
Чередование поколений наблюдается
ЧЕРЕДОВА́НИЕ ПОКОЛЕ́НИЙ, закономерная смена в жизненном цикле организмов генераций (поколений, бионтов), различающихся способом размножения.
У животных различают первичное и вторичное Ч. п. Первичным Ч. п., свойственным мн. простейшим, считают смену половой генерации поколением, размножающимся неполовыми клетками (агаметами). Так, у фораминифер чередующиеся поколения представлены половыми и бесполыми особями – гамонтами и агамонтами. Редукционное деление (мейоз) происходит перед образованием агамет, поэтому половое поколение гаплоидно, так же как и гаметы, тогда как зигота и агамонты диплоидны. У солнечников, некоторых жгутиконосцев мейоз связан с образованием гамет, которые являются единственной гаплоидной стадией жизненного цикла.
кие же отношения свойственны всем многоклеточным животным. Вторичное Ч. п. встречается у животных в двух формах. Чередование нормального полового процесса с партеногенезом называется гетерогонией, а чередование полового размножения с бесполым – метагенезом. Гетерогония характерна для трематод, некоторых круглых червей и коловраток, ряда членистоногих и др. Метагенез характерен для оболочников и кишечнополостных, у которых половое поколение представлено одиночными свободноплавающими медузами, а бесполое – сидячими полипами.
У растений выделяют гаплоидное поколение – половое, или гаметофит, и диплоидное – бесполое, или спорофит. Половые органы, образующие гаметы, развиваются на гаметофите, при этом он может быть обоеполым (сфагнум, равноспоровые папоротники, плауны) или раздельнополым (некоторые бурые водоросли, разноспоровые папоротники, плауны и все высшие растения). На спорофите развиваются органы бесполого размножения (спорангии, зооспорангии), образующие в результате мейоза гаплоидные споры, прорастающие затем в новые половые поколения. Гаметофит и спорофит одинаковы морфологически и по продолжительности жизни (изоморфное Ч. п.) или резко различны (гетероморфное Ч. п.).
я высших растений характерно только гетероморфное Ч. п. У водорослей встречаются обе формы. При изоморфной смене поколений каждое из них представлено самостоятельно живущей особью (некоторые зелёные, бурые и мн. красные водоросли), так что в жизненном цикле существуют два (при обоеполом гаметофите) или три (при раздельнополом гаметофите) независимых и одинаковых растения. При гетероморфной смене поколений оба развиваются либо независимо друг от друга (ламинария, равноспоровые папоротники, плауны, хвощи), либо одно из поколений, будучи лишённым самостоят. развития, существует за счёт другого (мхи и все семенные растения), но преобладает всегда одно из поколений – либо гаметофит, либо спорофит. У высших растений к гаметофитной линии эволюции (с преобладанием в цикле развития гаметофита) относятся только моховидные, у которых спорофит называется спорогоном, развивается в виде коробочки со спорами на самом зелёном растении, являющемся гаметофитом. К спорофитной линии эволюции (с преобладанием в цикле развития спорофита) относятся все остальные высшие растения. При этом спорофит – листостебельное растение, на котором развиваются спорангии, а гаметофит (заросток) развит слабее, недолговечен и представлен обоеполым талломом, живущим самостоятельно (все равноспоровые папоротники, плауны, хвощи), либо микроскопич. образованиями, развивающимися частично или полностью на спорофите и за счёт него (разноспоровые папоротники и плауны, голосеменные, цветковые).
Источник: bigenc.ru
Чередование поколений — закономерная смена у организмов поколений, различающихся способом размножения. Организмы многих видов могут размножаться как бесполым, так и половым путем. В связи с этим говорят о бесполом и половом поколениях данного вида. Чередование этих поколений у растений и животных имеет много общих черт. Граница, разделяющая половое и бесполое поколения в цикле развития, — процесс оплодотворения (рис. 1). При этом в результате слияния гаплоидных (т. е. содержащих одинарный набор хромосом) гамет появляется диплоидная (т. е. содержащая двойной набор хромосом) зигота, и половое поколение переходит в бесполое.
И бесполое, и половое поколения могут иметь как одинарный, так и двойной набор хромосом: в зависимости от того, на какой стадии жизненного цикла происходит мейоз. При мейозе число хромосом уменьшается вдвое и диплоидный их набор переходит в гаплоидный. Мейоз и оплодотворение — это две вехи, разделяющие гаплоидную и диплоидную фазы в цикле развития.
В процессе эволюции в цикле развития закономерно уменьшается роль (продолжительность существования и размеры) гаплоидной фазы и увеличивается роль диплоидной фазы.
У споровиков и жгутиковых, многих водорослей и некоторых грибов диплоидная фаза представлена только зиготой, которая сразу претерпевает мейоз, образуя гаплоидные клетки (рис. 1, Б и 2). У всех высших и некоторых низших форм (отдельные водоросли и грибы, инфузории) зигота делится путем митоза, поэтому бесполое поколение у них так же, как и зигота, диплоидное.
Так, у фораминифер из зиготы вырастает диплоидное бесполое поколение. В результате мейоза из него образуются гаплоидные клетки, из которых вырастает также гаплоидное половое поколение. Половое поколение в результате многократного деления ядра образует гаметы, которые, сливаясь попарно, дают зиготу (рис. 1, в). Процесс бесполого размножения у мохообразных, папоротникообразных и некоторых других растений происходит в результате рассеивания гаплоидных спор, возникающих при мейозе (рис. 1, В и 3). У таких видов процесс мейоза отделяет бесполое поколение (спорофит) от полового (гаметофит). Споры делятся митотически, образуя гаплоидное половое поколение.
У кишечнополостных и других многоклеточных животных происходит дальнейшее подавление гаплоидной фазы (рис. 1, Г). У них диплоидно как бесполое, так и половое поколение, которое образуется из бесполого путем митотического деления его клеток. Мейоз происходит только в процессе образования гамет, которые являются единственной гаплоидной фазой у таких организмов. Например, гидроидные полипы представляют собой бесполое поколение. Почкуясь, они образуют колонии, на которых развиваются медузы с семенниками и с яичниками (диплоидное половое поколение). Медузы свободно плавают в воде и размножаются половым путем. В результате опять возникают полипы (рис. 5).
У животных различают первичное и вторичное чередование поколений. При первичном чередуется бесполое и половое размножение. Так бывает у многих простейших. К вторичному чередованию поколений относят метагенез и гетерогонию. При метагенезе, который характерен для оболочников и кишечнополостных, чередуется половое и вегетативное размножение. При гетерогонии, которая характерна для трематод, некоторых круглых червей и коловраток, ряда членистоногих, чередуются нормальное половое размножение с партеногенезом.
Чередование поколений зависит от условий среды. При благоприятных условиях размножение происходит, как правило, бесполыми способами — делением, почкованием, вегетативно или партеногенетически. При неблагоприятных условиях бесполое поколение сменяется половым.
Эволюция размножения шла от бесполого, свойственного одноклеточным, к половому. Примитивные формы размножаются только бесполым путем, у более сложных форм бесполое размножение чередуется с половым. Наиболее прогрессивные виды размножаются только половым путем (рис. 1).
Чередование поколений у растений. Типичное чередование поколений характерно для растений, у которых многоклеточны как диплоидная фаза (диплонт), так и гаплоидная (гаплонт).
>Диплонт образует спорангии, в которых в результате мейоза возникают споры (поэтому диплонт называют также спорофитом или бесполым поколением). Гаплонт образует гаметангии, в которых без редукционного деления — мейоза образуются половые клетки — гаметы (гаплонт называют также гаметофитом или половым поколением). Спорофит развивается из зиготы, возникающей в результате оплодотворения, т. е. слияния двух гамет, а гаметофит — из споры. У немногих растений (например, у некоторых зеленых и бурых водорослей) спорофит и гаметофит развиты одинаково, а у большинства растений в циклах развития преобладает либо гаметофит (например, у мохообразных), либо спорофит — бурая водоросль ламинария, папоротникообразные и семенные растения (рис. 6).
У многих зеленых водорослей (хламидомонада, улотрикс, спирогира и др.) диплоидны только зиготы, при прорастании которых происходит мейоз (рис. 6). А у сифоновых, диатомовых и некоторых бурых водорослей, как и у огромного большинства животных, гаплоидны только гаметы, возникающие в результате мейоза. Поэтому у этих растений фактически чередования поколений нет, хотя смена ядерных фаз происходит.
Фазы в циклах развития высших растений имеют особые названия: спорофиты мохообразных называют спорогониями (они развиваются на гаметофитах), а гаметофиты остальных высших растений — заростками (рис. 6). У папоротникообразных они существуют самостоятельно, а у семенных развиваются на спорофитах. Заростки равноспоровых растений (см. Споры) обоеполы, а разноспоровых — раздельнополы и более редуцированы (особенно мужские), чем заростки равноспоровых. Так, например, у покрытосеменных растений мужской заросток — это развивающееся из микроспоры пыльцевое зерно, а женский заросток — зародышевый мешок, развивающийся из мегаспоры.
Источник: yunc.org
Чередование поколений — тип размножения, в котором есть чередование полового и бесполого поколений.[ …]
Чередование поколений у растений | ![]() |
Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом — путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного — половым путем (оплодотворение яиц, образование личинок и развитие полипов).[ …]
Особенность чередования поколений (рис. 21) у моховидных заключается в том, что гаме-тофит у них значительно расширяет по сравнению с остальными высшими растениями сферу своей физиологической деятельности. Наряду с обеспечением полового размножения гаметофит моховидных принимает на себя выполнение основных вегетативных функций — фотосинтеза, водоснабжения, минерального питания целого растения. Спорофит же фактически ограничивается спорообразованием.[ …]
У многих паразитов чередование поколений сочетается со сменой двух или более хозяев, следовательно, одно поколение существует в одном хозяине, а другое — в другом. К примеру, ленточный червь, обитающий в кишечнике лисицы, откладывает там крошечные яички. Эти яички вместе с экскрементами лисицы попадают на землю. Процесс возвращения включает в себя стадию промежуточного хозяина или нескольких хозяев: траву, на которую попали яйца ленточного червя, съедает заяц. В его организме яйца превращаются в личинки. Личинки вбуравливаются в ткани зайца и там переходят в покоящуюся стадию — цисты. В дальнейшем, если лисица поймает этого зайца, то цисты попадут в ее кишечник, там превратятся в молодого ленточного червя, и жизненный цикл начнется сначала. Многообразие и сложность жизненных циклов паразитов выработались как приспособление для передачи от одной особи хозяина к другой, для распространения.[ …]
Давление жизни» и чередование поколений живого вещества | ![]() |
Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим .примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое — в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое — спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита — диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.[ …]
Для этих растений также характерно чередование поколений, но у них произошло значительное уменьшение га-метофита.[ …]
У подавляющего большинства имеется чередование поколений — спорофита и гаметофита, одинаковых по форме, но иногда различных по величине. На спорофите образуются зооспорангии с диплоидными зооспорами, дающие новые поколения спорофитов. Кроме того, спорофит образует еще и цисты, или покоящиеся споры (по одной в клетке). Они имеют толстую бурую оболочку. При прорастании, сопровождающемся редукционным делением, из нее выходят гаплоидные зооспоры. После периода активного движения они останавливаются, одеваются оболочкой и вырастают в гаметофиты с гаметангиями. Гаметы, выходящие из гаметангиев, похожи на зооспоры, но мельче их. Они, как было сказано выше, или одипаковы, или различаются по величине, у некоторых и по окраске, и степени подвижности. Зигота, образующаяся в результате слияния гамет, дает начало спорофиту.[ …]
Для жизненного цикла многих организмов закономерное чередование разных форм размножения — чередование поколений. При этом поколения, размножающиеся половым путем, могут морфологически отличаться от бесполых поколений. Наиболее ярким примером здесь могут служить высшие растения, у которых половое поколение (так называемый гаметофит) сменяется бесполым (т.н. спорофитом). В цикле развития обыкновенной гидры также наблюдается чередование полового и бесполого размножения.[ …]
Дрожжи могут существовать в гаплоидной: и диплоидной фазах. Смена ядерных фаз рассматривается как чередование поколений у дрожжей. Оно связано с образованием половых спор, которое может происходить по аскомицет-ному или базидиомицетному типу.[ …]
Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором — гетероморфным.[ …]
Спорофиты и гаметофиты (гаметоспорофиты) бывают одинакового строения или разного, и соответственно существуют понятия изоморфной (сходной) и гетероморфной (разной) смены форм развития (чередования поколений). В отношении большинства водорослей неправильно говорить о чередовании поколений спорофитов и гаметофитов (гаметоспорофитов), так как они нередко существуют одновременно. Иногда они могут расти в несколько различных экологических условиях. Например, спорофит порфиры имеет вид ветвящихся нитей из одного ряда клеток, которые внедряются в известковый субстрат (раковины моллюсков, известковые скалы) и предпочитают слабое освещение, проникая на большую глубину. Гаметоспорофит порфиры пластинчатый и растет вблизи уреза воды, в том числе в приливно-отливной зоне.[ …]
У ряда паразитов приспособления к умножению потомства проявляются в виде партеногенеза, полиэмбрионии (клетки одного делящегося яйца дают начало множеству зародышей), бесполого размножения (почкование у пузырчатых стадий ленточных червей). Это приводит к чередованию поколений — полового и партеногенетического или полового и бесполых.[ …]
У аскомицетных дрожжей в результате копуляции после плазмо- и кариогамии зигота непосредственно развивается в сумку, где диплоидное ядро после первого деления в мейозе претерпевает редукцию. Однако у некоторых дрожжей наблюдается своеобразное извращение в чередовании поколений: прорастающие споры или первые получившиеся из них гаплоидные клетки сливаются попарно и размножаются дальше почкованием уже в диплоидном состоянии. У таких дрожжей сумка со спорами образуется без непосредственно предшествующей копуляции.[ …]
Из всех органических молекул способностью к саморепродук-ции обладают только нуклеиновые кислоты. Между тем, находясь в клетках, они контролируют их структуру и свойства (активность). Поэтому уникальность жизни в генетическом смысле заключается в том, что нуклеиновые кислоты через половые клетки обеспечивают химическую связь между поколениями. Благодаря размножению, наследственности и изменчивости жизнь видов продолжается бесконечно долго как непрерывное чередование поколений с сохранением между ними химических связей.[ …]
Коралловые полипы наиболее многочисленны и разнообразны. Название класса — антозоа переводится с греческого как животные-цветы. Они живут в морях, образуя целые колонии, и действительно похожи на яркие цветы. Пищеварительная полость у колониальных полипов единая, но поделена на камеры, что увеличивает поверхность, на которой происходит пищеварение. Размножаются они как половым, так и бесполовым путем, но чередование поколений у них отсутствует.[ …]
Высшие растения, вероятпо, произошли от каких-то водорослей. Об этом говорит прежде всего то, что в геологической истории растительного мира эре высших растений предшествовала эра водорослей. В пользу этого предположения также свидетельствуют, например, следующие факты: 1) сходство наиболее древней и уже давно вымершей группы высших растений — риниофитов — с водорослями и, в частности, очень сходный характер их ветвления; 2) сходство в чередовании «поколений» высших растений и многих водорослей; 3) наличие жгутиков и способность к самостоятельному плаванию у мужских половых клеток многих высших растений; 4) сходство в строении и функциях хлоропластов.[ …]
Популяция — это определенным образом организованная совокупность особей. Она имеет возрастную структуру, т. е. определенное соотношение численности индивидуумов разного возраста. У животных выделяют, например, ювенильную (детскую), сенильную (старческую, не участвующую в воспроизводстве) и взрослую (особи, осуществляющие репродукцию) группы. Популяции свойственно также определенное соотношение полов, причем, как правило, количество самцов и самок различно (соотношение полов не равно 1:1). Известны случаи резкого преобладания того или иного пола, чередование поколений с отсутствием самцов. Каждая популяция может иметь и сложную пространственную структуру (рис. 2.11); подразделяясь на более или менее крупные иерархические группы — от географической до элементарной (микропопуляция). Выделяют и более мелкие стабильные группировки, способные к скрещиванию внутри себя или в пределах аналогичных соседних группировок. Таковы прайды у львов, стаи у волков и других представителей семейства собачьих, гаремы у ластоногих и т. п. Многим видам птиц присущ колониальный образ жизни (известные птичьи базары).[ …]
Закон физико-химического единства живого вещества (В.И. Вернадского). Все живое вещество Земли физико-химически едино. Из Закона естественно вытекает следствие: вредное для одной части живого вещества не может быть безразлично для другой его части, или: вредное для одних видов существ вредно и для других. Отсюда — любые физико-химические агенты, смертельные для одних организмов (например, средства борьбы с вредителями), не могут не оказывать вредного влияния на другие организмы. Вся разница состоит лишь в степени устойчивости видов к агенту. Поскольку в любой многочисленной популяции всегда находятся разнокачественные особи, в том числе менее или более устойчивые к физикохимическим влияниям, скорость отбора по выносливости популяций к вредному агенту прямо пропорциональна скорости размножения организмов, быстроте чередования поколений. Исходя из этого, при растущем воздействии физико-химического фактора, к которому организм с относительно медленной сменой поколений устойчив, на менее устойчивый, но быстрее размножающийся вид их способность противостоять рассматриваемому фактору уравнивается. Именно поэтому длительное применение химических методов борьбы с вредителями растений и возбудителями болезней человека и теплокровных животных экологически неприемлемо. С отбором устойчивых особей быстро размножающихся членистоногих нормы обработки приходится увеличивать. Однако и эти увеличенные концентрации оказываются малоэффективными, но тяжело отражаются на здоровье людей и позвоночных животных.[ …]
Источник: ru-ecology.info
В жизненном цикле растений чередуются два поколения: спорофит и гаметофит.
Гаметофит — гаплоидная стадия (имеет одинарный набор хромосом)
Спорофит — диплоидная стадия (имеет двойной набор хромосом)
Иногда спорофит называют бесполым поколением, так как он образует споры; а гаметофит — половым поколением, так как он образует половые клетки (гаметы).
Схема чередования поколений представлена на рисунке ниже. Я рекомендую учить её в следующем порядке:
1) запоминаем, что спорофит диплоидный (2n), а гаметофит гаплоидный (n)
2) затем учим, что спорофит в спорангиях образует споры мейозом, а гаметофит в гаметангиях образует гаметы (обратите внимание на рисунок, мнемотехнические приемы для запоминания — в желтом и красном прямоугольнике)
***спорангии и гаметангии — это органы, в которых образуются соответственно споры и гаметы:
— мужские спорангии называются микроспорангиями, а женские — мегаспорангиями
— мужские гаметангии называются антеридиями (в них образуются мужские половые клетки), а женские — архегониями (в них образуются женский половые клетки — яйцеклетки)
3) запоминаем, что мейоз в этом цикле происходит только при образовании спор
Мейоз — тип деления, при котором набор хромосом уменьшается в два раза и происходит рекомбинация генов. Поэтому дочерние клетки генетически отличаются от родительской
Митоз — тип деления, при котором образуется копия материнской клетки
Чем споры отличаются от гамет?
Споры — одноклеточные образования, из которых развивается самостоятельный организм без слияния спор друг с другом.
Гаметы (половые клетки) — образуют многоклеточный организм, сливаясь друг с другом. Этот процесс называется оплодотворением, в результате образуется зигота — первая клетка нового организма.
Выучив эти пункты, легко запомнить общую схему чередования поколений. И тогда в последующем вам не придется учить с нуля схемы каждого отдела — вы будете понимать, что последовательность у всех одна и та же. Останется запомнить только небольшие особенности отделов:
чередование поколений у водорослей>>>
чередование поколений у мхов>>>
чередование поколений у папоротников>>>
чередование поколений у голосеменных>>>
чередование поколений у покрытосеменных>>>
Репетитор по биологии Оспанова Светлана Сергеевна, город Краснодар, ЮМР, ЮМР
Источник: bioege.ru