Растительный мир — одно из главных богатств нашей планеты. Именно благодаря флоре на Земле есть кислород, которым мы все дышим, имеется огромная пищевая база, от которой зависит все живое. Растения уникальны тем, что могут превращать химические соединения неорганической природы в органические вещества.

что такое хлоропластДелают они это посредством фотосинтеза. Этот важнейший процесс протекает в специфических растительных органоидах, хлоропластах. Этот мельчайший элемент фактически обеспечивает существование всей жизни на планете. Кстати, а что такое хлоропласт?

Основное определение

Так называются специфические структуры, в которых происходят процессы фотосинтеза, которые направлены на связывание углекислого газа и образование некоторых углеводов. Побочным продуктом является кислород. Это вытянутые в длину органоиды, достигающие в ширину 2-4 мкм, длина их доходит до 5-10 мкм. У некоторых видов зеленых водорослей порой встречаются хлоропласты-гиганты, вытянутые на 50 мкм!


У этих же водорослей может быть другая особенность: на всю клетку у них имеется только один органоид этого вида. В клетках высших растений чаще всего имеется в пределах 10-30 хлоропластов. Впрочем, и в их случае могут встречаться яркие исключения. Так, в палисадной ткани обычной махорки имеется по 1000 хлоропластов на одну клетку. Для чего нужны эти хлоропласты? Фотосинтез – вот их главная, но далеко не единственная роль. Чтобы четко понимать их значение в жизни растения, важно знать многие аспекты их происхождения и развития. Все это описывается в дальнейшей части статьи.

Происхождение хлоропласта

Итак, что такое хлоропласт, мы узнали. А откуда эти органоиды произошли? Как получилось, что у растений появился столь уникальный аппарат, который превращает углекислый газ и воду в сложные органические соединения?

В настоящее время среди ученых превалирует точка зрения об эндосимбиотическом происхождении данных органоидов, так как их самостоятельное возникновение в клетках растения довольно сомнительно. Отлично известно, что лишайник – это симбиоз водоросли и гриба. Одноклеточные водоросли при этом живут внутри грибной клетки. Сейчас ученые предполагают, что в незапамятные времена фотосинтезирующие цианобактерии проникли внутрь растительных клеток, а затем частично утратили «самостоятельность», передав большую часть генома в ядро.


структура хлоропластовНо свою главную особенность новый органоид сохранил в полной мере. Речь идет как раз о процессе фотосинтеза. Впрочем, сам аппарат, необходимый для выполнения данного процесса, формируется под контролем как клеточного ядра, так и самого хлоропласта. Так, деление этих органоидов и прочие процессы, связанные с реализацией генетической информации на ДНК, контролируются ядром.

Доказательства

Относительно недавно гипотеза о прокариотическом происхождении этих элементов была не слишком популярна в научном сообществе, многие считали ее «измышлениями дилетантов». Но после того как был проведен углубленный анализ нуклеотидных последовательностей в ДНК хлоропластов, это предположение получило блестящее подтверждение. Выяснилось, что эти структуры чрезвычайно схожи, даже родственны, ДНК бактериальных клеток. Так, аналогичная последовательность была найдена у свободноживущих цианобактерий. В частности, оказались чрезвычайно схожи гены АТФ-синтезирующего комплекса, а также в «аппаратах» транскрипции и трансляции.

Промоторы, которые определяют начало считывания генетической информации с ДНК, а также терминальные нуклеотидные последовательности, которые отвечают за ее прекращение, также организованы по образу и подобию бактериальных. Разумеется, миллиарды лет эволюционных преобразований смогли внести множество изменений в хлоропласт, но последовательности в хлоропластных генах остались абсолютно прежними. И это – неопровержимое, полное доказательство того, что хлоропласты и в самом деле когда-то имели прокариотического предка. Возможно, это был организм, от которого произошли также современные цианобактерии.

Развитие хлоропласта из пропластиды


«Взрослый» органоид развивается из пропластиды. Это маленькая, полностью бесцветная органелла, имеющая всего несколько микрон в поперечнике. Она окружена плотной двуслойной мембраной, которая содержит кольцевую ДНК, специфическую для хлоропласта. Внутренней мембранной системы эти «предки» органоидов не имеют. Из-за предельно малых размеров их изучение крайне затруднено, а потому данных об их развитии чрезвычайно мало.

Известно, что несколько таких протопластид имеется в ядре каждой яйцеклетки животных и растений. В ходе развития зародыша они делятся и передаются другим клеткам. Это легко проверить: генетические признаки, которые так или иначе связаны с пластидами, передаются только по материнской линии.

Внутренняя мембрана протопластиды за время развития выпячивается внутрь органоида. Из этих структур вырастают мембраны тилакоидов, которые отвечают за образование гран и ламелл стромы органоида. В полной темноте протопастида начинает преобразовываться в предшественник хлоропласта (этиопласта). Этот первичный органоид характерен тем, что внутри него располагается довольно сложная кристаллическая структура. Как только на лист растения попадет свет, она полностью разрушается. После этого происходит образование «традиционной» внутренней структуры хлоропласта, которая образована как раз-таки тилакоидами и ламеллами.

Отличия растений, запасающих крахмал

iv>

В каждой меристемальной клетке содержится несколько таких пропластид (их количество разнится в зависимости от вида растения и прочих факторов). Как только эта первичная ткань начинает преобразовываться в лист, предшественники органоидов превращаются в хлоропласты. Так, закончившие свой рост молодые листья пшеницы имеют хлоропласты в количестве 100-150 штук. Чуть сложнее обстоят дела в отношении тех растений, которые способны к накоплению крахмала.

Какую функцию выполняют хлоропласты в клеткеОни скапливают запас этого углевода в пластидах, которые именуются амилопластами. Но какое отношение эти органоиды имеют к теме нашей статьи? Ведь клубни картофеля не участвуют в фотосинтезе! Позвольте разъяснить этот вопрос более подробно.

Мы выяснили, что такое хлоропласт, попутно выявив связь этого органоида со структурами прокариотических организмов. Здесь ситуация схожа: ученые давно выяснили, что амилопласты, как и хлоропласты, содержат точно такую же ДНК и образуются из точно тех же протопластид. Следовательно, и рассматривать их следует в том же аспекте. Фактически амилопласты следует рассматривать в качестве особой разновидности хлоропласта.

Как образуются амилопласты?


Можно провести аналогию между протопластидами и стволовыми клетками. Проще говоря, амилопласты с какого-то момента начинают развиваться по несколько иному пути. Ученые, впрочем, узнали кое-что любопытное: им удалось добиться взаимного превращения хлоропластов из листьев картофеля в амилопласты (и наоборот). Каноничный пример, известный каждому школьнику – клубни картофеля на свету зеленеют.

Прочие сведения о путях дифференцирования этих органоидов

Мы знаем, что в процессе созревания плодов томата, яблок и некоторых других растений (и в листьях деревьев, трав и кустарников в осенний период) происходит процесс «деградации», когда хлоропласты в растительной клетке превращаются в хромопласты. Эти органоиды содержат в своем составе красящие пигменты, каротиноиды.

Превращение это связано с тем, что в определенных условиях происходит полное разрушение тилакоидов, после чего органелла приобретает иную внутреннюю организацию. Вот здесь-то мы снова возвращаемся к тому вопросу, который начали обсуждать в самом начале статьи: влияние ядра на развитие хлоропластов. Именно оно, посредством особых белков, которые синтезируются в цитоплазме клеток, инициирует процесс перестройки органоида.

Строение хлоропласта

Поговорив о вопросах происхождения и развития хлоропластов, следует подробнее остановиться на их строении. Тем более что оно весьма интересно и заслуживает отдельного обсуждения.

>

Основная структура хлоропластов состоит из двух липопротеиновых мембран, внутренней и внешней. Толщина каждой составляет порядка 7 нм, расстояние между ними — 20-30 нм. Как и в случае других пластид, внутренний слой образует особые структуры, выпячивающиеся внутрь органоида. У зрелых хлоропластов существует сразу два типа таких «извилистых» мембран. Первые образуют ламеллы стромы, вторые – мембраны тилакоидов.

Ламеллы и тилакоиды

Нужно заметить, что прослеживается четкая связь, которую имеет мембрана хлоропластов с аналогичными образованиями, находящимися внутри органоида. Дело в том, что некоторые ее складки могут простираться от одной стенки до другой (как у митохондрий). Так что ламеллы могут образовывать либо своеобразный «мешок», либо разветвленную сеть. Впрочем, чаще всего эти структуры располагаются параллельно друг другу и никак не связаны между собой.

пигменты хлоропластовНе стоит забывать, что внутри хлоропласта находятся еще и мембранные тилакоиды. Это замкнутые «мешки», которые располагаются в виде стопки. Как и в предыдущем случае, между двумя стенками полости имеется расстояние в 20-30 нм. Столбики из этих «мешков» называются гранами. В каждом столбике может находиться до 50 тилакоидов, а в некоторых случаях их бывает еще больше. Так как общие «габариты» таких стопок могут достигать 0,5 мкм, иногда они могут быть обнаружены при помощи обыкновенного светового микроскопа.


Общее количество гран, которые содержатся в хлоропластах высших растений, может доходить до 40-60. Каждый тилакоид так плотно прилегает к другому, что их внешние мембраны образуют единую плоскость. Толщина слоя в месте соединения может доходить до 2 нм. Заметим, что подобные структуры, которые образованы прилегающими друг к другу тилакоидами и ламеллами, совсем нередки.

В местах их соприкосновения также имеется слой, достигающий порой тех же самых 2 нм. Таким образом, хлоропласты (строение и функции которых весьма сложны) представляют собой не единую монолитную структуру, а своеобразное «государство внутри государства». В некоторых аспектах строение этих органоидов не менее сложно, чем вся клеточная структура!

Граны связываются между собой именно при помощи ламелл. Но полости тилакоидов, которые образуют стопки, всегда замкнуты и никак не сообщаются с межмембранным пространством. Как видите, структура хлоропластов достаточно сложна.

Какие пигменты могут содержаться в хлоропластах?

Что может содержаться в строме каждого хлоропласта? Там имеются отдельные молекулы ДНК и немало рибосом. У амилопластов именно в строме откладываются крахмальные зерна. Соответственно, у хромопластов там имеются красящие пигменты. Разумеется, встречаются различные пигменты хлоропластов, но наиболее распространенным является хлорофилл. Он подразделяется сразу на несколько видов:


  • Группа А (сине-зеленый). Встречается в 70% случаев, содержится в хлоропластах всех высших растений и водорослей.
  • Группа В (желто-зеленый). В остальных 30% также обнаруживается у растений и водорослей высших видов.
  • Группы С, D и Е встречаются намного реже. Имеются в хлоропластах некоторых видов низших водорослей и растений.

У красных и бурых морских водорослей в хлоропластах не так уж и редко могут иметься совершенно другие виды органических красителей. В некоторых же водорослях вообще содержатся едва ли не все существующие пигменты хлоропластов.

Функции хлоропластов

Разумеется, основной их функцией является преобразование световой энергии в органические компоненты. Сам фотосинтез происходит в гранах при непосредственном участии хлорофилла. Он поглощает энергию солнечного света, переводя ее в энергию возбужденных электронов. Последние, обладая избыточным ее запасом, отдают излишки энергии, которая используется для разложения воды и синтеза АТФ. При распаде воды образуется кислород и водород. Первый, как мы уже писали выше, является побочным продуктом и выделяется в окружающее пространство, а водород связывается с особым белком, ферредоксином.

Какую функцию выполняют хлоропласты в клеткеОн снова окисляется, передавая водород восстановителю, который в биохимии обозначается аббревиатурой НАДФ. Соответственно, его восстановленная форма — НАДФ-H2. Проще говоря, в процессе фотосинтеза происходит выделение следующих веществ: АТФ, НАДФ-H2 и побочного продукта в виде кислорода.

Энергетическая роль АТФ


Образующаяся АТФ крайне важна, так как является основным «аккумулятором» энергии, которая идет на различные нужды клетки. НАДФ-H2 содержит восстановитель, водород, причем это соединение способно легко его отдавать в случае необходимости. Проще говоря, это эффективный химический восстановитель: в процессе фотосинтеза происходит множество реакций, которые без него попросту не смогут протекать.

Далее в дело вступают ферменты хлоропластов, которые действуют в темноте и вне гран: водород из восстановителя и энергия АТФ используются хлоропластом для того, чтобы начать синтез ряда органических веществ. Так как фотосинтез происходит в условиях хорошей освещенности, накопленные соединения в темное время суток используются для нужд самих растений.

Вы справедливо можете заметить, что этот процесс в некоторых аспектах подозрительно похож на дыхание. Чем отличается от него фотосинтез? Таблица поможет вам разобраться в этом вопросе.


Пункты сравнения

Фотосинтез

Дыхание

Когда происходит

Только днем, при солнечном свете

В любое время

Где протекает

Клетки, содержащие хлорофилл

Все живые клетки

Кислород

Выделение

Поглощение

СО2

Поглощение

Выделение

Органические вещества

Синтез, частичное расщепление

Только расщепление

Энергия

Поглощается

Выделяется

Вот чем отличается от дыхания фотосинтез. Таблица наглядно показывает основные их различия.

Некоторые «парадоксы»

Большая часть дальнейших реакций протекает тут же, в строме хлоропласта. Дальнейший путь синтезированных веществ различен. Так, простые сахара сразу выходят за пределы органоида, накапливаясь в других частях клетки в виде полисахаров, прежде всего — крахмала. В хлоропластах происходит как отложение жиров, так и предварительное накопление их предшественников, которые затем выводятся в другие области клетки.

Следует четко понимать, что все реакции синтеза требуют колоссального количества энергии. Единственным ее источником является все тот же фотосинтез. Это процесс, который зачастую требует столько энергии, что ее приходится получать, разрушая вещества, образованные в результате предыдущего синтеза! Таким образом, большая часть энергии, которая получается в его ходе, затрачивается на проведение множества химических реакций внутри самой растительной клетки.

хлоропласты строение и функцииЛишь некоторая ее доля используется для непосредственного получения тех органических веществ, которые растение берет для собственного роста и развития либо откладывает в форме жиров или углеводов.

Статичны ли хлоропласты?

Принято считать, что клеточные органоиды, в том числе и хлоропласты (строение и функции которых нами подробно расписаны), находятся строго в одном месте. Это не так. Хлоропласты могут перемещаться по клетке. Так, на слабом свету они стремятся занять положение близ наиболее освещенной стороны клетки, в условиях средней и слабой освещенности могут выбирать некие промежуточные положения, при которых удается «поймать» больше всего солнечного света. Это явление получило название «фототаксис».

Как и митохондрии, хлоропласты являются довольно-таки автономными органоидами. У них имеются собственные рибосомы, они синтезируют ряд высокоспецифичных белков, которые используются только ими. Есть даже специфичные ферментные комплексы, при работе которых вырабатываются особые липиды, требуемые для построения оболочек ламелл. Мы уже говорили о прокариотическом происхождении этих органоидов, но следует добавить, что некоторые ученые считают хлоропласты давними потомками каких-то паразитических организмов, которые сперва стали симбионтами, а затем и вовсе превратились в неотъемлемую часть клетки.

Значение хлоропластов

Для растений оно очевидно – это синтез энергии и веществ, которые используются растительными клетками. Но фотосинтез — это процесс, который обеспечивает постоянное накопление органического вещества в масштабах всей планеты. Из углекислого газа, воды и солнечного света хлоропласты могут синтезировать огромное количество сложнейших высокомолекулярных соединений. Эта способность характерна только для них, и человек пока далек от повторения этого процесса в искусственных условиях.

фотосинтез происходит вВся биомасса на поверхности нашей планеты обязана своим существованием этим мельчайшим органоидам, которые находятся в глубинах растительных клеток. Без них, без проводимого ими процесса фотосинтеза на Земле не было бы жизни в ее современных проявлениях.

Надеемся, вы узнали из этой статьи о том, что такое хлоропласт и какова его роль в растительном организме.

Источник: fb.ru

Строение хлоропластов

Данный органоид присутствует только у растений. Хлоропласты имеют форму двояковыпуклой линзы, в результате чего на листья поступает больше света. Покрыты наружной мембраной. Это мембрана гладкая, по сравнению с внутренней. Внутри находятся тилокоиды.

Благодаря дисковидным тилокоидам образуются граны, которые различимы только под микроскопом, а благодаря трубковидным тилокоидам образуется строма, которая соединяет все образовавшиеся граны в одну систему. Количество гран в хлоропластах составляет приблизительно 40-60 единиц. Граны объединяются между собой с помощью межгранных тяжей.

В строме содержится ДНК, рибосомы, РНК. В мембране тилокоид содержится вещество, от которого зависит цвет листьев. Хлорофилл (зелёный) и каротиноиды (красный, оранжевый, желтый).

Именно благодаря хлорофиллу в клетках растений осуществляется процесс фотосинтеза.

Существует 4 вида холорофилла, в зависимости от строения: a, b, c и d. Тип а и б содержат все растения на суше и зеленые водоросли. А и С- диатомовые водоросли, а и d — красные.

Функции хлоропластов

В хлоропластах происходит фотосинтез — процесс преобразования солнечной энергии в кислород. Хлоропласты способны перемещаться в цитоплазме клеток. За счет этого молекулы хлорофилла получают максимальное количество солнечной энергии для осуществления функции фотосинтеза.

Фотосинтез является основным процессом, вследствие которого на нашей планете образуется кислород и органические вещества.

Без фотосинтеза не было бы растений и кислорода, а без них и животных, в том числе невозможно было бы существование человека.

Еще одной функцией хлоропластов является фиксация углекислоты и встраивание углерода в состав органических веществ. Такой процесс называется реакция Кальвина-Бенсона, в честь ученых, открывших ее.

В конце жизненного цикла органоида, хлорофилл начинает разрушаться, функции растительных клеток нарушаются. Это также может происходить из-за изменения светового дня и резкого понижения температуры окружающей среды. Часть хлоропластов становятся хромопластами — зеленые листья изменяют цвет, и вскоре опадают.

Источник: appteka.ru

фото­синтез протекает в специализированных органеллах клеток — хлоро­пластах. Хлоропласты высших растений имеют форму двояковы­пуклой линзы (диска), которая наиболее удобна для поглощения солнечных лучей. Их размеры, количество, расположение полностью отвечают назначению: как можно эффектив­нее поглощать солнечную энергию, как можно полнее усваивать углерод. Установ­лено, что количество хлоропластов в клетке измеряется десятка­ми. Это обеспечивает высокое содержание этих органелл на еди­ницу поверхности листа. Так, на 1 мм2 листа фасоли приходится 283 тыс. хлоропластов, у подсолнечника — 465 тыс. Диаметр хло­ропластов в среднем 0,5-2 мкм.

Строение хлоропласта весьма сложное. По­добно ядру и митохондриям хлоропласт окружен оболочкой, со­стоящей из двух липопротеидных мембран. Внутреннюю среду представляет относительно однородная субстанция — матрикс или строма, которую пронизывают мембраны — ламеллы (рис.). Ламеллы, соединен­ные друг с другом, образуют пузырьки — тилакоиды. Плотно прилегая друг к другу, тила­коиды образуют граны, которые различают даже под свето­вым микроскопом. В свою очередь, граны в одном или нескольких местах объединены друг с другом с помощью меж­гранных тяжей — тилакоидов стромы.

Свойства хлоропластов: способны измененять ориентацию и перемещаться. Например, под влиянием яркого света хлоропласты поворачиваются узкой сто­роной диска к падающим лучам и перемещаются на боковые стенки клеток. Хлоропласты передвигаются в направлении более вы­сокой концентрации СО2 в клетке. Днем они обычно вы­страиваются вдоль стенок, ночью опускаются на дно клетки.

Химический состав хлоропластов: воды — 75 %; 75-80 % общего количества сухих веществ составляют орг. соединения, 20-25 % -минеральные.

Структурной основой хлоропластов являются белки (50-55 % сухой массы),  половина из них составляют водорастворимые белки. Такое вы­сокое содержание белков объясняется их многообразными функ­циями в составе хлоропластов (структурные белки мембран, белки-ферменты, транспортные белки, сократительные белки, реценторные).

Важнейшей составной частью хлоропластов являются липиды, (30-40% сух. м.). Липиды хлоропластов представлены тремя группами соединений.

  1. Структурные компоненты мембран, которые представлены амфипатическими липоидами и отличаются высоким содержанием (более 50%) галактолипидов и сульфолипидов. Фосфолипидный состав характеризуется отсутствием фосфатидилэтаноламина и высоким содержанием фосфатидилглицерина (более 20 %). Свыше 60 % состава ЖК приходится на линолевую кислоту.

  2. Фотосинтетическне пигменты хлоропластов — гидрофобные вв-а, относящиеся к липоидам (в клеточном соке — водораствори­мые пигменты). Высшие растения содержат 2 формы зеленых пигментов: хлорофилл а и хлорофилл b и 2 формы желтых пигментов: каротины и ксантофиллы (каротиноиды). Хлорофиллы выполняет роль фотосенсибилизаторов, другие пигменты расширяют спектр действия фотосинтеза за счет более полного поглощения ФАР. Каротиноиды защищают хлорофилл от фотоокисления, участвуют в транспорте водорода, образующегося при фотолизе воды.

  3. Жирорастворимые витаминыэргостерол (провитамин Д), витамины Е, К — сосредоточены практически целиком в хлоро­пластах, где участвуют в преобразовании световой энергии в химическую. В цитозоле клеток листа в основном находятся водорастворимые витамины. Так, у шпината содержание аскор­биновой кислоты в хлоропластах в 4-5 раз меньше, чем в лис­тьях.

В хлоропластах листьев присутствует значительное количество РНК и ДНК. НК со­ставляют примерно 1 % сухой массы хлоропластов (РНК — 0.75 %, ДНК — 0,01-0,02 %). Геном хлоропластов представлен кольцевой молекулой ДНК длиной 40 мкм с моле­кулярной массой 108, кодирующей 100-150 белков средних раз­меров. Рибосомы хлоропластов составляют от 20 до 50 % общей популяции рибосом клетки. Т.о., хлоропласты имеют собственную белоксинтезирующую систему. Однако для нормального функционирования хлоропластов необходимо взаи­модеЯствие ядерного и хлоропластного геномов. Ключевой фермент фотосинтеза РДФ-карбоксилаза синтезируется под двойным контролем-ДНК ядра и хлоропласта.

Углеводы не являются конституционными веществами хлоро­пласта. Представлены фосфорными эфирами саха­ров и продуктами фотосинтеза. Поэтому содержание углеводов в хлоропластах значительно колеблется (от 5 до 50 %). В активно функционирующих хлоропластах углеводы обычно не накаплива­ются, происходит их быстрый отток. При уменьшении потреб­ности в продуктах фотосинтеза в хлоропластах образуются круп­ные крахмальные зерна. В этом случае содержание крахмала может возрасти до 50 % сухой массы и активность хлоропластов снизится.

Минеральные вещества. Сами хлоропласты составляют 25-30 % массы листа, но в них сосредоточено до 80 % Fe, 70-72 — Mg и Zn,  50 — Cu, 60 % Ca, содержащихся в тканях листа. Это объясняется высокой и разнообразной ферментативной ак­тивностью хлоропластов (входят с состав простетических групп и кофакторов). Mg входит в состав хлорофилла. Ca стабилизирует мембранные структуры хлоро­пластов.

Возникновение и развитие хлоропластов. Хлоропласты обра­зуются в меристематических клетках из инициальных частиц или зачаточных пластид (рис.). Инициальная частица состоит из амебоидной стремы, окруженной двухмембранной оболочкой. По мере роста клетки инициалььные частицы увеличиваются в размере и приобретают форму двояковыпуклой линзы, в стреме появляются небольшие крахмальные зерна. Одновре­менно внутренняя мембрана начинает разрастаться, образуя складки (впячивания), от которых отшнуровываются пузырьки и трубочки. Такие образования называют пропластидами. Для дальнейшего их развития необходим свет. В темноте же фор­мируются этиопласты, в которых образуется мембранная ре­шетчатая структура — проламеллярное тело. На свету внутрен­ние мембраны пропластид и этиопластов образуют гранильную систему. Одновременно с этим также на свету в граны встра­иваются вновь образованные молекулы хлорофилла и других пигментов. Таким образом, структуры, которые подготавлива­ются к функционированию на свету, появляются и развиваются только при его наличии.

Наряду с хлоропластами имеется ряд других пластид, которые образуются либо непосредственно из пропластид, либо одна из другой путем взаимных превращений (рис.). К ним относятся накапливающие крахмал амилопласты (лейкопласты) и хромо­пласты, содержащие каротиноиды. В цветках и плодах хромо­пласты возникают на ранних стадиях развития пропластид. Хро­мопласты осенней листвы представляют собой продукты деграда­ции хлоропластов, в которых в качестве структур — носителей каротнноидов выступают пластоглобулы.

Пигменты хлоропласта, участвующие в улавливании световой энергии, а также ферменты, необходимые для световой фазы фотосинтеза, вмонтированы в мембраны тилако­идов.

Ферменты, которые катализируют многочисленные реакции восстановительного цикла углеводов (темповой фазы фотосинте­за), а также разнообразные биосинтезы, в том числе биосинтезы белков, липидов, крахмала, присутствуют главным образом в строме, часть из них является периферическими белками ламелл.

Строение зрелых хлоропластов одинаково у всех высших рас­тений, так же как в клетках разных органов одного растения (листьях, зеленеющих корнях, коре, плодах). В зависимости от функциональной нагрузки клеток, физиологического состояния хлоропластов, их возраста различают степень их внутренней структурированности: размеры, количество гран, связь между ними. Так, в замыкающих клетках устьиц основная функция хлоропластов — фоторегуляция устьичных движений. Хлоропласты не имеют строгой гранальной структу­ры, содержат крупные крахмальные зерна, набухшие тилакоиды, липофильные глобулы. Все это свидетельствует об их низкой энергетической нагрузке (эту функцию выполняют мито­хондрии). Другая картина наблюдается при изучении хлоропластов зеленых пло­дов томата. Наличие хорошо развитой гранулярной системы сви­детельствует о высокой фукциональной нагрузке этих органелл и, вероятно, существенном вкладе фотосинтеза при формирова­нии плодов.

Возрастные изменения: Молодые характеризуются ламеллярнои структурой, в таком состоянии хлоропласты способны размножаться путем деления. В зрелых хорошо выражена система гран. В стареющих происходит разрыв тилакоидов стро­мы, связь между гранами уменьшается, в дальнейшем наблюдаются распад хлорофилла и деструкция гран. В осенней листве деградация хлоропластов приводит к образованию хромопластов.

Структура хлоропластов лабильна и ди­намична, в ней отражаются все условия жизни растения. Большое влияние оказывает режим минерального питания растений. При недостатке N хлоропласты становятся в 1.5-2 раза мельче, дефицит P и S нарушает нормальную структуру ламелл и гран, одновременная нехватка N и Ca приводит к переполнению хлоропластов крахмалом из-за нарушения нормального оттока ассимилятов. При недостатке Ca нарушается структура наружной мембраны хло­ропласта. Для поддержания структуры хлоропласта также необхо­дим свет, в темноте идет постепенное разрушение тилакоидов гран и стремы.

Источник: StudFiles.net