Клеточная стенка — это дополнительная оболочка, которая располагается поверх (с внешней стороны) цитоплазматической мембраны и образуется в процессе жизнедеятельности самой клеткой. Такая оболочка есть у клеток не всех организмов, а только у растений, грибов, бактерий, части простейших (одноклеточных эукариот). Ее нет у животных клеток и многих простейших.

Строение и функции клеточной стенки взаимосвязанно формировались в процессе эволюции. При этом ее химическое строение (в большей степени) и функции (в меньшей) у разных групп организмов различаются. Так у растений основным компонентом оболочки является целлюлоза, у грибов — хитин, у бактерий — муреин.

Обычно в школьном курсе цитологии подробно рассматриваются строение и функции растительной клеточной стенки (оболочки).

Целлюлоза представляет собой линейный полисахарид, мономером которого является глюкоза. В составе клеточной стенки молекулы целлюлозы соединяются между собой водородными связями и образуют микрофибриллу (пучок). В оболочке множество таких фибрилл. Часть из них расположены параллельно друг другу, другая часть — под углом к первой и т. д. Такое строение создает прочный каркас.


Кроме целлюлозы, в состав клеточной стенки растений входят другие вещества (вода, гемицеллюлоза, пектиновые вещества, белки и др.). Они формируют матрикс, в котором находятся фибриллы. Вода составляет 60-70% массы оболочки. Молекулы гемицеллюлозы более короткие и разветвленные по-сравнению с целлюлозой, они связывают между собой микрофибриллы.

Строение первичной растительной клеточной стенки

Пектины также представляют собой полисахариды (линейные и разветвленные), основным мономером которых является галактуроновая кислота. Также в их состав входят арабинозы и галактозы, остатки метанола. Пектиновые вещества имеют кислую природу, могут быть растворимыми и нерастворимыми. Растворимые пектины при добавлении сахара переходят в гелеобразное состояние. Из-за этой особенности их используют в пищевой промышленности в качестве желирующих веществ.

Стенки соседних клеток растений не примыкают друг к другу непосредственно. Между ними находится срединная пластинка, образованная из студнеобразных пектатов магния и кальция.

Соседние клетки растений связаны между собой через плазмодесмы — цитоплазматические мостики, проходящие через отверстия в клеточных стенках и срединных пластинках.


У большинства растительных клеток кроме первичной, после завершения роста и дифференциации, образуется вторичная стенка. Она формируется между цитоплазматической мембраной и первичной оболочкой и состоит из нескольких слоев целлюлозы. При этом фибриллы каждого слоя располагаются под своим углом. Данная структура придает клетке еще большую прочность. Вторичной стенки нет у клеток мягких тканей (например, у мезофилльной ткани листа).

Одревеснение ряда тканей растения связано с так называемой лигнификацией. Вещество лигнин придает стенкам особую прочность и жесткость.

Рассмотрев строение, обратимся к функциям клеточных стенок. У растений нет скелета, однако многие из них достигают огромных размеров, что невозможно без какой-либо внутренней опоры. Ее то совместно и выполняют жесткие оболочки клеток. Итак, главная функция клеточных стенок растений — это обеспечение опоры за счет создания прочного каркаса.

Стенки ограничивают рост клеток и препятствуют их разрыву, не давая в определенных условиях излишкам воды поступать в клетки. Микрофибриллы целлюлозы, ориентируясь определенным образом, определяют направление роста клетки. Так, если волокна преимущественно идут поперек, то рост будет идти вдоль.

У растений есть ткани, выполняющие транспортную функцию. Некоторые из них состоят из мертвых клеток, а функцию транспорта обеспечивают исключительно клеточные стенки.


У некоторых клеток их оболочки служат для хранения запаса питательных веществ.

Источник: scienceland.info

Пояснение.

Клеточная мембрана: избирательная проницаемость; активный транспорт; способность к фагоцитозу. Клеточная стенка: поддержание формы клетки; придаёт жёсткость клетке.

Внешняя клеточная мембрана, или плазмалемма. Она отграничивает клетку от внешней среды, часто наряду с клеточной стенкой. Однако клеточная стенка есть только у прокариот, растений и грибов, тогда как у животных ее нет. А мембрана присутствует всегда. Толщина клеточной мембраны — 5–7 нм. Мембрана — это оболочка с весьма примечательными свойствами. Она не имеет постоянной формы, а ограничиваемое ею пространство — постоянного объема, и, вообще-то говоря, она жидкая, хотя и вязкая. Фосфолипиды выстраиваются в два слоя — хвостами внутрь, головами наружу. Это называется липидный бислой. Их хвосты образуют ту самую несмешивающуюся с водой фазу — гидрофобную пленку, а головы ориентированы к водной среде снаружи и внутри клетки.

В водной среде фосфолипиды всегда располагаются в виде бислоя и образуют пузырьки. Это свойство обеспечивает замкнутость клеточной мембраны: если ее целостность нарушить, то она тут же восстанавливается. Так же имеются мембранные белки, которые подразделяются на периферические (слабо связанные с мембраной) и интегральные (локализованные в липидном бислое).


Через мембрану возможен активный и пассивный транспорт (диффузия).

Плазмалемма — очень непростая оболочка. Она может менять форму и площадь поверхности. Благодаря разнообразным белкам она может пропускать или не пропускать самые разные наборы вещества. Но это полужидкая и неизбежно очень нежная оболочка, которая вряд ли может предотвращать клетку от серьезных механических повреждений. Поэтому у многих организмов клетка окружена еще и клеточной стенкой. Это жесткое мало- или совсем нерастяжимое образование, внешнее по отношению к клетке. Как правило, она в той или иной степени сохраняет форму, упруга и прочна, в ряде случаев — очень прочна и обладает изрядной толщиной. Она состоит из веществ, вырабатываемых внутри клетки, выделяемых ею наружу и там затвердевающих. Чаще всего основу клеточной стенки составляют полисахариды. Но иногда большая часть стенки представлена другими твердыми органическими веществами.

Клеточная стенка — оболочка клетки, расположенная снаружи от цитоплазматической мембраны и выполняющая структурные, защитные и транспортные функции. Обнаруживается у большинства бактерий, архей, грибов и растений. Животные и многие простейшие не имеют клеточной стенки.

В отличие от плазмалеммы клеточная стенка непроницаема для большинства веществ. Поэтому в определенных, удобных для данной клетки местах в клеточных стенках имеются поры. Сквозь поры проходят цитоплазматические мостики, соединяющие растительные клетки друг с другом — плазмодесмы.


 

Источник. Курс лекций по общей биологии. О.Э. Костерин. http://pisum.bionet.nsc.ru/kosterin/lectures/index.htm

 

Ответ: 11221.

Источник: bio-ege.sdamgia.ru

«Ботаника есть естественная наука, которая учит познанию растений». Такое определение ботаники — необходимое и достаточное — дано выдающимся шведским ученым Карлом Линнеем (1707-1778 гг.). В сферу ботаники входят изучение строения и функций растений, их происхождения, эволюции, классификации, взаимоотношений друг с другом и средой обитания, представления об образуемых растениями сообществах, расселении на Земном шаре, использовании и охране.

Конечно, уже первобытный человек обладал первоначальными знаниями о растениях, необходимых для его существования. Это понятно, поскольку его жизнь зависела от знаний о съедобных, ядовитых, целебных растениях и полезных для скота. Обширнейшими сведениями о растениях, особенно сельскохозяйственных и лекарственных, располагали культуры Индии, Финикии, страны древнего Египта и Месопотамии. Не случайно первый «травник на камне» был создан в знаменитом храме в Карнаке фараоном новой египетской династии Тутмосом III.

Но основы ботаники (от греч. botanicos — относящийся к растениям, botane — трава, растение) как научной дисциплины были заложены в античное время Теофрастом (371-286 гг. до н.э.) — любимым и выдающимся учеником великого древнегреческого мыслителя Аристотеля (384-322 гг. до н. э.). Титул «отца ботаники» Теофраст заслужил потому, что его интересовали не только применение растений в хозяйстве и медицине, он исследовал строение и физиологические отправления растений, их распространение, влияние на них почвы и климата. Теофрасту принадлежит и первая классификация растений, хотя и весьма наивная с позиций XX века.


В процессе исторического развития в ботанике появились разные методы изучения растений. Чем более расширялись представления о растениях, тем более дифференцировались научные дисциплины, составляющие ботанику как одну из самых разветвленных естественных наук: морфология в широком понимании, палеоботаника, физиология, биохимия растений, систематика, география, экология растений, геоботаника, палиноморфология, изучающая структуру пыльцевых зерен, и т.д. Особое место среди этих дисциплин занимала и занимает морфология (от греч. morphe — форма и logos — учение).

«Органическая форма — это видимое проявление внутренних связей, характеризующих жизнь на каждом уровне. Она может быть проще всего определена как биологическая организация и представляет собой наиболее важную проблему, с которой сталкиваются изучающие науку о жизни. Форму можно назвать не только душой естественной истории, так как она служит мерой эволюционного родства, но и душой всей биологии, так как она является очевидным и легко доступным изучению проявлением основных черт жизни».

По морфологическим признакам судят о разнообразии растений, они составляют основу их классификации; без знания структуры невозможно изучать жизненные отправления растений, в том числе их способность благодаря фотосинтезу создавать органические вещества и увеличивать содержание в атмосфере кислорода. Поэтому изучение структурных особенностей растений необходимо для развития других ботанических дисциплин.


Дифференциация методов исследования строения растений привела к разделению морфологии на многочисленные специальные дисциплины: морфологию в узком смысле слова (макроморфологию), изучающую внешнее строение растений; эмбриологию, изучающую начальные этапы развития семенных растений от заложения репродуктивных структур, осуществляющих размножение, до образования семени; анатомию, изучающую строение растений на клеточном и тканевом уровнях. Учение о клетке в настоящее время составляет содержание самостоятельной биологической дисциплины — цитологии.

Разнообразие методов, используемых в морфологии растений, позволяет решать следующие проблемы, нередко имеющие общебиологическое значение.

1. Изучение топографических закономерностей в строении растений. Главным методом исследования служит описательный, созданный К. Линнеем. Сейчас этот метод обычно называют сравнительно-морфологическим.

2. Изучение закономерностей формообразования (морфогенеза) в процессе индивидуального развития растения — его онтогенеза. Это требует изучения структурных преобразований растения на всех этапах его развития — от зиготы до естественной смерти. При этом важное значение имеет анализ всех проявлений морфогенеза: особенностей роста, морфологической и анатомической дифференциации тела растения, возникающих в процессе его развития, полярности, симметрии, корреляции. Естественно, глубина изучения этих вопросов зависит от тесных контактов морфологии с другими ботаническими дисциплинами: физиологией, генетикой, биохимией, биологией развития.


С этой проблемой связано и развитие репродуктивной биологии, основу которой составляет изучение всех структур и процессов, приводящих к размножению растений — одному из главных свойств всех живых организмов, обеспечивающему не только увеличение числа особей, но и их расселение. Большой интерес в настоящее время вызывает раздел репродуктивной биологии, непосредственно связанный с накоплением биомассы, — биотехнологией: культурой изолированных клеток и тканей как способа быстрого размножения растений.

3. Изучение морфогенетических трансформаций в течение длительного процесса эволюции. Развитие этого направления — эволюционной морфологии — основано на синтезе данных онтогенетической морфологии и сравнительной морфологии ныне живущих и вымерших растений. Задача эволюционной морфологии — изучение общих закономерностей преобразования структуры растений в процессе эволюции, без знания которых невозможно решение вопросов, связанных с филогенией растений, отражающей не только родственные отношения между разными таксонами, но и основные направления их эволюции. Таксонами (лат. taxon, во множественном числе taxa) называют любые конкретные систематические группы определенного ранга. Так, таксоном в ранге семейства будет семейство Ranunculaceae (лютиковые), в ранге рода — Ranunculus L. (лютик), а в ранге вида, например, Ranunculus repens L. (лютик ползучий).


О родственных связях прежде всего судят по сходству морфологических признаков. Однако нередко оно может быть не результатом родства, а либо параллельного развития нескольких групп растений от каких-то общих предков, либо следствием конвергенции — появлением сходных особенностей строения под влиянием одинаковых условий существования. Только разностороннее изучение растений и сопоставление данных онтогенетического, сравнительно-морфологического и палеоботанического исследований может восстановить реальный ход их исторического развития, что способствует выявлению родственных связей между таксонами и разработке эволюционной системы растений.

4. Изучение связи между структурой и функцией, между растением и условиями внешней среды.

Взаимодействие структуры и функции составляет основу жизнедеятельности любого организма. Функции без структуры не бывает, структура без функции бессмысленна. Ведь «изучать органы независимо от их отправлений, организмы независимо от их жизни почти так же невозможно, как изучать машину и ее части, не интересуясь их действием». Только соединение морфологического и физиологического методов исследования дает представление о растении как целостной структурно-функциональной и весьма динамичной системе, приспособленной к жизни в определенной экологической обстановке и чутко реагирующей на любые изменения внешних условий.


Реакции растений на неблагоприятные факторы среды их обитания проявляются сначала в биохимических и физиологических нарушениях, затем они затрагивают внутриклеточные структуры и, наконец, возникают изменения морфологического характера, заметные невооруженному глазу. Сначала они проявляются у отдельных растений, а впоследствии распространяются на все сообщество. Оценка уровня деградации растений под действием антропогенных факторов, прогнозирование возможных изменений растений под влиянием неблагоприятных условий составляют сущность ботанического мониторинга (от лат. и англ. monitor — предостерегающий). Его задача — вовремя сигнализировать обо всех случаях превышения отрицательных нагрузок, вызванных деятельностью человека, и принимать действенные меры для изменения режима эксплуатации растительных ресурсов и охраны растительного покрова как части глобальной проблемы сохранения генофонда и охраны окружающей среды.

Само собой очевидно, что морфология растений как фундаментальная ботаническая дисциплина абсолютно необходима для решения разнообразных практических задач: медицинских, лесохозяйственных, природоохранных и многих других. Перечислить все области применения морфологии растений вряд ли возможно.

Предлагаемый учебник посвящен морфологии высших растений. Прежде, чем перейти к анализу закономерностей их строения и демонстрации присущего им морфологического разнообразия, следует определить, что представляет собой растение как объект изучения, каковы его связи с другими живыми организмами, населяющими нашу планету, и, наконец, какое место в мире растений занимают высшие растения.

Источник: dist-tutor.info

 

Как вы понимаете, плазмалемма – очень непростая оболочка. Она может менять форму и площадь поверхности. Благодаря разнообразным белкам она может пропускать или не пропускать самые разные наборы вещества. Но это полужидкая и неизбежно очень нежная оболочка, которая вряд ли может предотвращать клетку от серьезных механических повреждений. Поэтому у многих организмов клетка окружена еще и клеточной стенкой. Это жесткое мало- или совсем нерастяжимое образование, внешнее по отношению к клетке. Как правило, она в той или иной степени сохраняет форму, упруга и прочна, в ряде случаев – очень прочна и обладает изрядной толщиной. Она состоит из веществ, вырабатываемых внутри клетки, выделяемых ею наружу и там затвердевающих. Чаще всего основу клеточной стенки составляют полисахариды. Но иногда большая часть стенки представлена другими твердыми органическими веществами.

Именно клеточные стенки наблюдали создатели первых микроскопов, и именно им, клеточным стенкам древесины, мы обязаны самим словом «клетка», так как сначала ученые увидели только стенки и лишь много позже получили представление о содержимом.

Можно было бы сказать, что клеточная стенка – явление универсальное, если бы не одно важнейшее исключение. Клеточной стенки нет у животных. Ни у одного животного и ни у одной клетки! И у нас с вами, естественно, тоже. Индивидуальные клетки животных могут нести на внешней поверхности определенные структурные белки, которые никогда не образуют плотной стенки. У многоклеточных животных могут быть сколь угодно прочные и толстые внешние покровы всего организма и отдельных органов, но их нет у индивидуальных клеток. Нет клеточной стенки и у одноклеточных животных – простейших. Именно поэтому возможны такие существа, как амебы, которые меняют форму своего тела, перетекая в выпячивания своего тела произвольной формы. Многие простейшие окружены известковой (в том числе и некоторые амебы) или кремниевой раковиной, часто очень сложного строения, но никогда плотной органической оболочкой.

Кроме животных на свете, как вы знаете, существуют растения, грибы и бактерии. Хороший вопрос: где граница между животными и растениями? Вы, наверное, слышали, что есть такая эвглена зеленая – то ли животное, то ли растение, которая плавает при помощи жгутика, зеленая и фотосинтезирующая на свету и бесцветная (только что не пушистая) и питающаяся бактериями и тому подобным в темноте. Ее часто выдают за «промежуточное звено между растениями и животными». У нее клеточной стенки нет. Похоже, на самом деле эвглена – это животный жгутиконосец, который носит в себе бывшую водоросль в виде хлоропласта с тройной мембраной. Обычно хлоропласты имеют двойную мембрану, еще одна мембрана, возможно, указывает на происхождение того, что под ней, от другого одноклеточного организма – водоросли, имевшей единственный хлоропласт. (А откуда взялись нормальные хлоропласты – мы еще рассмотрим.)



Другие одноклеточные зеленые жгутиконосцы (а их не так и много) клеточную стенку имеют и в этом смысле являются растениями. Наверняка они не очень-то и родственны «животным» жгутиконосцам, потому что плавание при помощи жгутика – вещь достаточно универсальная, и свободноживущие фотосинтезирующие жгутиконосцы могли возникнуть даже за счет упрощения каких-то многоклеточных форм, к примеру из их половых клеток, которые «начали самостоятельную жизнь».

Итак, животные отличаются от всех прочих живых существ тем, что утратили клеточную стенку. Это сделало их уязвимыми, но дало гибкость и подвижность, что немаловажно для их по сути хищнического существования – за счет поедания других организмов.

Клеточная стенка бактерий и растений состоит в основном из полисахаридов. У растений основу клеточной стенки составляет целлюлоза, гемицеллюлоза и пектин. Последнее – аморфное, не очень плотное вещество. Клеточная стенка растений обычно организована как железобетонная конструкция: волокна целлюлозы выполняют роль стальной арматуры, а пектин – цемента. Все знают, что такое волокна целлюлозы и где мы с ними сталкиваемся? Вата, хлопчатобумажные и льняные ткани, бумага (в последнем случае мы фактически имеем дело с их обрывками).

В клетках древесины к полисахаридам добавляется лигнин – сложный полимер органических спиртов, который составляет значительную часть их чрезвычайно толстой клеточной стенки.

У бактерий основным компонентом клеточной стенки является гликопептид муреин – полимер, в состав которого входят сахара, несущие аминогруппы, и короткие пептиды по 4–5 аминокислотных остатков. Может быть, будет полезно знать, что по типу клеточной стенки бактерии делятся на грамположительные и грамотрицательные (это различия в окраске при методе окрашивания по Граму). У грамположительных бактерий стенки толще, но внутренняя структура не выявляется: кроме муреина там есть другие полисахариды. У грамотрицательных стенки тоньше, но в них выявляются слои: внутренний состоит из муреина, затем идет слой неплотно упакованных молекул белка, а потом – из липополисахаридов. Снаружи многие бактерии окружены слизистой капсулой.

В клетках бактерий поддерживается очень высокое осмотическое давление, которому толстая клеточная стенка призвана противостоять. Именно клеточная стенка придает бактериям характерную форму, по которой прежде всего и идет их классификация: форму шариков имеют кокки, форму палочек – бациллы, форму запятых – вибрионы, форму плавных спиралей – спириллы, тонких частых спиралей – спирохеты, форму с многими нитчатыми отростками – актиномицеты.

Клеточная стенка грибов состоит в основном из хитина – это, как вы помните, также азотсодержащий полисахарид, очень прочный и инертный.

Поразительна клеточная стенка археобактерий, состоящая в основном из полимера на основе изопрена – непредельного пятиуглеродного углеводорода, являющегося основной для каучука, т. е. резины! (Еще конденсация изопрена используется при синтезе терпенов и стероидных гормонов.) Получается, что химически их клеточная стенка родственна пластмассам и полиэтиленам. Вспомним, что галобактерии из археобактерий не умеют усваивать сахара, а утилизируют только аминокислоты. Судя по всему, эта форма жизни не умеет как следует обращаться с углеводами.

Клеточная стенка одноклеточных диатомовых водорослей состоит из неорганического вещества – кремнезема (оксид кремния), поэтому ее, возможно, следовало бы считать не клеточной стенкой, а раковиной. Но так как диатомовые водоросли, как фотосинтезирующие эукариоты с хлоропластами, все же приходится относить к растениям, то и их покровы принято считать клеточной стенкой.

Для жизни клетка должна химически взаимодействовать с окружающей средой, а клеточная стенка как раз призвана это взаимодействие прервать, так как в отличие от плазмалеммы она непроницаема для большинства веществ. Поэтому в определенных, удобных для данной клетки местах в клеточных стенках имеются поры. Сквозь поры проходят цитоплазматические мостики, соединяющие растительные клетки друг с другом – плазмодесмы.

Некоторые (допустим, мужские половые) клетки растений не имеют клеточной стенки. Другие (почти все) их клетки можно лишить клеточной стенки искусственно (такая клетка называется «протопласт»), и это вполне совместимо с жизнью. Такая клетка строит себе новую клеточную стенку. А ее «голое» состояние бывает необходимо в технологиях, связанных с культурой клеток.

Собственно, на этом клеточные структуры, общие прокариотам и эукариотам заканчиваются, и дальше мы будем в основном иметь дело со структурами эукариотических клеток. Ну и начнем с главного, что делает их эукариотами (в переводе с греческого – «истинноядерными»), – с ядра.

 

Источник: studopedia.su