ — Обозначает клетки или особи с одинарным набором хромосом и имеет символ п. Все с.-х. животные — это диплоидные организмы, так как их клетки обладают двойным набором хромосом, образовавшимся в результате слияния…
  • ассоциация [хромосом] — association, chromosome association — .Предпочтительное расположение поблизости друг от друга отдельных хромосом кариотипа — например, А. ядрышкообразующих хромосом, известные в кариотипе человека…
  • iv>
  • гаплоидный — haploid — .Xарактеризует индивидуум , у которого имеется один набор хромосом ; в норме гаплоидными являются гаметы, гаметофиты и самцы некоторых видов при гапло-диплоидии <haplodiploidy>…
  • гаплоидный партеногенез — См. генеративный партеногенез…
  • гаметический набор хромосом — см. Гаплоидный набор хромосом…
  • гаплоидный набор хромосом — совокупность хромосом, присущая зрелой половой клетке, в которой из каждой пары характерных для данного биологического вида хромосом присутствует только одна…
  • двойной набор хромосом — см. Диплоидный набор хромосом…
  • диплоидный набор хромосом — совокупность хромосом, присущая соматическим клеткам, в которой все характерные для данного биологического вида хромосомы представлены попарно; у человека Д. н. х. содержит 44 аутосомы и 2 половые хромосомы…
  • зиготический набор хромосом — см. Диплоидный набор хромосом…
  • одинарный набор хромосом — см. Гаплоидный набор хромосом…
  • соматический набор хромосом — см. Диплоидный набор хромосом…
  • гаплоидный — гапл&#039…
  • Джентльменский набор (набор джентльмена) — Жарг. мол. Шутл. Подарок из бутылки шампанского, коробки конфет и букета цветов. Максимов, 264…
  • гаплоидный — ая, ое (фр. Haploïde…
  • гаплоидный — прил., кол-во синонимов: 1 • одинарный…

Источник: slovar.wikireading.ru

История обнаружения хромосом

В ядре неделящихся (интерфазных) клеток хромосомы в тот период обнаружить не удалось. Поэтому раньше считали, что хромосомы — это структуры, которые появляются только в период митоза и отсутствуют в промежутке между делениями. Однако позже удалось рассмотреть хромосомы под электронным микроскопом и в интерфазном ядре.

Видовое постоянство числа хромосом

Оказалось, что они являются постоянными структурами клеток, причем количество и морфология хромосом специфична для каждого вида организмов. Однако строение одних и тех же хромосом очень резко отличается в интерфазных и в делящихся клетках.

В ядрах неделящихся клеток хромосомы под электронным микроскопом имеют вид слабо спирализованных и очень тонких нитей. Толщина их около 14нм, а длина — 1000мкм и более. В тех же клетках, но находящихся на стадии метафазы (см. Митоз) хромосомы хорошо видны в световой микроскоп как палочковидные или нитевидные структуры. Длина их у разных организмов колеблется обычно от 1 до 50мкм, а у человека метафазные хромосомы имеют размеры 1,5-10мкм.

Правило постоянства и преемственности (непрерывности) числа хромосом

>

Каждый вид растений и животных в норме имеет строго определенное и постоянное число хромосом, которые могут различаться по размерам и форме. Поэтому можно сказать, что число хромосом и их морфологические особенности являются характерным признаком для данного вида. Эта особенность известна как правило постоянства числа хромосом.

Число хромосом не зависит от уровня развития филогенетического родства — оно может быть одинаковым у далеких друг от друга видов и резко отличается у близких. Например, у водоросли спирогиры и у сосны имеется по 24 хромосомы, у человека — 46, а у гориллы — 48.

В последовательных поколениях клеток одного вида организмов сохраняются не только постоянное число хромосом, но и их индивидуальные особенности. Это происходит вследствие того, что каждая хромосома при делении клетки воспроизводит себе подобную (авторепродукция). В этом выражается правило преемственности (непрерывности) хромосом.

Диплоидный и гаплоидный наборы хромосом

В соматических клетках любых растений и животных число хромосом обычно выражено четной цифрой, причем такой набор всегда содержит парные, идентичные по строению хромосомы. Это значит, что если в соматической клетке обнаружена какая-либо особенно крупная (или мелкая) хромосома, то в этой клетке должна быть вторая хромосома точно такого строения. Такие хромосомы, составляющие одну идентичную пару, называются гомологичными.


Исключением из этого правила являются половые хромосомы. Они могут быть представлены парой разных по своему строению хромосом, получивших название гетеромосом.

Парный набор хромосом в соматических клетках называется диплоидным и обозначается 2n. Из каждой пары гомологичных хромосом, имеющихся в ядрах соматических клеток, в половых клетках присутствует только одна. Поэтому в половых клетках число хромосом в 2 раза меньше, чем в соматических. Такой набор называется гаплоидным и обозначается n.

В гаплоидном наборе нет гомологичных хромосом и каждая хромосома отличается от остальных. Возникновение гаплоидных наборов хромосом происходит в процессе созревания половых клеток. При оплодотворении половые клетки сливаются и образуется зигота, в которой из двух гаплоидных наборов возникает один диплоидный (т.е. восстанавливается число хромосом, характерное для соматических клеток).

Источник: animals-world.ru

Понятие хромосомы

Ядро эукариотической клетки содержит несколько видов составляющих, одной из которых является нуклеопротеидная структура, называемая хромосомой. Теория о наследственной информации впервые была выдвинута еще в XIX веке, но, опираясь на фактические данные, полностью сформировалась лишь спустя столетие,.

С помощью ДНК происходит хранение, реализация и передача наследственной информации. Различить хромосомы под микроскопом возможно только во время деления клетки. Совокупность всех структурно-функциональных единиц, содержащихся в клетке, называется кариотипом. 


Нуклеопротеидные структуры, хранящие наследственную информацию, у эукариотов расположены в ядре, а также в митохондриях и пластидах; у прокариотов замкнутая в кольцо молекула ДНК располагается в так называемой зоне нуклеоида. У вирусов, единственных в своем роде, роль носителя генетической информации может выполнять как ДНК, так и РНК (рибонуклеиновая кислота), расположенные в белковых оболочках — капсидах.

Обычно генетическая информация в клетке содержится в единичном экземпляре, это состояние называют гаплоидным набором. При делении клетки ДНК реплицируется, то есть удваивается, чтобы каждая молодая клетка получила полноценный генетический набор. Данное состояние хромосом называется диплоидным. Реже, при формировании половых клеток (яйцеклеток и сперматозоидов), при образовании спор и конидиев в жизненных циклах низших растений и грибов, а также при генетических аномалиях в клетке может находится учетвереннвй набор генетической информации — тетраплоидный.

Хранение, реализация и передача наследственной информации с помощью хромосом

Диплоидный хромосомный набор

Диплоидный набор хромосом — это двойной кариотип, в котором элементы разделены на пары по сходным признакам. Такой набор наблюдается в соматических клетках и зиготах.

В человеческих клетках содержится по 46 хромосом, которые разделяются на 23 пары со своим «двойником» по длине и толщине. Но 45-я и 46-я единицы отличаются от других тем, что представляют собой половые хромосомы, определенное сочетание которых влияет на пол будущего человека:


  • пара одинаковых единиц— XX — приведет к рождению ребенка женского пола;
  • две разные единицы — XY — к рождению мальчика.

Остальные структуры называются аутосомами.

хромосомный набор человека

Гаплоидный набор хромосом

Гаплоидный хромосомный набор представляет собой одинарный набор структурно-функциональных единиц, которые отличаются друг от друга по размеру. В гаплоидных кариотипах содержится 22 аутосомы и 1 половая структура. Ядра с одинарным набором элементом имеют растения, водоросли и грибы.

Диплоидный и гаплоидный кариотипы могут существовать в одно время. Такое явление наблюдается при половых процессах. В этот период происходит чередование фаз гаплоидного и диплоидного наборов: с делением полного набора происходит образование одинарного кариотипа, а затем происходит слияние пары одинарных наборов, которые преобразуются в диплоидный кариотип.

Строение и функции ядра

Возможные нарушения в кариотипе

В период развития на уровне клеток имеет возможны сбои и нарушения в работе хромосом. При изменениях в хромосомных наборах у человека возникают генетические заболевания. Известными болезнями с нарушением кариотипа являются:


  1. Синдром Дауна. Заболевание характеризуется сбоем в 21-й паре структурно-функциональных единиц, к которым примыкает абсолютно такая же дополнительная хромосома. Гомологичный элемент является лишним и приводит к аномалии, которую называют трисомией. С нарушением 21-й пары диплоидного набора плод может отстать в развитии и погибнуть. Если ребенок рождается, то нарушение в клетках приведет к сокращению будущей жизни малыша. В умственном развитии он будет отставать. К сожалению, этот синдром неизлечим.
  2. Синдром Шерешевского-Тернера. При этой болезни отсутствует одна из половых структур в 23-й паре кариотипа. У людей с этим синдромом наблюдаются характерные аномалии в физическом развитии, низкорослость и половой инфантилизм.
  3. Синдром Эдвардса. Трисомия 18-й хромосомы, сформировавшаяся до оплодотворения, приводит к хромосомному заболеванию, характеризующемуся совокупностью пороков развития.
  4. Синдром Патау. Тяжелому врожденному заболеванию свойственно число деформаций тела, которые происходят из-за появления в клетках дополнительной 13-й хромосомы. Обычно малыши с таким синдромом проживают всего несколько недель, но отмечены случаи, когда родившиеся с неизлечимым пороком дети проживали несколько лет.
  5. Синдром Клайнфельтера. Наследственная болезнь, наблюдаемая у мужского пола, может проявляться полисомией в разных вариантах, но чаще всего происходит присоединение второй X-элемента к паре XY, вследствие чего образуется схема XXY. Наличие аномалии в хромосомном наборе приводит к нарушениям в половой системе и умственном развитии, а также к системным заболеваниям человеческого организма.

Родовая память предков и ДНК

Поскольку ученые еще не нашли способы защиты клеток от нарушений в кариотипах, хромосомные изменения приводят к неизлечимым болезням, при которых  наблюдаются низкая степень жизнеспособности, отклонения в умственном и половом развитии, задержка роста.

С помощью многочисленных исследований ученые установили, что на изменения в хромосомных наборах воздействует влияние экологии, плохой наследственности, дефицита сна и неправильного образа жизни. Но нарушения могут встречаться и у людей, ведущих абсолютно правильный образ жизни и не страдающих никакими заболеваниями. На данный момент люди не могут влиять на изменения в кариотипах.

Видео

Эта видеоподборка поможет вам лучше разобраться в том, что такое хромосомный набор человека.

Источник: LivePosts.ru