(греч. «хлорос» — зеленый) — двухмембранные органеллы достаточно сложного строения, содержащие хлоро­филл и осуществляющие фотосинтез. Характерны только для растительных клеток ( рис. 1). У водорослей носителями хло­рофилла являются хроматофоры — предшественники пластид, они же встречаются у животного — эвглены зеленой (форма раз­нообразная). Хлоропласты высших растений имеют форму двоя­ковыпуклой линзы, наиболее рационально улавливающей свет. В клетке находится в среднем 10-30 (до 1000) хлоропластов. Дли­на пластиды составляет 5-10 мкм, толщина — 1-3, ширина — 2-4 мкм. Хлоропласты покрыты наружной гладкой мембраной, в то время как внутренняя мембрана образует в полости пласти­ды структуры, называемые тилакоидами (мешками). Дисковидные тилакоиды формируют граны, а трубковидные тилакоиды — тилакоиды стромы, соединяющие все граны в единую систему. В одной гране содержится от нескольких до 50 тилакоидов, а число гран в хлоропласте достигает 40-60.


остранство между тилакоидами стромы и гранами заполнено «основным ве­ществом» — стромой. состоящей из белков, липидов, углеводов, ферментов, АТФ. Кроме того, в строме находятся пластидная ДНК. РНК, рибосомы. Мембраны тилакоидов имеют типичное строение, но в отличие от других органелл они содержат крася­щие вещества — пигменты хлорофилл (зеленый) и каротиноиды (красно-оранжево-желтые). Хлорофилл — основной пигмент, связан с глобулярными белками в белково-пигментные комплексы, расположенные по наружной стороне мембраны тилакоидов гран. Каротиноиды — дополнительные пигменты, находятся в липидном слое мембраны, где они не видны, так как растворены в жирах. Но место их расположения точно соответ­ствует белково-пигментному комплексу, поэтому пигменты в мембранах не образуют непрерывного слоя, а распределены мозаично. Строение хлоропластов тесно связано с их функцией. В них происходит фотосинтез; на мембранах тилакоидов гран проходят световые реакции, в строме — фиксация углерода (темновые реакции). Хлоропласты — полуавтономные органел­лы, в которых синтезируются собственные белки, однако долго жить вне клетки они не могут, так как находятся под общим контролем ядра клетки. Размножаются они путем деления по­полам или могут образовываться из пропластид или из лейко­пластов. Пропластиды передаются через зиготу в виде очень ма­леньких телец, их диаметр составляет 0,4-1,0 мкм, они бесцветны и покрыты двойной мембраной. Пропластиды нахо­дятся в клетках конуса нарастания стебля и корня, зачатках ли­стьев. В зеленых органах листьях, стеблях — они превраща­ются в хлоропласты. По окончании жизненного цикла хлорофилл разрушается (обычное изменением длины светового дня и понижением температуры), часть хлоропластов превраща­ется в хромопласты — зеленые листья и плоды краснеют или желтеют, после чего опадают.


xloroplastu

Рис. 1. Строение: а — хлоропласта, б — лейкопласта, в — хромопласта; 1 — внешняя мембрана, 2 — внутренняя мембрана, 3 — метрике (строма), 4 — тилакоиды стромы (ламеллы), 5 — грана, в — тилакоид граны, 7 —крахмальное зерно, 8 — каротино-иды в каплях липидов, 9 — ДНК, 10 — рибосомы, 11 — разрушающиеся мембранные структуры

 

Источник: Т. Л. Богданова  «Пособие для поступающих в вузы»

Источник: xn--90aeobapscbe.xn--p1ai

Строение хлоропласта

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

Строение хлоропласта

Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами. Граны связаны между собой удлиненными тилакоидами — ламеллами.


Полужидкое содержимое хлоропласта называется стромой. В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. Симбиогенез).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Функции хлоропластов

Основная функция хлоропластов — это фотосинтез — синтез глюкозы из углекислого газа и воды за счет солнечной энергии, которая улавливается хлорофиллом. В качестве побочного продукта фотосинтеза выделяется кислород. Однако процесс этот сложный и многоступенчатый, при котором синтезируются и побочные продукты, использующиеся как в самом хлоропласте, так и в остальных частях клетки.

Основным фотосинтетическим пигментом является хлорофилл. Он существует в нескольких разных формах. Кроме хлорофилла в фотосинтезе принимают участие пигменты каротиноиды.

Пигменты локализованы в мембранах тилакоидов, здесь протекают световые реакции фотосинтеза. Кроме пигментов здесь присутствуют ферменты и переносчики электронов. Хлоропласты стараются расположиться в клетке так, чтобы их тилакоидные мембраны находились под прямым углом к солнечному свету.

Хлорофилл состоит из длинного углеводного кольца и порфириновой головки. Хвост гидрофобен и погружен в липидный слой мембран тилакоидов. Головка гидрофильна и обращена к строме. Энергия света поглощается именно головкой, что приводит к возбуждению электронов.

iv>

Электрон отделяется от молекулы хлорофилла, который после этого становится электроположительным, т. е. оказывается в окисленной форме. Электрон принимается переносчиком, которые передает его на другое вещество.

Разные виды хлорофилла отличаются между собой несколько различным спектром поглощения солнечного света. Больше всего в растениях хлорофилла А.

В строме хлоропласта происходят темновые реакции фотосинтеза. Здесь находятся ферменты цикла Кальвина и другие.

Источник: biology.su

Фотосинтез растений осуществляется в хлоропластах: обособленных двухмембранных зеленых органеллах клетки. Кроме того, в растительной клетке имеются еще два вида пластид: лейкопласты – бесцветные, хромопласты – оранжевые. В лейкопластах синтезируется и отлагается в запас крахмал, в хромопластах накапливаются каратиноиды. Строение хлоропласта: Строение хлоропласта: 1 — внешняя мембрана; 2 — внутренняя мембрана; 3 — крахмальное зерно; 4 — ДНК; 5 — тилакоиды стромы (фреты); 6 — тилакоид граны; 7 — матрикс (строма); 8 – внутритилакоидное пространство (люмен).


Внешняя оболочка хлоропластов отграничивает его внутреннее содержимое от цитоплазмы. Это барьер, осуществляющий контроль обмена веществ между хлоропластом и цитоплазмой. Оболочка состоит из 2-х мембран: Наружная мембрана – проницаемая для большинства органических· и неорганических молекул. Она содержит специальные транслокаторы белков, через которые поступают пептиды из цитоплазмы в хлоропласт. Внутренняя мембрана – избирательно проницаема и осуществляет· контроль над транспортом белков, липидов, органических кислот и углеводов между хлоропластом и цитоплазмой. Участвует в формировании внутренней мембранной системы хлоропластов. Строма – гидрофильный, слабоструктурированный матрикс хлоропластов, содержащий водорастворимые органические соединения, а также неорганические ионы. В строме осуществляются реакции фотосинтетической ассимиляции углерода. В строме находятся: кольцевая ДНК, рибосомы, ферменты матричного синтеза. Внутренняя мембранная система хлоропластов – здесь протекают световые реакции фотосинтеза. Мембраны образуют тилакоиды, которые либо тесно соприкасаются друг с другом и уложены в стопки, или граны (тилакоиды гран – 6), либо пронизывают строму, соединяя граны между собой (тилакоиды стромы (фреты)). Собственно образующие их мембраны называют мембранами (ламеллами) гран и мембранами (ламеллами) стромы. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

>

Значение сложной организации внутренних мембран хлоропластов: Благодаря значительному мембранному пространству достигается· увеличение числа функциональных единиц, способных осуществлять световые реакции фотосинтеза. Единство внутренней системы хлоропластов позволяет отдельным· компонентам мембраны мигрировать латерально и вступать между собой в структурный и функциональный контакт. Это необходимо для переноса энергии квантов света в реакционные центры, а также для транспорта электронов по электрон-транспортной цепи в ходе световых реакций фотосинтеза. Разделение мембраной всего внутреннего пространства хлоропластов на· два компонента – стромальное и люмен – позволяет создавать электрохимические градиенты ионов между ними. Создание электрохимического градиента Н+ на внутренних мембранах хлоропластов – важный этап в трансформации энергии квантов света в энергию макроэргических связей АТФ. Образование гранальной структуры внутри хлоропластов значительно· повышает общую эффективность фотосинтеза и создает дополнительные возможности для регуляции световых реакций. Сегрегация (разделение) в стромальных или гранальных тилакоидах компонентов мембран с различными функциями позволяет добиться определенной независимости их функционирования. Это итог длительного эволюционного процесса – впервые появилась у зеленых водорослей.


Основные этапы образования хлоропластов. Предшественники хлоропластов – пропластиды. Пропластиды образуются из инициальных частиц (зачатков), содержащихся в меристиматических клетках. Формирование хлоропласта может осуществляться двумя путями: I путь – непосредственное преобразование пропластид в хлоропласты. Реализуется при росте растений в условиях нормального соотношения дня и ночи. Пропластиды

меристиматических клеток листа превращаются в хлоропласты параллельно с ростом и дифференцировкой клеток листа. Биогенез хлоропластов сопровождается формированием тилакоидных мембран хлоропластов при участии внутренней мембраны оболочки пропластиды. II путь – образование хлоропластов из этиопластов. Этиопласты – органеллы клеток растения, растущего в отсутствие света. Они образуются из пропластид и имеют некоторвые особенности внутреннего строения: содержат проламеллярное тело, сформированное в результате скопления ограниченных мембраной пузырьков и разветвленных трубчатых структур. Мембраны проламеллярного тела содержат небольшие количества каротиноидов и предшественника хлорофилла – протохлорифиллида. Формирование тилакоидных мембран хлоропластов в этиопластах происходит при участии мембран проламелярного тела в ответ на освещение. Выделяют три этапа фотоморфогенеза хлоропластов из этиопластов: 1 этап: Из трубчатых элементов проламелярных тел образуются крупные пузырьки, располагающиеся по радиусу. Этот процесс сопровождается образованием хлорофилла из имеющегося в этиопластах протохлорофиллида.


этап: Происходит накопление белков, липидов, пигментов и самосборка мембран тилакоидов. 3 этап: Происходит дифференциация гран. Эта стадия совпадает с интенсивным синтезом хлорофилла. Для формирования гран необходим высокий уровень содержание хлорофиллов в хлоропластах. Таким образом, формирование хлоропласта происходит только на свету. Непосредственно из пропластид могут образовываться и бесцветные пластиды (лейкопласты-амилопласты). Лейкопласты чаще всего локализованы в клетках запасающих тканей. Подобно пропластидам они характеризуются слабо развитой ламеллярной структурой. Во многих случаях в лейкопластах ламеллы сохраняют связь с внутренней оболочкой. В строме лейкопластов располагаются крахмальные зерна, осмиофильные глобулы, белковые включения. Амилопласты могут превращаться в хлоро- пласты, например, как это происходит при позеленении клубней картофеля на свету. Хромопласты — это, по-видимому, результат деградации хлоропластов, при которой ламеллярная структура частично разрушается. Одновременно происходит образование осмиофильных глобул, содержащих каротиноиды. Эти глобулы располагаются сплошным слоем под оболочкой пластид. Регуляция биогенеза хлоропластов. Биогенез хлоропластов повергается контролю и регуляции со стороны внешних и внутренних факторов. Выделяю следующие виды регуляции: Фоторегуляция связана с активацией светом синтеза пигментов и белков, входящих в светособирающие комплексы. Контроль синтеза фотосинтетических пигментов основан на регуляции светом активности осуществляющих его ферментов.

торегуляция синтеза белков хлоропластов осуществляется на генетическом уровне. В регуляции биогенеза хлоропластов участвуют сигнальные фоторецепторные системы – фитохромная система и рецепторы синего света. Гормональная регуляция связана с влиянием на синтез пигментов и белков хлоропластов ряда фитогормонов. Генетическая регуляция включает контроль биогенеза хлоропластов на всех уровнях реализации генетической информации, включая транскрипцию, трансляцию, процессинг, транспорт белков, сборку мультипептидных комплексов. Обнаружена регуляция экспрессии ряда генов ядерной ДНК, обслуживающих хлоропласт светом, гормонами, продуктами фотосинтеза


Источник: studopedia.info

фото­синтез протекает в специализированных органеллах клеток — хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника — 465 тыс. Диаметр хло­ропластов в среднем 0,5-2 мкм.


Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс или строма, которую пронизывают мембраны — ламеллы (рис.). Ламеллы, соединен­ные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тила­коиды образуют граны, которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей — тилакоидов стромы.

Свойства хлоропластов: способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды — 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды, (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.

  1. Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

  2. Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды.

  3. Жирорастворимые витаминыэргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.

В хлоропластах листьев присутствует значительное количество РНК и ДНК. НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК — 0.75 %, ДНК — 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe, 70-72 — Mg и Zn,  50 — Cu, 60 % Ca, содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.

Возникновение и развитие хлоропластов. Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами. Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты, в которых образуется мембранная ре­шетчатая структура — проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему. Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.

Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис.). К ним относятся накапливающие крахмал амилопласты (лейкопласты) и хромо­пласты, содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов, в которых в качестве структур — носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты, которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме, часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения: Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов.

Структура хлоропластов лабильна и ди­намична, в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Источник: StudFiles.net


Adblock
detector