По способу получения энергии все живые организмы делятся на гетеротрофные и автотрофные. Первые из них питаются уже готовыми органическими веществами, а вторые синтезируют органические соединения из неорганических. Для обеспечения процессов биосинтеза большинство автотрофных организмов используют энергию солнечного света (фотосинтетики, фототрофы). Значительно меньшая группа относится к хемосинтетикам (хемотрофам).

Что такое хемосинтез

Автором открытия явления хемосинтеза (1887 г.) является известный русский микробиолог Виноградский С. Н. Ему удалось выделить из почвы некоторые микроорганизмы, которые для построения органических соединений используют углекислый газ, а энергию получают в результате химических реакций по окислению молекулярного водорода, неорганических соединений сурьмы, железа, азота или серы. Это совершенно иной тип живых организмов, которые Виноградский назвал «хемолитоавтотрофными», а тип их жизнедеятельности – «минеральным дыханием». В настоящее время этот процесс называется хемосинтезом.

Для кого характерен такой тип питания


Хемосинтез используется только некоторыми прокариотами. Практически все они обитают в местах недоступных для жизни других организмов, куда не проникают кванты света и где отсутствует кислород. Например, они живут на дне глубоких разломов земной коры и на большой глубине (3-4 км) океанов.

К хемотрофным организмам относятся:

  1. Тионовые бактерии. Обладают способностью окислять молекулярную серу, сульфиды, сульфиты и тиосульфаты до серной кислоты. Внутри клеток отложение серы не наблюдается. Практически все представители тионовых бактерий способны выживать в экстремально кислой среде с pH до 3 и менее. Они способны осуществлять окисление двухвалентного и металлического железа, выщелачивать из руд тяжелые металлы и выдерживать их высокие концентрации.
  2. Водородные бактерии. Энергию получают за счет окисления молекулярного водорода. Являются умеренными термофилами и способны выживать при температуре 50-60° С.
  3. Нитрифицирующие бактерии. Способны окислять остающийся в результате гниения аммиак до азотистой и азотной кислот. Последние вступают в реакции с минералами почвы, в результате которых образуются нитраты и нитриты.
  4. Серобактерии. Получают энергию за счет окисления сероводорода до молекулярной серы или сульфатов. В отличии от тионовых способны накапливать серу внутри своих клеток.
  5. Железобактерии. Их жизнедеятельность напрямую связана с реакцией окисления двухвалентного железа до трехвалентного.

Особенности процесса

Для синтеза органических соединений из неорганических и получения энергии бактерии-хемотрофы имеют специальный ферментный аппарат. 

Нитрофицирующие азотофиксирующие бактерии окисляют аммиак до азотной кислоты, которая в дальнейшем вступает во взаимодействие с минералами почвы с образованием нитратов. Химический процесс протекает в две стадии:

  1. (2NH_3+3O_3→2HNO_2+2H_2O+158) ккал.
  2. (2HNO_2+O_2→2HNO_3+38) ккал.

Серобактерии получают энергию за счет реакции окисления сероводорода до молекулярной серы:

(2H_2S+O_2→2H_2O+2S)

Если реакция протекает в условиях недостатка сероводорода, то молекулярная сера подвергается дальнейшему окислению:

(2S+3O_2+2H_2O→2H_2SO_4+115) ккал

Железобактерии преобразуют двухвалентное железо в трехвалентное:

(4FeCO_3+O_2+6H_2O→4Fe(OH)_3+4CO_2+81) ккал

Образующаяся энергия накапливается в бактериальных клетках в виде молекул АТФ. Они в дальнейшем используются для образования из углекислого газа глюкозы и других органических веществ. Процесс аналогичен темновой фазе фотосинтеза и описывается следующим уравнением химической реакции:

(6CO_2 + 24H+ + AТФ ‎‎→ C_6H_{12}O_6 + 6H_2O)

Отличие от фотосинтеза

И хемосинтез, и фотосинтез являются способами автотрофного питания. Их сходство заключается в образовании энергии, накоплении ее в виде молекул АТФ и последующем использовании для синтеза органических соединений.


Но эти два процесса имеют и свои различия. Хемосинтез характерен только для небольшой группы архей и бактерий. Если при фотосинтезе источником энергии выступают кванты света, то при хемосинтезе – энергия, выделяющаяся в ходе различных окислительно-восстановительных реакций. Признаком хемотрофиков является отсутствие хлорофилла, который обязательно присутствует у фототропиков.

При осуществлении синтеза органики фотосинтетики используют в качестве источника углерода исключительно углекислый газ. В отличии от них хемосинтетики способны усваивать углерод и из других соединений: уксусной кислоты, карбонатов, метанола, муравьиной кислоты, угарного газа.

Роль и значение в круговороте веществ

Процесс хемосинтеза играет огромную роль во многих экологических процессах:

  • серобактерии образуют серные месторождения, а за счет образования серной кислоты выщелачивают руды, ускоряют разрушение горных пород; также находят применение на очистных сооружениях, очищая промышленные стоки от серы;
  • нитрофицирующие бактерии осуществляют круговорот азота в биосфере, повышают урожайность сельскохозяйственных культур;
  • железобактерии образуют отложения болотных железных руд;
  • водородные бактерии окисляют водород, накапливающийся в почве результате жизнедеятельности некоторых микроорганизмов, в народном хозяйстве их используют для получения кормового и пищевого белка.

Источник: wiki.fenix.help

фотосинтетические пигменты

Фотосинтез может осуществляться только с помощью определенных веществ — пигментов.

Фотосинтетические пигменты высших растений делятся на две группы: хлорофиллы и каротиноиды.

Роль этих пигментов состоит в том, чтобы поглощать свет и превращать его энергию в химическую энергию. Пигменты локализованы в мембранах хлоропластов, и хлоропласты обычно располагаются в клетке так, чтобы их мембраны находились под прямым углом к источнику света, что гарантирует максимальное поглощение света.

Данные о наличии у красных водорослей хлорофилла d в настоящее время не подтверждаются — по всей видимости, в экспериментах пробы были загрязнены цианобактериями, у которых этот тип хлорофилла действительно встречается. Однако во многих источниках можно по-прежнему встретить информацию о наличии хлорофилла d у красных водорослей.

У растений в фотосинтезе участвует пигмент хлорофилл, который содержится в хлоропластах на мембранах тилакоидов. Хлорофилл придает хлоропластам и всему растению зеленую окраску.


По химическому строению хлорофилл напоминает белок крови — гемоглобин. Он имеет такое же порфириновое кольцо, только у гемоглобина в центре этого кольца находится атом железа, а у хлорофилла — магний. Порфириновое кольцо представляет собой почти плоскую пластинку, от которой отходят две органических цепочки, одна из которых очень длинная, отходит под углом, и с ее помощью хлорофилл крепится к мембранам.

Уникальное свойство хлорофилла: он умеет поглощать энергию солнечного света, переходя в возбужденное состояние.

Хлорофиллы поглощают главным образом красный и сине-фиолетовый свет. Зеленый свет они отражают и потому придают растениям характерную зеленую окраску, если только ее не маскируют другие пигменты. Существует несколько форм этого пигмента, которые различаются своим расположением в мембране. Каждая форма слегка отличается от других и по положению максимума поглощения в красной области; например, этот максимум может быть при 670, 680, 690 или 700 нм.

Хлорофилл а — единственный пигмент, который имеется у всех фотосинтезирующих растений и играет у них центральную роль в фотосинтезе.


Спектры поглощения хлорофиллов a и b и спектр каротиноидов.

Каротиноиды — пигменты желтого, красного и оранжевого цвета. Они придают окраску цветкам и плодам растений. Каротиноиды постоянно присутствуют в листьях, но незаметны из-за присутствия хлорофилла. Зато осенью, когда хлорофилл разрушается, каротиноиды становятся хорошо видны. Именно они придают листьям желтую и красную окраску.

Функции каротиноидов:

  • поглощают солнечный свет (особенно в коротковолновой — сине-фиолетовой — части спектра) и поглощенную энергию передают хлорофиллу;
  • защищают хлорофилл от избытка света и от окисления кислородом, выделяющимся при фотосинтезе.

фотосинтез

Процесс фотосинтеза включает 2 фазы:

световая фаза:

  • на свету;
  • на мембранах тилакоидов;

темновая фаза:

  • на свету и в темноте;
  • в строме хлоропласта.

CВЕТОВАЯ ФАЗА ФОТОСИНТЕЗА


В хлоропластах содержится очень много молекул хлорофилла. Сам процесс происходит примерно в 1 % молекул хлорофилла. Другие же молекулы хлорофилла, каротиноидов и других веществ образуют особые антенные, а также светособирающие комплексы (ССК). Они, как антенны, поглощают кванты света и передают возбуждение в особые реакционные центры. Эти центры находятся в фотосистемах, которых у растений две: фотосистема II и фотосистема I. В них имеются особые молекулы хлорофилла: соответственно, в фотосистеме II — P680, а в фотосистеме I — P700. Они поглощают свет именно такой длины волны (680 и 700 нм).

  • Молекулы хлорофилла двух фотосистем поглощают квант света. Один электрон каждой из них переходит на более высокий энергетический уровень (возбуждается).
  • Возбужденные электроны обладает очень высокой энергией. Они отрываются и поступают в особую цепь переносчиков в мембранах тилакоидов — молекулы НАДФ+, превращая их в восстановленный НАДФ. Таким образом, энергия света превращается в энергию восстановленного переносчика.
  • В молекулах хлорофилла на месте электронов после их отрыва образуются «дырки» с положительным зарядом.
  • Фотосистема I восполняет потерю электронов через систему переносчиков электронов от фотосистемы II.
  • Фотосистема II забирает электрон у воды (фотолиз воды), при этом образуются ионы водорода.
  • Фотолиз воды — процесс распада воды под действием солнечного света.

  • Побочным продуктом распада воды является кислород, выделяющийся в атмосферу.
  • НН+, образовавшиеся при фотолизе воды, переносятся в полость тилакоида.
  • В полости тилакоида накапливается большой избыток ионов водорода, что приводит к созданию на мембране тилакоида крутого градиента концентрации этих ионов.
  • Он используется ферментом АТФ-синтетазой для синтеза АТФ из АДФ и фосфата.
  • Происходит перенос ионов водорода НН+ через мембрану восстановленным переносчиком НАДФ (никотинамидадениндинуклеотидфосфатом) с образованием НАДФ*Н.

Таким образом, энергия света запасается в световой фазе фотосинтеза в виде двух типов молекул: восстановленного переносчика НАДФ*Н и макроэргического соединения АТФ. Кислород, выделяющийся при этом, является с точки зрения фотосинтеза побочным продуктом.

Роль световой фазы:

  • перенос протонов водорода через систему переносчиков с образованием энергии АТФ;
  • образование НАДФ*Н;
  • выделение молекулярного кислорода в атмосферу.

ТЕМНОВАЯ ФАЗА ФОТОСИНТЕЗА

Для темновой фазы фотосинтеза обязательными компонентами являются АТФ и НАДФ*Н (из световой фазы), углекислый газ (из атмосферы) и вода. Происходит в строме хлоропласта.


В темновой фазе с участием АТФ и НАДФ*Н происходит восстановление CO2 до глюкозы (C6H12O6).

Хотя свет не требуется для осуществления данного процесса, он участвует в его регуляции.

Растение постоянно поглощает углекислый газ из атмосферы. Для этой цели на поверхности листа имеются специальные структуры — устьица. Когда они открываются, CO2 поступает внутрь листа, растворяется в воде и восстанавливается до глюкозы с помощью НАДФ и АТФ.

Избыток глюкозы запасается в виде крахмала. Именно в виде этих органических веществ растение накапливает энергию. Только небольшая их часть остается в листе и используется для его нужд. Остальные же углеводы путешествуют по ситовидным трубкам флоэмы по всему растению и поступают именно туда, где больше всего нужна энергия, например в точки роста.

Суммарное уравнение фотосинтеза выглядит следующим образом:

6СО2 + 6Н2О+ энергия света → С6Н12О6 + 6О2.

ЗНАЧЕНИЕ ФОТОСИНТЕЗА

  • Фотосинтез является основным источником органического вещества на Земле, то есть обеспечивает живые организмы веществом и энергией.
  • Он служит источником кислорода, составляющего 20 % атмосферы Земли. Весь атмосферный кислород образовался в результате фотосинтеза. До появления организмов, осуществляющих фотосинтез с выделением кислорода (около 3 млрд лет назад), атмосфера Земли не содержала этого газа.

хемосинтез

ОПРЕДЕЛЕНИЕ

Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ служит окисление неорганических соединений.

К хемосинтетикам (хемотрофам) относятся только некоторые бактерии и археи.

Явление хемосинтеза было открыто в 1887 г. русским ученым С. Н. Виноградским.

Процесс хемосинтеза, при котором из CO2 образуется органическое вещество, протекает аналогично темновой фазе фотосинтеза, только используется АТФ, полученный не из солнечной энергии, а из энергии химических связей неорганического вещества (при окислении серы, железа, аммиака и т.п.).

Благодаря жизнедеятельности бактерий-хемосинтетиков в природе накапливаются большие запасы селитры и болотной руды.

ХЕМОСИНТЕЗИРУЮЩИЕ БАКТЕРИИ

  • Нитрифицирующие бактерии получают энергию для син­теза органических веществ, окисляя аммиак до азотистой, а затем до азотной кислоты:

2NH3 + 3O2 → 2HNO2 + 2H20 + Q;
2HNO2 + O2 → 2HNO3 + Q.

  • Серобактерии получают энергию, окисляя сероводород до сульфатов:

2H2S + 02 → 2H20 + 2S + Q;
S+ 3O2 + 2H2O → 2H2SO4 + Q.

  • Водородные бактерии получают энергию, окисляя водород до воды:

2НН2 + O2 → 2H2O + Q.

  • Железобактерии получают энергию, окисляя Fe2+ до Fe3+:

4Fe(HCO3)2+6H_{2}O$ + 02 → 4Fe(OH)3 + 4H2CO3 +4CO2 + Q.

При этой реакции энергии выделяется немного, поэтому железобактерии окисляют большое количество закисного железа.

Полученная в реакциях окисления неорганических соединений энергия переводится в энергию макроэнергетических связей АТФ.

РОЛЬ ХЕМОСИНТЕТИКОВ

  • участвуют в круговороте серы, азота, железа и др.;
  • уничтожают в природе ядовитые вещества: аммиак и сероводород;
  • нитрифицирующие бактерии превращают аммиак в нитриты и нитраты, усваиваемые растениями;
  • серобактерии используются для очистки сточных вод.

Хемоорганогетеротрофы

Хемоорганогетеротрофы — организмы, использующие для синтеза собственных органических веществ энергию, получаемую при окислении органических веществ пищи в процессе дыхания. К хемоорганогетеротрофам относятся животные, грибы и некоторые бактерии (например, клубеньковые азотфиксирующие бактерии).

Источник: vk.com

Типы питания

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ — пища) — организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος — иной + τροφή — пища) — организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις — смешение + τροφή — пища) — организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез

Фотосинтез (греч. φῶς — свет и σύνθεσις — синтез) — сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός — зелёный и φύλλον — лист) — зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А. Тимирязев: «Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом. Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического»

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O —> H+ + OH

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH —> 2H2O + O2

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны — с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма — НАФД+ превращается в восстановленную — НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 — в результате фотолиза воды
  • АТФ — универсальный источник энергии
  • НАДФ∗H2 — форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью — вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии — сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений. Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение
Хемосинтез (греч. chemeia – химия + synthesis — синтез)

Хемосинтез — автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем — нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии — окисляют H2S —> S 0 —> (S+4O3)2- —> (S+6O4)2-
  • Железобактерии — окисляют Fe+2 —>Fe+3
  • Водородные бактерии — окисляют H2 —> H+12O
  • Карбоксидобактерии — окисляют CO до CO2
Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества — аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений.

Усвоение нитратов происходит за счет клубеньковых бактерий на корнях бобовых растений, однако важно помнить, что клубеньковые (азотфиксирующие) бактерии, в отличие от нитрифицирующих бактерий, питаются гетеротрофно.

Источник: studarium.ru