Совокупность процессов, происходя­щих в клетке от одного деления до следующего и заканчивающихся обра­зованием двух клеток новой генерации, называется митотическим циклом. Различают четыре периода этого цик­ла: пресинтетический (или постмитотический), синтетический, постсинтетический (или премитотический) и митоз.

Пресинтетический период (G1) сле­дует непосредственно за делением. В это время синтез ДНК еще не проис­ходит, но накапливаются РНК и бе­лок, необходимые для образования кле­точных структур. Это наиболее дли­тельная фаза; в готовящихся к деле­нию клетках она продолжается от 10 ч до нескольких суток.

Второй период — синтетический (S) характеризуется синтезом ДНК и редупликацией хромосомных структур, поэтому к концу его содержание ДНК удваивается. Происходит также синтез РНК и белка. Продолжительность этой фазы 6—10 ч.

В следующий, постсинтетический период (G2), ДНК уже не синтезирует­ся, но происходит накопление энергии и продолжается синтез РНК и бел­ков, преимущественно ядерных. Эта фаза длится 3—4 ч. Наконец, насту­пает деление ядра клетки — митоз (гр. mitos — нить), или кариокинез (гр. karyon — ядро, kinesis— движе­ние). Термины «митоз» и «кариоки­нез»— синонимы.


Если количество ДНК в гаплоидном наборе хромосом (n) обозначить как С, то после деления клетки диплоидный набор хромосом (2n) содержит 2С ДНК. В пресинтетический период (G1) неизменным сохраняется то же количество ДНК, но в синтетиеский период (S) количество ДНК удваива­ется, и тогда, когда клетка переходит к постсинтетияескому периоду (G2), диплоидный набор хромосом (2n) со­держит уже 4С ДНК. В это время каж­дая из хромосом редуплицирована и состоит из двух нитей (хроматид). Постсинтетический период и период митоза характеризуются сохранением того же набора хромосом (2n) и того же количества ДНК (4С). В результате митоза каждая дочерняя клетка со­держит 2n хромосом и 2CДКК.

Три периода митотического цикла (G1, S, G2), во время которых происхо­дит подготовка клетки к делению, объе­диняются под названием интерфазы. В ряде случаев клетки, образовав­шиеся в результате деления, могут начать подготовку к следующему деле­нию. Так происходит в эмбриональных и других быстро размножающихся тка­нях. При этом митотический цикл клетки совпадает со всем периодом ее существования, .т. е. жизненным циклом клетки. Если же клетки приобрета­ют специализацию, начинают диффе­ренцироваться, то пресинтетический пе­риод удлиняется.
я клеток каждого типа тканей устанавливается опре­деленная продолжительность периода G1. В высокоспециализированных клет­ках, таких, как нервные, период G1 продолжается в течение всей жизни организма. Другими словами, они все время находятся в пресинтетическом периоде и никогда не делятся. Однако некоторые дифференцированные клет­ки (эпителиальная, соединительно­тканная) при определенных условиях из периода G1переходят к следующим периодам митотического цикла. У та­ких клеток жизненный цикл продол­жительнее митотического.

Деление клетки.Деление клет­ки включает два этапа: деление ядра — митоз и деление цитоплазмы — цито­кинез.

Митоз — сложное деление ядра клетки, биологическое значение кото­рого заключается в точном идентичном распределении дочерних хромосом с содержащейся в них генетической ин­формацией между ядрами дочерних кле­ток. А в результате этого деления ядра дочерних клеток имеют набор хромо­сом, по количеству и качеству иден­тичный таковому материнской клетки. Хромосомы — основной субстрат на­следственности, они — та единствен­ная структура, для которой доказана самостоятельная способность к реду­пликации. Все другие органоиды клет­ки, способные к редупликации, осу­ществляют ее под контролем ядра. В связи с этим важно сохранить посто­янство числа хромосом и равномерно распределить их между дочерними клет­ками, что и достигается всем механиз­мом митоза. Такой способ деления в клетках растений был открыт в 1874 г. русским ботаником И. Д. Чистяковым (1843—1877), а в клетках животных — в 1878 г. русским гистологом П. И. Перемежко (1833—1894). Детальные исследования по делению клеток были выполнены несколько позже на расти­тельных объектах Э. Страсбургером (1844—1912) и на клетках живот­ных — В. Флеммингом.


В процессе митоза после­довательно протекает четыре фазы: про­фаза, ,метафаза, анафаза и телофаза. Эти фазы, непосредственно следующие друг за другом, связаны незаметными переходами. Каждая пре­дыдущая обусловливает переход к по­следующей.

В клетке, вступающей в деление, хромосомы приобретают вид клубка из множества тонких, слабо спирализо-ванных нитей. В это время каждая хро­мосома состоит из двух сестринских хроматид. Образование хроматид про­исходит в S-период митотического цикла как следствие репликации ДНК.

В самом начале профазы, а иногда и до ее наступления центриоль делится на две, и они расходятся к полюсам ядра. Одновременно хромосомы пре­терпевают процесс скручивания (спирализации), вследствие чего значитель­но укорачиваются и утолщаются. Хроматиды несколько отходят друг от друга, оставаясь связанными лишь центромерами. Между хроматидами появляется щель. Ядрышки исчеза­ют, ядерная оболочка под действием ферментов из лизосом растворяется, хромосомы оказываются погруженны­ми в цитоплазму. Одновременно появ­ляется ахроматиновая фигура, кото­рая состоит из нитей, тянущихся от полюсов клетки (если есть центриоли, то от них). Ахроматиновые нити при­крепляются к центромерам хромосом. Образуется веретено деления. Электронно-микроскопические исследования пока­зали, что нити веретена — это трубоч­ки, канальцы. Погруженные в цитоплазму хромосомы направляются к эква­тору клетки.


В метафазе хромосомы находятся в упорядоченном состоянии в области экватора. Хорошо видны все хромосо­мы, благодаря чему изучение кариотипов (подсчет числа, изучение форм хро­мосом) проводится именно в этой ста­дии. В это время каждая хромосома состоит из двух хроматид, концы кото­рых разошлись. Поэтому на метафазных пластинках (и идиограммах из метафазных хромосом) хромосомы име­ют X-образную форму. Изучение хромо­сом проводится именно в этой стадии.

В анафазе каждая хромосома про­дольно расщепляется по всей ее длине, в том числе и в области центромеры — происходит расхожде­ние хроматид, которые после этого становятся сестринскими, или дочер­ними, хромосомами. Они имеют палоч­кообразную форму, изогнутую в обла­сти первичной перетяжки. Нити верете­на сокращаются, направляются к по­люсам, а за ними начинают расходить­ся к полюсам и дочерние хромосомы. Расхождение их осуществляется бы­стро и всех одновременно. В телофазе дочерние хромосомы до­стигают полюсов. После этого хромосо­мы деспирализуются, теряют ясные очер­тания, вокруг них формируются ядер­ные оболочки. Ядро приобретает строе­ние, сходное с интерфазным материн­ской клетки. Восстанавливается яд­рышко.


Далее происходит цитокинез, т. е. разделение цитоплазмы. В клет­ках животных этот процесс начинается с образования в экваториальной зоне перетяжки, которая, все более углуб­ляясь, отделяет, наконец, сестринские клетки друг от друга. В клетках расте­ний разделение сестринских клеток начинается во внутренней области материнской клетки. Здесь мелкие пу­зырьки эндоплазматической сети сли­ваются, образуя, в конце концов, кле­точную мембрану. Построение целлю­лозных клеточных оболочек связано с использованием секретов, накапли­вающихся в диктиосомах.

Митоз, сочетающийся с задержкой цитокинеза, приводит к образованию многоядерных клеток. Такой процесс наблюдается, например, при размно­жении простейших путем шизогонии. У многоклеточных организ­мов так образуются синцитии, т. е. ткани, состоящие из протоплазмы, в которой отсутствуют границы между клетками. Такими являются некото­рые мышечные ткани и тегумент плоских червей.

Продолжительность каждой из фаз митоза различна — от нескольких минут до сотен часов, что зависит от ряда причин: типа тканей, физиологи­ческого состояния организма, внешних факторов (температура, свет, химиче­ские вещества). Изучение влияния этих факторов на различные периоды митотического цикла с целью воздействия на него имеет большое практическое значение.

Амитоз — прямое деление клетки надвое путем перетяжки.
и этом делении морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная мембрана. Хромосомы не выявляются и равно­мерного распределения их не происхо­дит. Ядро делится на две относительно равные части без образования веретена деления. Равномерного рапределения генетического материала не происходит (из одной клетки образуются 2 неидентичные друг другу). Образовавшиеся клетки делиться митотически не могут. В норме у человека амитоз встречается в клетках специализированных тканей (зародышевые оболочки, фолликулярные клетки яичника), при необходимости быстрого восстановления тканей (после операций, травм ит.д.), в отживших стареющих клетках и др. При патологии у человека встречается в патологически измененных клетках, не способных в дальнейшем дать полноценные клетки (воспаления, злокачественный рост при опухолях).

Эндомитоз (гр. endon — внут­ри). При эндомитозе после репродук­ции хромосом деления клетки не про­исходит. Это приводит к увеличению числа хромосом иногда в десятки раз по сравнению с диплоидным набором, т. е. приводит к возникновению поли­плоидных клеток. Эндомитоз встре­чается в интенсивно функционирую­щих клетках различных тканей, на­пример в клетках печени.

Политения (гр. роlу — много). Политенией называется воспроизведе­ние в хромосомах тонких структур — хромонем, количество которых может увеличиваться многократно, достигая 1000 и более, но увеличения числа хромосом при этом не происходит. Хромосомы приобретают гигантские размеры. Политения наблюдается в некоторых специализированных клетках, например, в слюнных железах двукры­лых. При политении выпадают все фазы митотического цикла, кроме ре­продукции первичных нитей хромосом. Клетки с политенными хромосомами у дрозофилы используются для построе­ния цитологических карт генов в хро­мосомах.


Процесс деления клетки с момента ее активации называется пролиферацией. Иными словами, пролиферация – это размножение клеток, т.е. увеличение числа клеток (в культуре или ткани), происходящее путем митотических делений. Во взрослом организме человека клетки различных тканей и органов имеют неодинаковую способность к делению. Кроме того при старении интенсивность пролиферации клеток снижается (т.е. увеличивается интервал между митозами). Встречаются популяции клеток, полностью потерявшие свойство делиться. Это, как правило, клетки, находящиеся на терминальной стадии дифференцировки, например, зрелые нейроны, зернистые лейкоциты крови, кардиомиоциты. В этом отношении исключение составляют иммунные В- и Т-клетки памяти, которые, находясь в конечной стадии дифференцировки, при появлении в организме определенного стимула в виде ранее встречавшегося антигена, способны начать пролиферировать. В организме есть постоянно обновляющиеся ткани – различные типы эпителия, кроветворные ткани. В таких тканях существует пул клеток, которые постоянно делятся, заменяя отработавшие или погибающие типы клеток (например, клетки крипт кишечника, клетки базального слоя покровного эпителия, кроветворные клетки костного мозга).
кже в организме существуют клетки, которые не размножаются в обычных условиях, но вновь приобретают это свойство при определенных условиях, в частности при необходимости регенерации тканей и органов.
Процесс пролиферации клеток жестко регулируется как самой клеткой (регуляция клеточного цикла, прекращение или замедление синтеза аутокринных ростовых факторов и их рецепторов), так и ее микроокружением (отсутствие стимулирующих контактов с соседними клетками и матриксом, прекращение секреции и/или синтеза паракринных ростовых факторов). Нарушение регуляции пролиферации приводит к неограниченному делению клетки, что в свою очередь инициирует развитие онкологического процесса в организме. В опухолях атипичные клетки делятся митотическим способом. В результате деления образуются идентичные измененной клетки. Деление происходит многократно. В итоге опухоль быстро растет.

В результате нарушения пролиферации клеток возникают также различные иммунодефициты, анемии, кератоз и др.

С начала 60-х гг. появились новые взгляды на значение для старения и продолжительности жизни закономерностей клеточной пролиферации. На основании подсчета числа делений фибробластов, высеваемых в культуру ткани от эмбриона человека и от людей в возрасте 20 лет и выше, было сделано заключение о пределе клеточ­ных делений (лимит Хейфлика), которому соответствует видовая длительность жизни. Старение – свойство самих клеток, запрограммированное в геноме, т.к. наступает после определенного количества делений. Показано, что фибробласты мыши способны удваивать свою численность 14—28 раз, цыпленка —15—35, чело­века—40—60, черепахи—72—114 раз.


Источник: studopedia.ru

Митотический цикл. Митоз При митотическом делении имеет место равномерное распределение генетического материала родительской (материнской) клетки между двумя дочерними клетками, каждая из которых получает одну копию генных локусов всех материнских хромосом. При этом дочерняя клетка сохраняет численность диплоидного набора хромосом (2л) , характерную для материнской клетки. В свою очередь, дочерняя клетка после удвоения ее хроматина (синтеза ДНК и гистоновых белков) становится способной к следующему делению, приводящему к образованию двух новых клеточных копий. Интервал между окончанием деления родительской клетки и завершением деления ее дочерней клетки принято называть митотическим (клеточным) циклом. Митотический цикл подразделяют на четыре периода (фазы) : пресинтетический период, обозначаемый символом G1 (англ, gap — интервал) , синтетический период (S), постсинтетический (премитотический) период G2) и собственно деление клетки (митоз, или период М) . Последовательность этих периодов может быть представлена следующим образом: G1→ S→ G2 → M(рис. 3.1). Относительная продолжительность указанных периодов различается у организмов отдельных видов и в клетках разных тканей одного индивидуума Периоды G1, S и G2 принято объединять под названием «интерфаза».
едует, однако, заметить, что этот термин возник еще до открытия самих периодов. Первоначально под интерфазой понимали подготовительный этап (промежуток) , существующий между двумя митотическими делениями. Как было отмечено в предыдущей главе, во время митоза (в периоде М) наблюдается значительная конденсация хроматина, что позволяет идентифицировать отдельные хромосомы в клетке индивидуума с помощью световой микроскопии. При этом в зависимости от степени конденсации хроматина, расположения хромосом и других особенностей дифференцируют следующие друг за другом отдельные стадии митоза, а именно, — профазу, мета-фазу, анафазу и телофазу. Что касается интерфазных ядер, то в них происходит общая деконденсация хроматина, поэтому при использовании указанных методов в этом случае не удается выявить каких-либо оформленных хромосомных структур (за исключением участков структурного гетерохроматина и телец полового хроматина) . Поскольку эухроматинизация значительной части интерфазной хромосомы сопровождается повышением транскрипционной активности соответствующих генов, то в интерфазе митотического цикла метаболическая активность клетки является гораздо более высокой, чем во время самого митоза. Так, в периоде Gl происходит активный синтез молекул РНК, различных белков, АТФ и других веществ, что связано, в первую очередь, с подготовкой клетки к последующей репликации ДНК и синтезу гистоновых белков, осуществляемых в G1-периоде. К концу синтетического периода каждая хромосома клетки, оставаясь в деконденсированном состоянии, имеет удвоенное количество хроматина и представляет собой структуру, состоящую из двух одинаковых хроматид, объединенных центромерой. Такие хроматиды принято называть сестринскими, поскольку они содержат по идентичной копии одной молекулы ДНК (идентичные наборы сцепленных генов) . Таким образом, в периоде G1 каждая хромосома соматической клетки состоит из одной хроматиды (содержит одну молекулу ДНК) , а общее количество генетического материала диплоидного набора хромосом (2п) такой клетки обозначают символом 2с. После завершения синтеза ДНК и гистонов (в конце S-периода) количественное содержание двухроматидных хромосом и генетического материала клетки можно обозначить формулой 2n4с. Такое количественное соотношение сохраняется в периоде G2, когда в клетке идут метаболические процессы, связанные с ее подготовкой к делению, а также в профазе и метафазе митоза. В анафазе митоза происходит расщепление центромерного участка каждой из двухроматидных хромосом, приводящее к разделению сестринских хроматид и превращению их в самостоятельные хромосомы (формальное соотношение количества хромосом и молекул

Источник: touch.otvet.mail.ru

Размножение клеток

 

Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характерен как для одноклеточных, так и многоклеточных организмов.

 

Соматические клетки многоклеточных организмов размножаются путем митотического деления

Митоз: способ упорядоченного деления клеток, при котором каждая из двух дочерних клеток получает хромосомы в количестве и имеющие строение как у материнской клетке. При каждом митозе образуется копия каждой хромосомы и действует точный механизм их распределения между дочерними клетками.

В митотическом делении клетки различают две стороны:

· кариокинез (разделение исходного ядра на два дочерних)

· цитокинез (разделение цитоплазмы с образованием двух

дочерних клеток)

 

Кариокинез и цитокинез протекают синхронно

Митотический цикл — совокупность процессов, происходящих в клетке от одного деления до другого. Состоит из двух стадий:

· интерфаза (стадии покоя)

· митоз (стадии деления)

 

Термины «митоз» и «кариокинез» — синонимы

 

Интерфаза

предшествует митозу, в ней происходит синтез ДНК (длительность составляет не менее 90% клеточного цикла)

Различают три периода интерфазы;

ü пресинтетический (G1)

ü синтетический (S) —

ü постсинтетический (G2)

 

1 12-24 часа     Синтез ДНК (около 5 часов)     Около 4 часов     Митоз (около 1,5 часов)

Перечислите периоды митотического цикла Перечислите периоды митотического цикла Перечислите периоды митотического цикла Перечислите периоды митотического цикла Перечислите периоды митотического цикла

 

Митоз

Состоит из четырех фаз:

ü профаза

ü метафаза

ü анафазы

ü телофазы

 

 

Митотический цикл и митоз

 

Фазы Процесс, происходящий в клетке
Интерфа­за (фаза ме­жду делени­ями клеток)   Пресинтетический период (G1) Происходит накопление РНК и белков, в том числе и белков, необходимых для синтеза ДНК. Увеличивается количество митохондрий. Обычно этот период длится 12-24 часа.  
Синтетический период (S) Синтез (репликация) ДНК, в результате чего количество ее удваивается; синтез РНК и белков. Т.о наиболее фундаментальной особенностью S-периода является репликация генов и удвоение набора генов каждой дуплицированной хромосомы (двухроматидные хромосомы). Длительность S-периода обычно составляет около 5 часов.  
Постсиитетический период (G2) Остановка синтеза ДНК и накопление энергии; продолжается синтез РНК и белков, формирующий нити веретена деления. Длительность составляет 3—6 часов.
Ми­тоз   Профаза (пер­вая фаза деления) Двухроматидные хромосомы спирализуются, ядрышки растворяют­ся, центриоли расходятся, ядерная оболочка растворяется, образуют­ся нити веретена деления (построено из микротрубочек и различных белков). Длительность составляет примерно 30-60 минут.
Метафаза (фа­за скопления хро­мосом) Нити веретена деления присоединяются к центромерам хромо­сом, двухроматидные хромосомы сосредоточиваются на экваторе клетки. Длительность метафазы составляет 2—10 минут
Анафаза (фа­за расхождения хромосом) Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полю­сам клетки. Анафаза длится 2-3 минуты
  Телофаза (фа­за окончания де­ления) Однохроматидные хромосомы деспирализуются, сформировывает­ся ядрышко, восстанавливается ядерная оболочка, на экваторе на­чинает закладываться перегородка между клетками, растворяются нити веретена деления Образуется ядерная оболочка, вновь появляется ядрышко. Длительность составляет 20-30 минут.  

 

 

Продолжительность митотических циклов разных клеток различна и составляет от нескольких часов до нескольких дней. Однако она зависит от типа тканей, физиологического состояния, внешних факторов (температура, свет).

Разные ткани характеризуются разной митотической активностью.

В зависимости от митотической активности различают ткани:

стабильные (клетки не делятся, количество клеточной ДНК постоянно)

Пример: клетки центральной и периферической нервной системы. В этих клетках происходят лишь возрастные изменения

растущие (клетки живут всю жизнь, но среди последних имеются такие, которые делятся посредством митоза). Приводит к увеличению размеров органов.

Пример: ткани почек, желез внутренней секреции, скелетная и сердечная мускулатуры

обновляющиеся (многие клетки подвержены митозам, в результате чего погибающие клетки компенсируются вновь образующимися)

Пример: клетки желудочно-кишечного, дыхательного и мочеполового трактов, эпидермиса, костного мозга, семенников

 

 

Подсчитано, что организм взрослого человека ежедневно теряет около 1-2% своих клеток в результате их гибели.

 

 

Амитоз

Амитоз — прямое деление ядра клетки.

При амитозе сохраняется интерфазное состояние ядра, ядрышко, ядерная мембрана.

Ядро клетки делится на две части без формирования веретена, в результате чего образуется двухъядерная клетка.

Амитоз — аномальный механизм в размножении клеток (встречается иногда в клетках скелетной мускулатуры, кожного эпителия, соединительной ткани).

 

 

Мейоз

Происходит при образовании гамет (сперматозоидов и яйцеклеток) т

Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются.

Перечислите периоды митотического цикла При мейозе происходит кроссинговер— обмен гомологичными участками хромосом.  

 

Первое деление мейоза

Новые хромосомы расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом отличается от исходного — в них произошла рекомбинация.

Рекомбинация — перераспределение (перекомбинирование) генетического материала родителей, в результате чего у потомков появляются новые сочетания генов, определяющие новые сочетания признаков.

Это основа комбинативной изменчивости. У эукариотических организмов, размножающихся половым путём, рекомбинация происходит в мейозе при независимом расхождении хромосом и при обмене гомологичными участками между гомологичными хромосомами (кроссинговере). Возможна и т. н. незаконная рекомбинация, когда структурные перестройки затрагивают негомологичные хромосомы. Рекомбинации бывают и в половых, и, гораздо реже, в соматических клетках.

Второе деление мейоза

происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором.

Из одной диплоидной клетки образуются четыре гаплоидных клетки.

В каждом деление мейоза выделяют четыре стадии:

ü профаза

ü метафаза

ü анафаза

ü телофаза

 

Перечислите периоды митотического цикла

Схема мейоза.

Красным обозначены материнские хромосомы, синим — отцовские.

 

Клетки-организмы (одноклеточные организмы) размножаются простым делением надвое (бактерии, саркодовые), множественным делением (споровики и др.) или другим путем. Поэтому у бактерий и одноклеточных животных удвоение клеток представляет собой размножение их как самостоятельных организмов, поскольку из исходной формы (организма) образуется две новые клетки, каждая из которых является организмом. Каждая дочерняя клетка (организм) получает полную генетическую информацию, несомую исходной клеткой-организмом.

 

Мейоз

Фазы Процесс, происходящий в клетке
Первое (I) мейотическое деление профаза I   · Спирализация хромосом Сближение гомологичных хромосом (точка каждой хроматиды одной хромосомы совме­щается с соответствующей точкой хроматиды другой, гомологичной хромосомы) Процесс точного и тесного сближения гомо­логичных хромосом в мейозе называют конъюгацией. · Кроссинговер Кроссинговеробмен участками гомологичных хромосом в процессе клеточного деления, что приводит к новому сочетанию генов и к изменению фенотипа.
метафаза I Спирализация хромосом максимальна Конъюгированные хромосомы располагаются по экватору. К ним прикрепляются нити веретена деления.
анафаза I хромосомы расходятся к различным полюсам. хромосомный набор гаплоиден каждая хромосома состоит из двух хроматид (1n2с)
телофаза I восстанавливается ядерная оболочка ма­теринская клетка делится на две дочерние    
  Второе (II) мейотическое деление. Протекает так же, как обычное митотическое деление, с той лишь разницей, что делящаяся клетка гаплоидна (1n2с).
профаза II по периферии ядра располагаются нитевидные хромосомы — униваленты, образуется веретено деления, хромосомы, приближаются к плоскости экватора
метафаза II хромосомы выстраиваются вдоль экватора. К ним подходят нити веретена деления
  анафаза II хроматиды расходятся и увлекаются нитями веретена от плоскости экватора к противоположным полюсам.
  телофаза II хромосомы истончаются, образуя нити, и у полюсов формируются ядра дочерних клеток.

 

Биологическое значение мейоза:

ü образуются хромосомы обновленного генетического состава благодаря кроссинговеру между гомологичными хромосомами;

ü достигается наследственная разнородность гамет, так как во время первого мейотического деления из пары гомологичных хромосом в одну из двух гамет отходит материнская хромосома, в другую — отцовская;

 

ü после оплодотворения гаплоидные гаметы (1n1с) от отца и матери создают диплоидное ядро зиготы с числом хромосом, присущим данному виду.

 

 

мейоз — основа комбинативной генетической изменчивости

РАЗМНОЖЕНИЕ

Размножение — это свойство организмов производить потомство или способность организмов к самовоспроизведению.

 

Различают два основных способа размножения:

· бесполое

· половое

 

Перечислите периоды митотического цикла

 

а – бесполое размножение (одна особь производит двух или большее число потомков); б – половое размножение (две гаметы от двух родительских особей, соединяясь, дают начало новому организму)

 

 

Перечислите периоды митотического цикла


Полове размножение, или амфимиксис (от греч. amphi — с обеих сторон, mixis — смешение).— участвует два родителя, каждый из которых имеет собственную репродуктивную систему и продуцирует гаметы.

Следовательно, при половом размножении имеет место смешение наследственных факторов.

 

Бесполое размножение, или апомиксис (от греч. аро — без, mixis — смешение), — процесс, в котором участвует лишь один родитель (клетка или многоклеточный организм).

 

Половое размножение

встречается у:

· одноклеточных

· многоклеточных (растений и животных).

 

Формы полового процесса:

· Конъюгация

· копуляция

· образованием гамет

 

Конъюгация у бактерий — способ переноса генетического материала от одной бактериальной клетки к другой

 

Копуляция — у одноклеточных животных (паразитические споровики)

заключается в слиянии двух особей, которые являются гаметами, в одну (споровая форма), из которой затем развивается новый организм.

 

У многоклеточных организмов половое размножение связано с образованием гамет, оплодотворением и образованием зигот

 

Гаметогенез— процесс образования (роста и дифференциации) мужских и женских половых клеток Гаметогенез основан на мейозе Сперматогонии — диплоидные соматические клетки из которых образуются сперматозоиды Овогонии — соматические клетки, из которых образуются яйцеклетки   вследствие неравномерного мейоза лишь из одной клетки получается жизнеспособная яйцеклетка. Три другие мельче, превращаются в редукционные тельца и вскоре погибают.   Схема гаметогенеза а – сперматогенез; б – овогенез Перечислите периоды митотического цикла
   

 

Биологический смысл образования только одной яйцеклетки и гибели трех полноценных (с генетической точки зрения) направительных телец обусловлен необходимостью сохранения в одной клетке всех запасных питательных веществ, которые понадобятся для развития будущего зародыша.

 

 

Чередование поколений

Закономерная смена в жизненном цикле организмов генераций, различающихся способом размножения. В этом случае одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.

Характерно для организмов, размножающихся как половым, так и бесполым путем.

Различают чередование поколений:

· первичное

· вторичное

 

Первичное чередование поколений заключается в регулярном чередовании полового и бесполого поколений

 

Встречается:

— простейших

— водорослей

— высших растений.

 

У растений половое поколение представлено гаметофитом, бесполое— спорофитом.

 

Перечислите периоды митотического цикла Чередование поколений у высших споровых растений   Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита — диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.

 

Чередование поколений:

· изоморфное — сходство по морфологии и продолжительности жизни между спорофитом и гаметофитом

· гетероморфное — различия по этим признакам

 

Изоморфная смена поколений (ульва) Гетероморфная смена поколений плаун)
Перечислите периоды митотического цикла Перечислите периоды митотического цикла Перечислите периоды митотического цикла  

 

Источник: megaobuchalka.ru

Понятие «митотический цикл»

Все процессы, которые происходят в клетке, начиная от одного деления до другого, и заканчивая получением двух дочерних клеток, называется митотическим циклом. Жизненным циклом клетки также является состояние покоя и период выполнения своих прямых функций.

К основным стадиям митоза относятся:

  • Самоудвоение или редупликация генетического кода, который передаётся от материнской клетки к двум дочерним. Процесс влияет на структуру и образование хромосом.
  • Клеточный цикл – состоит из четырёх периодов: пресинтетического, синтетического, постсинтетического и, собственно, митоза.

Первые три периода (пресинтетический, синтетический и постсинтетический) относятся к интерфазе митоза.

Процесс непосредственного деления клетки, митоз, происходит в четыре фазы, соответствуя такой последовательности:

  • Профаза;
  • Метафаза;
  • Анафаза;
  • Телофаза.

Перечислите периоды митотического цикла

Рис. 1. Фазы митоза

Познакомиться с кратким описанием каждой фазы можно в таблице «Фазы митоза», которая представлена далее.

Нетипичные формы митоза

В природе иногда встречаются и нетипичные формы митоза:

  • Амитоз – способ прямого деления ядра, при котором сохраняется строение ядра, ядрышко не распадается, хромосомы при этом не просматриваются. В результате получаем двухъядерную клетку.

Перечислите периоды митотического цикла

Рис. 2. Амитоз

  • Политения – кратно увеличиваются клетки ДНК, но без увеличения содержания хромосом.
  • Эндомитоз – в ходе процесса после репликации ДНК нет разделения хромосом на дочерние хроматиды. При этом число хромосом увеличивается в десятки раз, возникают полиплоидные клетки, которые могут привести к мутации.

Перечислите периоды митотического цикла

Рис. 3. Эндомитоз

Источник: obrazovaka.ru

Размножение клеток

 

Размножение или пролиферация (от лат. proles — потомство, ferre — нести) клеток — это процесс, который приводит к росту и обновлению клеток. Данный процесс характерен как для одноклеточных, так и многоклеточных организмов.

 

Соматические клетки многоклеточных организмов размножаются путем митотического деления

Митоз: способ упорядоченного деления клеток, при котором каждая из двух дочерних клеток получает хромосомы в количестве и имеющие строение как у материнской клетке. При каждом митозе образуется копия каждой хромосомы и действует точный механизм их распределения между дочерними клетками.

В митотическом делении клетки различают две стороны:

· кариокинез (разделение исходного ядра на два дочерних)

· цитокинез (разделение цитоплазмы с образованием двух

дочерних клеток)

 

Кариокинез и цитокинез протекают синхронно

Митотический цикл — совокупность процессов, происходящих в клетке от одного деления до другого. Состоит из двух стадий:

· интерфаза (стадии покоя)

· митоз (стадии деления)

 

Термины «митоз» и «кариокинез» — синонимы

 

Интерфаза

предшествует митозу, в ней происходит синтез ДНК (длительность составляет не менее 90% клеточного цикла)

Различают три периода интерфазы;

ü пресинтетический (G1)

ü синтетический (S) —

ü постсинтетический (G2)

 

1 12-24 часа     Синтез ДНК (около 5 часов)     Около 4 часов     Митоз (около 1,5 часов)

Перечислите периоды митотического цикла

 

Митоз

Состоит из четырех фаз:

ü профаза

ü метафаза

ü анафазы

ü телофазы

 

 

Митотический цикл и митоз

 

Фазы Процесс, происходящий в клетке
Интерфа­за (фаза ме­жду делени­ями клеток)   Пресинтетический период (G1) Происходит накопление РНК и белков, в том числе и белков, необходимых для синтеза ДНК. Увеличивается количество митохондрий. Обычно этот период длится 12-24 часа.  
Синтетический период (S) Синтез (репликация) ДНК, в результате чего количество ее удваивается; синтез РНК и белков. Т.о наиболее фундаментальной особенностью S-периода является репликация генов и удвоение набора генов каждой дуплицированной хромосомы (двухроматидные хромосомы). Длительность S-периода обычно составляет около 5 часов.  
Постсиитетический период (G2) Остановка синтеза ДНК и накопление энергии; продолжается синтез РНК и белков, формирующий нити веретена деления. Длительность составляет 3—6 часов.
Ми­тоз   Профаза (пер­вая фаза деления) Двухроматидные хромосомы спирализуются, ядрышки растворяют­ся, центриоли расходятся, ядерная оболочка растворяется, образуют­ся нити веретена деления (построено из микротрубочек и различных белков). Длительность составляет примерно 30-60 минут.
Метафаза (фа­за скопления хро­мосом) Нити веретена деления присоединяются к центромерам хромо­сом, двухроматидные хромосомы сосредоточиваются на экваторе клетки. Длительность метафазы составляет 2—10 минут
Анафаза (фа­за расхождения хромосом) Центромеры делятся, однохроматидные хромосомы растягиваются нитями веретена деления к полю­сам клетки. Анафаза длится 2-3 минуты
  Телофаза (фа­за окончания де­ления) Однохроматидные хромосомы деспирализуются, сформировывает­ся ядрышко, восстанавливается ядерная оболочка, на экваторе на­чинает закладываться перегородка между клетками, растворяются нити веретена деления Образуется ядерная оболочка, вновь появляется ядрышко. Длительность составляет 20-30 минут.  

 

 

Продолжительность митотических циклов разных клеток различна и составляет от нескольких часов до нескольких дней. Однако она зависит от типа тканей, физиологического состояния, внешних факторов (температура, свет).

Разные ткани характеризуются разной митотической активностью.

В зависимости от митотической активности различают ткани:

стабильные (клетки не делятся, количество клеточной ДНК постоянно)

Пример: клетки центральной и периферической нервной системы. В этих клетках происходят лишь возрастные изменения

растущие (клетки живут всю жизнь, но среди последних имеются такие, которые делятся посредством митоза). Приводит к увеличению размеров органов.

Пример: ткани почек, желез внутренней секреции, скелетная и сердечная мускулатуры

обновляющиеся (многие клетки подвержены митозам, в результате чего погибающие клетки компенсируются вновь образующимися)

Пример: клетки желудочно-кишечного, дыхательного и мочеполового трактов, эпидермиса, костного мозга, семенников

 

 

Подсчитано, что организм взрослого человека ежедневно теряет около 1-2% своих клеток в результате их гибели.

 

 

Амитоз

Амитоз — прямое деление ядра клетки.

При амитозе сохраняется интерфазное состояние ядра, ядрышко, ядерная мембрана.

Ядро клетки делится на две части без формирования веретена, в результате чего образуется двухъядерная клетка.

Амитоз — аномальный механизм в размножении клеток (встречается иногда в клетках скелетной мускулатуры, кожного эпителия, соединительной ткани).

 

 

Мейоз

Происходит при образовании гамет (сперматозоидов и яйцеклеток) т

Исходная клетка имеет диплоидный набор хромосом, которые затем удваиваются.

Перечислите периоды митотического цикла При мейозе происходит кроссинговер— обмен гомологичными участками хромосом.  

 

Первое деление мейоза

Новые хромосомы расходятся и образуются клетки с диплоидным набором хромосом, но состав этих хромосом отличается от исходного — в них произошла рекомбинация.

Рекомбинация — перераспределение (перекомбинирование) генетического материала родителей, в результате чего у потомков появляются новые сочетания генов, определяющие новые сочетания признаков.

Это основа комбинативной изменчивости. У эукариотических организмов, размножающихся половым путём, рекомбинация происходит в мейозе при независимом расхождении хромосом и при обмене гомологичными участками между гомологичными хромосомами (кроссинговере). Возможна и т. н. незаконная рекомбинация, когда структурные перестройки затрагивают негомологичные хромосомы. Рекомбинации бывают и в половых, и, гораздо реже, в соматических клетках.

Второе деление мейоза

происходит без синтеза ДНК, поэтому при этом делении количество ДНК уменьшается вдвое. Из исходных клеток с диплоидным набором хромосом возникают гаметы с гаплоидным набором.

Из одной диплоидной клетки образуются четыре гаплоидных клетки.

В каждом деление мейоза выделяют четыре стадии:

ü профаза

ü метафаза

ü анафаза

ü телофаза

 

Перечислите периоды митотического цикла

Схема мейоза.

Красным обозначены материнские хромосомы, синим — отцовские.

 

Клетки-организмы (одноклеточные организмы) размножаются простым делением надвое (бактерии, саркодовые), множественным делением (споровики и др.) или другим путем. Поэтому у бактерий и одноклеточных животных удвоение клеток представляет собой размножение их как самостоятельных организмов, поскольку из исходной формы (организма) образуется две новые клетки, каждая из которых является организмом. Каждая дочерняя клетка (организм) получает полную генетическую информацию, несомую исходной клеткой-организмом.

 

Мейоз

Фазы Процесс, происходящий в клетке
Первое (I) мейотическое деление профаза I   · Спирализация хромосом Сближение гомологичных хромосом (точка каждой хроматиды одной хромосомы совме­щается с соответствующей точкой хроматиды другой, гомологичной хромосомы) Процесс точного и тесного сближения гомо­логичных хромосом в мейозе называют конъюгацией. · Кроссинговер Кроссинговеробмен участками гомологичных хромосом в процессе клеточного деления, что приводит к новому сочетанию генов и к изменению фенотипа.
метафаза I Спирализация хромосом максимальна Конъюгированные хромосомы располагаются по экватору. К ним прикрепляются нити веретена деления.
анафаза I хромосомы расходятся к различным полюсам. хромосомный набор гаплоиден каждая хромосома состоит из двух хроматид (1n2с)
телофаза I восстанавливается ядерная оболочка ма­теринская клетка делится на две дочерние    
  Второе (II) мейотическое деление. Протекает так же, как обычное митотическое деление, с той лишь разницей, что делящаяся клетка гаплоидна (1n2с).
профаза II по периферии ядра располагаются нитевидные хромосомы — униваленты, образуется веретено деления, хромосомы, приближаются к плоскости экватора
метафаза II хромосомы выстраиваются вдоль экватора. К ним подходят нити веретена деления
  анафаза II хроматиды расходятся и увлекаются нитями веретена от плоскости экватора к противоположным полюсам.
  телофаза II хромосомы истончаются, образуя нити, и у полюсов формируются ядра дочерних клеток.

 

Биологическое значение мейоза:

ü образуются хромосомы обновленного генетического состава благодаря кроссинговеру между гомологичными хромосомами;

ü достигается наследственная разнородность гамет, так как во время первого мейотического деления из пары гомологичных хромосом в одну из двух гамет отходит материнская хромосома, в другую — отцовская;

 

ü после оплодотворения гаплоидные гаметы (1n1с) от отца и матери создают диплоидное ядро зиготы с числом хромосом, присущим данному виду.

 

 

мейоз — основа комбинативной генетической изменчивости

РАЗМНОЖЕНИЕ

Размножение — это свойство организмов производить потомство или способность организмов к самовоспроизведению.

 

Различают два основных способа размножения:

· бесполое

· половое

 

Перечислите периоды митотического цикла

 

а – бесполое размножение (одна особь производит двух или большее число потомков); б – половое размножение (две гаметы от двух родительских особей, соединяясь, дают начало новому организму)

 

 

Перечислите периоды митотического цикла


Полове размножение, или амфимиксис (от греч. amphi — с обеих сторон, mixis — смешение).— участвует два родителя, каждый из которых имеет собственную репродуктивную систему и продуцирует гаметы.

Следовательно, при половом размножении имеет место смешение наследственных факторов.

 

Бесполое размножение, или апомиксис (от греч. аро — без, mixis — смешение), — процесс, в котором участвует лишь один родитель (клетка или многоклеточный организм).

 

<== предыдущая лекция | следующая лекция ==>
Мускулатура таза, строение, функция, пластическое значение. Пластика над опорной и свободной ногой |  

Источник: poznayka.org