Цитоскелет — это клеточный каркас или скелет, находится в цитоплазме живой клетки. Он присутствует во всех клетках, как эукариот (животных, растений, грибов и простейших), так и прокариот. Это динамичная структура постоянно меняется, в функции которой входит поддержка и адаптация формы клетки к внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Цитоскелет образованный белками. В цитоскелета выделяют несколько основных систем, называемых или основными структурными элементами, заметными при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), или по основным белками, входящих в их состав (актин-миозиновых система, кератиновое система, тубулин- динеинова система).

Общий план строения филаментов цитоскелета

Элементы цитоскелета являются полимерами, мономерами которых выступают определенные белковые субъединицы. В отличие от других биополимеров, таких как сами белки или нуклеиновые кислоты, структурные единицы цитоскелета соединены друг с другом слабыми нековалентными связями. Полимерная строение выгодна из-за того, что позволяет клетке быстро перегруппировывать цитоскелет: белковые мономеры маленькие, и они могут быстро диссоциировать в цитоплазме, в отличие от длинных филаментов.


Промежуточные филаменты состоят из субъединиц, которые сами являются удлиненными фибриллярного белка, в то время как мономерами микрофиламентов и микротрубочек является глобулярные белки актин и тубулин соответственно. Белки цитоскелета могут самоорганизовываться в длинные филаменты, образуя различные типы латеральных контактов и контактов типа «хвост-голова». В живой клетке этот процесс регулируется огромным количеством вспомогательных белков.

Элементы цитоскелета могут быть одновременно динамичными и очень прочными за того, что они состоят из нескольких протофиламентив — длинных линейных нитей, построенных с мономеров, размещенных в один ряд. Обычно протофиламенты спирально закручиваются друг вокруг друга. Микротрубочки состоят из тринадцати протофиламентив размещенных по кругу, микрофиламенты — из двух спирально закрученных, а промежуточные филаменты — с восьми. Вследствие такого строения диссоциация мономера с конца фибриллы происходит значительно легче, чем разрыв посередине, так как для диссоциации необходимо разрушения только одного продольного связи и одного-двух латеральных, а для разрыва — большого количества продольных связей. Поэтому перестройка элементов цитоскелета происходит относительно легко, и в то же время они могут легко противостоять тепловым повреждением и выдерживать различные механические воздействия.

Элементы цитоскелета эукариот


Основными функциями цитоскелета является поддержание формы клетки и обеспечения перемещения как клетки в целом, так и внутриклеточных компонентов внутри клетки. Цитоскелет состоит из трех основных компонентов: микрофиламентов, микротрубочек и промежуточных филаментов. Это супрамолекулярные, протяжные полимерные структуры, состоящие из белков одного типа.

Сравнительная характеристика основных элементов цитоскелета
Микротрубочки Актиновые филаменты Промежуточные филаменты
Фотография
Схема строения
Струкутра Трубка из 13 протофиламентив белка тубулина Два закрученных одна вокруг одного протофиламенты актина Несколько протофиламентив, состоящие из фибриллярных белков объединены в канатоподибну структуру
Диаметр 25Нм с просветом в 15 нм 7 нм 8-12нм
Белковые субъединицы Тубулин — димер, состоящий из α- и β-тубулина Актин Различные белки в зависимости от типа клеток и функции (например кератин, белки ламины, виментину т.д.)
Нуклеотиды нужны для полимеризации ГТФ АТФ Не нужны
Основные функции
  • Поддержание формы клетки
  • Утоворення ресничек и жгутиков, обеспечивающих локомоциях клетки
  • Расхождения хромосом во время деления клеток
  • Транспорт органелл

  • Поддержание клеточной формы
  • Изменения в форме клеток
  • Сокращение мышц
  • Движение цитоплазмы
  • Локомоция клетки с помощью псевдоподий
  • Обеспечение цитокинеза
  • Поддержание формы клетки
  • Закрепление ядра и других органелл в определенном положении
  • Образование ядерной ламины
  • Поддержка аксонов в нейронах

Динамика элементов цитоскелета

Элементы цитоскелета являются динамическими структурами: их можно сравнить с цепочкой муравьев, которые идут к месту сбора пищи. Хотя сам цепочка может существовать часами, каждый муравей в нем находится в постоянном движении. Так же и элементы цитоскелета постоянно обмениваются субъединицами с цитоплазмой, где мономеры находятся в растворимой форме. Относительной стабильностью характеризуются только промежуточные филаменты, поэтому информация о динамике касается в большей степени микротрубочек и актиновых филаментов.

Примером динамичности и гибкости цитоскелета клетки может быть перегруппировки микротрубочек, которые в интерфазе образуют структуру похожую на звезду, лучи которой отходят от центра клетки, а перед разделением способны быстро создать веретено деления.
то же время некоторые структуры, построенные из элементов цитоскелета могут существовать очень долгое время: например на поверхности волосковых клеток внутреннего уха является вырасти — стереоцили, поддерживаемых пучками микрофиламентов. Эти пучки существуют на протяжении всей жизни животного, хотя их субъединицы постоянно обновляются

Скорость присоединения и диссоциации субъединиц описывается константами k on (измеряется в М -1 × с -1) и k off (измеряется в с -1) соответственно. Причем скорость присоединения зависит не только от k on, но и от концентрации свободных мономеров в цитоплазме, а скорость диссоциации является постоянной. Когда филамент растет, то количество свободных мономеров в цитоплазме падает, пока не достигнет определенного уровня — критической концентрации (C C), при которой скорость присоединения будет равна скорости диссоциации: C C × k on = k off, откуда:

Нуклеация

Мономеры элементов цитоскелета могут спонтанно образовывать комплексы в растворе. Однако, такие олигомеры обычно нестабильны, потому что каждая субъединица в них образует связи только с небольшим количеством других. Этих взаимодействий часто недостаточно, чтобы удержать комплекс, и он в основном быстро распадается.
я образования длинных филаментов необходимо наличие первоначального агрегата с такого количества мономеров, которой будет достаточно для стабилизации, такой агрегат называется ядром, а процесс его образования — нуклеации. Для актиновых филаментов, ядро ​​должно состоять минимум из трех субъединиц, тогда как образование микротрубочек начинается с сложного комплекса (предположительно, из 13 молекул тубулина, образующих кольцо).

Нуклеация обычно является лимитирующим этапом в образовании длинных филаментов в растворе свободных мономеров. После инициации полимеризации в таком растворе наблюдается лаг-фаза, во время которой не наблюдается образование филаментов. Ее существование объясняется тем, что нестабильность небольших олигомеров создает кинетический барьер в полимеризации, и длится она до тех пор, пока не произойдет процесс нуклеации. Если к раствору мономеров добавить готовые комплексы субъединиц (например, состоящие из соединенных ковалентно мономеров), тогда лаг-фазы наблюдаться не будет.

Потребность в нуклеации используется клеткой для регулирования образования новых элементов цитоскелета. Существуют специальные белки, которые могут катализировать нуклеации в специфическом месте, где необходимо образование микротрубочек или актиновых филаментов.

Полярность микротрубочек и микрофиламентов

В отличие от мономеров промежуточных филаментов, актин и тубулин имеют два структурно и функционально разные концы. В составе микрофиламентов и микротрубочек все субъединицы возвращены в одну сторону, таким образом данные элементы цитоскелета обладают полярностью. Два конца этих филаментов отличаются по динамике полимеризации и деполимеризации:


  • конец, на котором полимеризация и деполимеризация происходят быстрее называется плюс концов;
  • конец, на котором полимеризация и деполимеризация происходят медленнее называется минус концов.

В микротрубочках α-субъединицы тубулина возвращены в минус-конца, а β — до плюс. В Микрофиламентов мономеры актина размещены таким образом, что их АТФ-связывающая щель указывает в сторону минус конца.

Несмотря на то, что абсолютные занчення k on и k off могут сильно отличаться для плюс и минус конца, их соотношение является постоянной величиной. Поскольку изменение свободной энергии ΔG вследствие диссоциации или присоединения новой субъединицы одинакова, не в зависимости от того, на каком конце филамента произошли изменения. Поэтому, когда концентрация свободных мономеров C <C C, оба конца укорачиваются, а когда C> C C, оба конца растут. Это подтверждается только при отсутствии гидролиза нуклеозидтрифосфатов (АТФ или ГТФ).

Гидролиз нуклеотидтрифосфатив

Актин и тубулин — это не просто мономеры элементов цитоскелета, они также являются ферментами, которые могут осуществлять гидролиз АТФ и ГТФ соответственно. Одна молекула актина связывает одну молекулу АТФ, тогда как димер тубулина — две молекулы ГТФ (по одной на каждую субъединицу), то ГТФ, что находится в α-субъединицы никогда не гидролизуетья и не обменивается, тогда как ГТФ β-субъединицы может превращаться на ГДФ.


В свободных мономерах актина и тубулина гидролиз нуклеотидов происходит очень медленно, для ускорения этого процесса необходимо действие определенного фактора — ГТФаза- или АТФаза-активирующих белков. Причем для тубулина и актина такими факторами являются другие молекулы тубулина или актина соответственно, поэтому гидролиз нуклеотидтрифосфату значительно ускоряется после инкорпорации мономера в филамент цитоскелета, где он взаимодействует с другими идентичинмы молекулами. Микротрубочки и микрофиламенты могут существовать в двух формах «Т-форме» (мономеры связаны с ГТФ или АТФ) и «Д-форме» (мономеры связаны с ГДФ или АДФ).

После гидролиза нуклеотидтрифосфату большая часть энергии, высвобождаемой «хранится» в структуре филаментов. Поэтому изменение свободной энергии для диссоциации мономера с Д-формы становится негативный, чем для диссоциации с Т-формы, а следовательно и соотношение k off / k on, равное значению критической концентрации, будет больше для Д-формы, чем для Т. Иными словами, Д-форма более «склонна» к диссоциации. При определенном значении концентрации свободных субъединиц C, когда C C (T) <C <C C (D), Т-форма филаментов будет расти, а Д-форма — вкорочуватись.


Тредмилинг

Вероятность того, что определенная субъединица филаментов цитоскелета гидролизует связан нуклеотидтрифосфат и перейдет в Д-форму, тем больше, чем дольше эта субъединица находится в составе полимера. Поэтому посередине филаментов, где все мономеры уже «древние», они имеют в своем составе нуклеотиддифосфаты. К концам присоединяются преимущественно новые молекулы в Т-форме (поскольку концентрация АТФ или ГТФ в цитоплазме в десятки раз превышает концентрацию АДФ и ГДФ соответственно). На минус-конце полимеризация происходит медленно, поэтому гидролиз «успевает» за ней, и не происходит накопления субъединиц в Т-форме. Зато на плюс-конце, где полимеризация значительно быстрее, образуется «кэп» из нескольких субъединиц, содержащих негидролизовани нуклеотидтрифосфаты. Таким образом один конец (+) филамента находится в Т-форме, а другой (-) — в Д-форме и при концентрации свободных филаментов C, где C C (T) <C <C C (D), плюс-конец расти , а минус- — вкорочуватиметься, а общая длина не будет меняться. Этот процесс называется тредмилинг, он наблюдается как в микротрубочек, так и в актиновых филаментов, но характерно для последних. Тредмилинг всегда нуждается в энергии, выделяемой за счет гидролиза АТФ.

Динамическая нестабильность

В зависимости от скорости полимеризации и гидролиза нуклеотидтрифосфатив конце филаментов цитоскелета могут изменять свое состояние: переходить с Т-формы в Д-форму и наоборот.
ли концентрация свободных филаментов при этом меньше C C (T) и больше C C (D), то такой переход будет иметь важные последствия: филамент будет переходить от роста к укорочению (это событие называется катастрофа) либо наоборот (восстановления). Способность элементов цитоскелета быстрой смены «режимов» полимеризация / деполимеризация при постоянной концентрации свободных субъединиц называется динамической нестабильностью.

Явление динамической нестабильности особенно характерно для микротрубочек. В Т-форме их протофиламенты прямые, а при переходе к Д-формы они искривляются. Когда микротрубочки имеет ГТФ-кэп, он стабилизирует всю структуру, однако после ее потери (из-за замедления полимеризации или ускорения гидролиза) протофиламенты в Д-форме начинают очень быстро «розлуплюватись».

Также наблюдаются некоторые флуктуации длины актиновых филаментов, однако они в десяток раз меньше, чем в микротрубочек.

Яды, влияющие на цитоскелет эукариот

Поскольку нормальное функционирование системы микротрубочек и промежуточных филаментов необходимо для выживания и разделения килтины, эти клеточные компоненты часто являются мишенями действия природных токсинов. Некоторые из этих ядов связываются со свободными мономерами актина или тубулина и препятствуют им полимеризоваться, другие же наоборот — взаимодействуют с полимерными формами и не допускают диссоциации мономеров.
пример вещество таксол с тихоокеанского тиса (Taxus brevifolia) стабилизирует микротрубочки в полимерных форме, в то время как колхицин с безвременника осеннего (Colchicum autumnale) и винбластин с катарантуса (Catharanthus) наоборот не дают мономерам тубулина объединяться. Существуют вещества, аналогичным образом действуют и на актиновые филаменты: фалоидин с бледной поганки (Amanita phalloides) способствует филаментозний форме актина, а латрункулин с морской губки Latrunculia magnifica — наоборот, растворимой мономерной.

Кроме того, что подобные вещества широко используются для изучения свойств цитоскелета, некоторые из них также есть и терапевтическими препаратами. Таксол и винбластин благодаря своей способности изменять характер полимеризации микротрубочек способны достаточно эффективно убивать клетки, которые быстро делятся, при этом проявляя небольшое влияние на другие клетки. Поэтому их используют для лечения раковых заболеваний. Особенно популярен таксол для терапии рака молочной железы и рака легких, он часто бывает эффективным даже в тех случаях, когда другие методы химиотерапии не действуют.

Цитоскелет прокариот

До недавнего времени считалось, что цитоскелет имеют только эукариоты. Но последние исследования показывают, что для всех составных частей эукариотического цитоскелета можно найти гомологи у прокариот. Хотя сходство в аминокислотной последовательности белков небольшая, восстановления трехмерной структуры белковых молекул позволяет говорить о значительной структурное сходство и гомологичнисть этих структур.

  • Гомологи тубулина: с гомологов тубулина распространенным среди прокариот является белок FtsZ, что был первым найденным компонентом прокариотической цитоскелета. Подобно тубулина, FtsZ формирует филаменты тратя ГТФ, но эти филаменты НЕ группируются в трубочки. В течение деления клетки, FtsZ — первый белок, перемещается на место разделения, формируя «кольцо разделения» или Z-кольцо, которое обеспечивает прохождение цитокинеза, также FtsZ важен для привлечения ферментов, которые синтезируют новую клеточную стенку между дочерними клетками.
  • Гомологи актина: MreB и ParM — это актино-образные белки прокариот. MreB нужен для придания формы клетке, в частности отвечает за различие между пиличкоподибнимы и спиральными бактериями. Все несферических бактерии имеют гены MreB или его близких гомологов. Продукты этих генов формируют спиральную сеть под клеточной мембраной, которая служит для удержания ферментов, задействованных в биосинтезе клеточной стенки. Белок ParM кодируется плазмидной ДНК многих бактерий и нужен для сегрегации копий плазмиды при делении.
  • Гомолог белков промежуточных филаментов кресцентин: бактерия Caulobacter crescentus содержит третий белок, кресцентин, гомологический промежуточных филаментов эукариот. Кресцентин также используется для поддержания формы клетки.
  • Элементы цитоскелета прокариот, не имеющих гомологов у эукариот: у прокариот также имеющийся класс элементов цитоскелета, принадлежащих к семье WACA (англ. Walker A cytoskeletal ATPase) и не имеют гомологов в еукароит. К этому классу относится белок MinD, который является составной частью системы MinCDE, что обеспечивает определение места прохождения цитокинеза, а также белки, необходимые для различия копий плазмид, такие как ParA, Soj и другие.

Эволюция цитоскелета

Родственны между собой элементы цитоскелета были найдены у подавляющего большинства представителей всех трех доменов живых организмов: эукариот, бактерий и архей. Это свидетельствует о том, что белки цитоскелета возникли еще до выделения этих трех ветвей, каким бы путем оно не происходило.

Белок FtsZ, с которого позже возник тубулин, вероятно, эволюционно очень древним. Он содержит очень мало аминокислот аргинина, лизина, фенилаланина, тирозина и гистидина и практически не содержит триптофана. Поскольку считается, что кодоны этих аминокислот были добавлены в генетический код последними, вполне вероятно, что какая-то форма FtsZ возникла еще до окончательного установления генетического кода и уже тогда служила для осуществления цитокинеза. Белки гомологи тубулина образуют отдельную семью ГТФаз, и не имеют никаких близких родственников. Зато MreB более «молодой» с эволюционной точки зрения белок, он, вместе с другими актиноподибнимы белками и актиний, принадлежит к семье АТФаз, которая также включает ферменты гексокиназы и шаперон hsp70. Причем первыми из этой семьи, больше всего, возникли гексокиназы.

Сравнение последовательностей аминокислот в белках FtsZ различных видов бактерий и архей между собой и с эукариотическими тубулина, а также MreB между собой и с эукариотическими актина выявило интересную закономерность:

  • Белки FtsZ очень далеких друг от друга видов прокариот, таких как бактерии Escherichia coli, Bacillus subtilis, Mycoplasma pulmonis и Архебактерии рода Halobacterium имели высокую степень идентичности в аминокислотной последовательности (от 46 до 53%); аналогичное справедливо и для белка MreB.
  • Эукариотические тубулина и актин даже еще более консервативные (напирклад между тубулина человека и дрожжей существует 75% идентичности, в то время как актин любых видов эукариот, обычно отличаются не более чем на 10%);
  • Несмотря на большую консервативность белков цитоскелета в пределах групп эукариот и прокариот, при сравнении этих белков между группами, оказывается, что идентичность настолько мала, что ее почти невозможно обнаружить обычными методами (менее 15%). Причем гомология наиболее выражена в ГТФ- и АТФ-связывающих доменах.

Для объяснения этой «загадки» была выдвинута гипотеза о том, что такая резкая дивергенция эукариотических белков цитоскелета от прокариотических состоялась вследствие изменения их роли в клетке. FtsZ перестал обеспечивать прохождение цитокинеза и стал механической опорой клетки, а позже взял на себя и другие функции, в то время как MreB, взял на себя роль осуществления деления клетки и фагоцитоза.

Чрезвычайно высокий уровень косервативности актина и тубулина в клетках эукариот объясняется тем, что эти белки взаимодействуют с огромным количеством других: регуляторных, вспомогательных, моторных и др. Именно актин является «чемпионом» среди эукариотических белков по количеству белков-партнеров, поэтому замена любой аминокислоты может привести к нарушению этих взаимодействий и иметь катастрофические последствия.

Третий тип элементов цитоскелета — промежуточные филаменты, эволюционировали другим путем. Они имеющиеся фактически только у эукариот, и хотя их гомолог кресцентин и был обнаружен у одного вида бактерий, скорее всего, эти бактерии получили его в результате горизонтального переноса генов от эукариот. Белки промежуточных филаментов, в отличие от актина и тубулина, не отличаются особой консервативностью.

Источник: info-farm.ru

Цитоскелет выполняет три главные функции.

1. Служит клетке механическим каркасом, который придаёт клетке типичную форму и обеспечивает связь между мембранной и органеллами. Каркас представляет собой динамичную структуру, которая постоянно обновляется по мере изменения внешних условий и состояния клетки.

2. Действует как «мотор» для клеточного движения. Двигательные (сократительные) белки содержатся не только в мышечных клетках, но и в других тканях. Компоненты цитоскелета определяют направление и координируют движение, деление, изменение формы клеток в процессе роста, перемещение органелл, движение цитоплазмы.

3. Служит в качестве «рельсов» для транспорта органелл и других крупных комплексов внутри клетки.

Микрофиламенты и промежуточные волокна.

Микрофиламенты построенные из F-актина пронизывают микроворсинки, образуя узлы. Эти микроволокна удерживаются вместе с помощью актинсвязывающих белков, наиболее важными из которых являются фимбрин и виллин. Кальмодулин и миозиноподобная АТФ – аза соединяют крайние микроволокна с плазматической мембраной. .

Клетка может менять набор синтезируемых белков цитоскелета в зависимости от условий, но процесс этот медленный. Конструкция цитоскелета способна быстро меняться даже без синтеза новых молекул, за счет полимеризации и деполимеризации нитей. В клетке все время идет обмен между нитями и раствором белков-мономеров в цитоплазме. Во многих клетках примерно половина молекул актина и тубулина находится в виде мономеров в цитоплазме и половина входит в состав нитей микрофиламентов. Клетка регулирует стабильность нитей цитоскелета, присоединяя к ним специальные белки, изменяющие скорость полимеризации. Общий принцип функционирования цитоскелета – динамическая нестабильность. Например, форму эритроцита в виде двояковогнутого диска поддерживает примембранный цитоскелет из волокон, образованных белком спектрином. Спектрин связан с белком анкерином (anchor – якорь), который соединяется с белком цитоплазматической мембраны, ответственным за транспорт анионов (Cl, HCO3). Дефекты белков спектрина и анкирина вызывают необычную форму эритроцитов. Такие эритроциты очень быстро разрушаются в селезенке. Болезни, вызываемые такими нарушениями, называют наследственным сфероцитозом или наследственным эллиптоцитозом.

Динамичность цитоскелета

Рис. Цитоскелет эукариот. Актиновые микрофиламенты окрашены в красный, микротрубочки — в зеленый, ядра клеток — в голубой цвет.

Динамичность цитоскелета

Кератиновые промежуточные филаменты в клетке.

Таким образом, эукариотические клетки обладают своего рода каркасом, который с одной стороны придает им определенную форму, а с другой допускает возможность её изменения, позволяя клеткам двигаться и перемещать свои органеллы с одной части клетки в другую. Кроме основных компонентов цитоскелета важную роль в его организации и функциональной интеграции играют вспомогательные белки. Эти белки отвечают за прикрепление органелл к цитоскелету, обеспечение направленного движения органелл, координацию функций цитоскелета.

Нарушения цитоскелета. Цитоскелет не является пассивной клеточной структурой, обеспечивающей только клеточную морфологию. Доказана роль цитоскелета в двигательной функции клеток, в структуре плазматической мембраны и, что очень важно, в рецепторной функции клеток. Отмечено, что изменения цитоскелета нарушают процесс высвобождения активного вещества (гормона, медиатора и т.д.), а также изменяют рецепторную функцию клеток-мишеней. В результате нарушается рецепция клетками (в частности, нервными) различных стимулирующих веществ. Кроме того, отмечается нарушение двигательной активности клеток (например, бета-клеток поджелудочной железы), в результате возникает недостаточность инсулина. Поэтому проявления диабета довольно постоянны при хромосомных синдромах (Тернера, Клайнфельтера, Дауна и т.п.). Другим примером заболеваний с нарушением цитоскелета являются мышечная дистрофия Дюшенна и мышечная дистрофия Беккера. Обе формы являются результатом мутаций гена, кодирующего белок дистрофин. Дистрофин, в свою очередь, входит в состав цитоскелета. В результате при биопсии мышц выявляют характерные изменения – перерождение мышц и некроз волокон.

Органеллы, содержащие триплеты микротрубочек

Центриоли. Центриоль имеет цилиндрическую форму, диаметр 150 нм и длину 500 нм; стенка образована 9 триплетами (триплетный – состоящий из трёх) микротрубочек. Центриоль – центр организации митотического веретена – участвует в делении клетки. В ходе фазы S клеточного цикла центриоли удваиваются. Образовавшаяся новая центриоль расположена под прямым углом к первоначальной центриоли. При митозе пары центриолей, каждая из которых состоит из первоначальной и вновь образованной, расходятся к полюсам клетки и участвуют в образовании митотического веретена.

Базальное тельце состоит из 9 триплетов микротрубочек, расположенных в основании реснички или жгутика; служит матрицей при организации аксонемы.

Аксонема состоит из 9 периферических пар микротрубочек и двух расположенных центрально одиночных микротрубочек. В каждой периферической паре микротрубочек различают субфибриллу А и субфибриллу В. С субфибриллой А связаны так называемые наружные и внутренние ручки. В их состав входит белок динеин, обладающий способностью расщеплять АТФ. Аксонема – основной структурный элемент реснички и жгутика.

Ресничка – вырост клетки длиной 5-10мкм и толщиной 0,2 мкм, содержащий аксонему. Реснички присутствуют в эпителиальных клетках воздухопроводящих и половых путей; перемещают слизь с инородными частицами и остатками отмерших клеток и создают ток жидкости около клеточной поверхности. Под влиянием табачного дыма реснички воздухоносных путей разрушаются, что способствует задержке секрета в бронхах.

Динамичность цитоскелета

Рис. Схема поперечного сечения реснички. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)

Динамичность цитоскелета

Схема строения эукариотической эпителиальной клетки

Рисунок В.П. Андреева

Внутриклеточное пространство внутри клетки – это зона цитозоля неструктурированного мембранами внутриклеточного содержимого. Цитозоль является жидкой частью цитоплазмы и составляет около половины объема клетки. Здесь синтезируются белки, часть которых собирается на полисомах и остается в цитозоле. Цитозоль непосредственно сообщается через крупные ядерные поры с содержимым ядра. В ядре идут процессы транскрипции РНК с ДНК, причем синтезируются как нормальные клеточные, так и вирусные при вирусных инфекциях клеток. РНК из ядра транспортируется для синтеза белка в цитозоль на полирибосомы. Синтезированные белки под контролем шаперонов («катализаторов» принятия полипептидной цепью биологически значимой конформации) направляются в специальные участки эндоплазматического ретикулума. Лишние, испорченные, а также вирусные белки расщепляются в цитозоле так называемыми протеасомами. «Протеасомы» представляют собой мультипротеазные комплексы, состоящие из 28 субъединиц. Протеасомы расщепляют вирусные белки до пептидов- антигенов. Образовавшиеся пептиды- антигены вступают в связь с молекулами главного комплекса гистосовместимости (ГКГ – I), и направляются для экспрессии на клеточную мембрану. Комплексы антиген – ГКГ- I, расположенные на клеточной мембране, узнаются СД8+ Т- лимфоцитами, которые при этом активируются и обеспечивают противовирусную защиту, а также защиту от цитозольных внутриклеточных инфекций.

Внеклеточное пространство внутри клетки – это пространство (зона, компартмент) связанное с внешней внеклеточной средой и ограниченное мембранами структур и везикул, включающее в себя аппарат Гольджи, эндоплазматический ретикулум, лизосомы, эндосомы, фагосомы и фаголизосомы. Особое значение эта зона имеет в структуре антигенпредставляющих клеток, к которым относятся макрофаги и дендритные клетки (вариант лимфоцитов). На рибосомах эндоплазматической сети этих клеток синтезируются цепи молекул главного комплекса гистосовместимости (ГКГ- III). Конформация этих молекул произойдет только в том случае, если они соединятся с пептидами, образующимися в результате протеолиза (расщепления) белков – антигенов, захваченных клеткой посредством эндоцитоза или фагоцитоза. Это происходит тогда, когда фаголизосомы сливаются с везикулами, содержащими несконформированные молекулы ГКГ- II. С участием пептида молекула ГКГ- II принимает правильную конформацию, продвигается к мембране и экспрессируется на ней. Комплексы антигенов-пептидов с молекулами ГКГ- II распознают СД4+ Т – лимфоциты, которые играют главную роль в защитных реакциях от внеклеточных инфекций.

Концепции современной цитологии

Для разных клеточных типов у различных организмов характерны универсальные процессы. Это передача сигналов внутри клетки, регуляция клеточного цикла, апоптоз, тепловой шок, деградация внутриклеточных белков.

Апоптоз – биологический механизм гибели клетки по тому или иному сигналу извне или изнутри, который активирует внутри клетки определенные системы ферментов, обеспечивающих повреждение митохондрий, фрагментацию ДНК и затем фрагментацию ядра и цитоплазмы клетки. В результате клетка распадается на окруженные мембраной апоптозные тельца, которые могут фагоцитироваться соседними эпителиальными клетками и макрофагами. Содержимое погибающей клетки не попадает во внеклеточную среду. В ткани не развивается воспаление. Жизнь многоклеточных организмов невозможна без запрограммированной клеточной гибели, которая регулирует развитие, тканевый гомеостаз, клеточный ответ на повреждение ДНК и старение.

Тепловой шок

Тепловой шок может вызываться не только слишком высокой, но и слишком низкой температурой, ядами и множеством других воздействий, например, сбоем цикла суточной активности. Под воздействием этих факторов в клетке появляются белки с «неправильной» третичной структурой. Многие белки теплового шока как раз и помогают переводить в раствор и вновь сворачивать денатурированные или неправильно свернутые белки.

Реакция теплового шока сопровождается прекращением синтеза обычных для клетки белков и ускоренным синтезом различных защитных белков. Эти белки защищают от повреждений ДНК, матричные РНК, предшественники рибосом, и прочие важные для клетки структуры. Реакция теплового шока необычайно древняя и консервативная. Некоторые белки теплового шока обнаруживают гомологию у бактерий и человека.

К N-концу поврежденных, изношенных, недостроенных и функционально неактивных белков присоединяются молекулы белка-убиквитина, делая их мишенью для ферментов класса протеаз. Ассоциированный с убиквитином белок разрушается в особых мультикомпонентных комплексах, называемых протеасомами. Убиквитин – пример белка теплового шока, функционирующий в клетке и в нормальных условиях. В некоторых клетках, синтезируется до 30% аномальных белков. За открытие роли убиквитина в деградации белков была присуждена в 2004 году Нобелевская премия по химии.

Шапероны (от англ. букв.- пожилая дама, сопровождающая молодую девушку на балах) – семейство специализированных внутриклеточных белков, обеспечивающих быстрое и правильное сворачивание (фолдинг) вновь синтезированных молекул белка.

Кроме этого известны и другие белки шапероны. Например, шаперон HSP 70. Его синтез активируется при многих стрессах, в частности при тепловом шоке (отсюда и название Heart shook protein 70 – белок теплового шока). Цифра 70 означает молекулярную массу в килодальтонах. Основная функция этого белка – предотвращение денатурации других белков при повышении температуры. Шапероны – одни из самых жизненно важных белков всех живых существ. Они возникли на самых ранних стадиях эволюции, возможно еще до разделения организмов на прокариоты и эукариоты

Передача внешнего сигнала в клетку

Клетки не могут сами принять решение о том, что нужно организму. Они должны получить сигнал извне и лишь после этого внутриклеточная регуляция включится в поддержание необходимых процессов. Известные биохимики Вильям Эллиот и Дафна Эллиот приводят аналогию с мореплаванием. «Каждый корабль представляет собой организационную единицу «клетку», где поддерживается порядок и дисциплина, упорядоченно работают все механизмы и т.д. Вместе с тем, цели и маршруты плавания для кораблей определяются внешними сигналами (гормонами) высшего руководства (эндокринные железы и мозг).

Клетка обычно принимает сигнал о «состоянии дел» вокруг нее с помощью рецепторов. Н.Н. Мушкамбаров и С.Л. Кузнецов выделяют несколько механизмов действия сигнальных веществ.

1) Вещество взаимодействует с рецептором плазмолеммы, что индуцирует передачу сигнала внутрь клетки и при этом происходит химическая модификация (фосфорилирование, дефосфорилирование) определенных белков. (Фосфорильная группа несет сильный отрицательный заряд, что способствует изменению конформации белковой молекулы).

2) Вещество взаимодействует с рецептором плазмолеммы, который является одновременно и ионным каналом, открывающимся при связывании регулятора.

3) Внеклеточный регулятор проникает внутрь клетки мишени, связывается с цитоплазматическим или ядерным белком-рецептором и, выступая после этого как транскрипционный фактор, влияет на экспрессию определенных генов. Так действуют гормоны стероидной природы (например, мужские и женские половые гормоны).

В качестве сигнальных молекул иногда выступают простагландины и NO (оксид азота). Они проникают в клетку-мишень и влияют на активность регуляторных ферментов. Конечный результат – модификация определенных белков.

Наиболее часто используемым является механизм первого типа. При этом конкретные способы его реализации весьма разнообразны.

Передача сигналов внутри клетки

Водорастворимые сигнальные молекулы, в том числе известные нейромедиаторы, пептидные гормоны и факторы роста, присоединяются к специфическим белковым рецепторам на поверхности клеток-мишеней. Поверхностные рецепторы связывают сигнальную молекулу (лиганд), проявляя большое сродство к ней, и это внеклеточное событие порождает внутриклеточный сигнал, изменяющий поведение клетки.

Рецепторы являются интегральными мембранными белками.

Существует множество сигнальных путей, начинающихся от мембранного рецептора.

(Изменение мембранных рецепторов сопровождается возникновением различных болезней. Так, например, дефект в рецепторе мужского полового гормона тестостерона приводит к тому, что особи с мужским генотипом (2А+ХУ) выглядят как самки; все млекопитающие, не подвергнувшиеся в эмбриональный период воздействию тестостерона, развиваются по женскому пути. Мутантные самцы имеют нормальные семенники, вырабатывающие тестостерон, но ткани этих самцов не реагируют на гормон из-за дефектности соответствующих рецепторов. В результате у таких самцов развиваются все вторичные половые признаки самок и их семенники не опускаются в мошонку, а остаются в брюшной полости. Этот синдром (тестикулярной феминизации или сидром Морриса) встречается у мышей, крыс, крупного рогатого скота, а также у человека. Хотя изменен только ген, кодирующий рецептор тестостерона, затронутыми оказываются все разнообразные типы клеток, в норме реагирующие на этот гормон. Таким образом, один внешний сигнал может включать различные наборы генов в клетках разного типа.

Подавляющее большинство поверхностных рецепторов для гидрофильных сигнальных молекул, связав лиганд на внешней стороне мембраны, претерпевает конформационное изменение. Это изменение создает внутриклеточный сигнал, изменяющий поведение клетки-мишени. Внутриклеточные сигнальные молекулы часто называют вторыми посредниками (мессенджерами, англ. messenger – посыльный), считая «первым посредником» внеклеточный лиганд. К вторичным (внутриклеточным) посредникам относят циклический аденозинмонофосфат (цАМФ), циклический гуанозин 3΄,5΄ — монофосфат (цГМФ), катионы кальция, инозит-1,4,5-трифосфат, диацилглицерин. Кроме этого, известны сигнальные пути опосредованные белками, липидами, в том числе свободными жирными кислотами, оксидом азота (NO), а также пути не содержащие вторичного посредника. Примером последнего варианта является влияние γ-интерферона на транскрипцию определенных генов, с антивирусной направленностью. Внутриклеточные сигнальные пути регуляции клеточной активности очень сложны, до конца не изучены и многие открытия еще впереди. Достаточно сказать, что внутриклеточный сигнальный путь с участием инсулина, несмотря на многолетние исследования, еще не расшифрован.

Источник: StudFiles.net

Функция цитоскелета

Цитоскелет распространяется по всей цитоплазме клетки и выполняет ряд важных функций:

  • Придает клеткам форму и обеспечивает структурную поддержку.
  • Удерживает клеточные органеллы рядом.
  • Помогает в образовании вакуолей.
  • Цитоскелет не является статической структурой, и способен разбирать и собирать свои внутренние части, чтобы обеспечить внутреннюю и общую подвижность клеток. Типы внутриклеточного движения, поддерживаемые цитоскелетом, включают транспортировку везикул в клетку и из нее, манипуляцию хромосомами во время митоза или мейоза и миграцию органелл. Цитоскелет делает возможной миграцию клеток, поскольку мобильность клеток необходима для создания и восстановления тканей, цитокинеза (деление цитоплазмы) при образовании дочерних клеток и в ответах иммунных клеток на микробы.
  • Цитоскелет помогает в транспортировке сигналов связи между клетками.
  • Он образует клеточные придаточные выступы, такие как реснички и жгутики (в некоторых клетках).

Структура цитоскелета

Цитоскелет состоит по меньшей мере из трех различных типов волокон: микротрубочек, микрофиламентов и промежуточных волокон. Эти волокна отличаются своим размером, причем микротрубочки являются самыми толстыми, а микроволокна являются самыми тонкими.

Протеиновые волокна

  • Микротрубочки представляют собой полые стержни, функционирующие прежде всего для поддержки или формирования клетки и выступают в роли «маршрутов», вдоль которых могут перемещаться органеллы. Микротрубочки обычно встречаются во всех эукариотических клетках. Они различаются по длине и составляют около 25 нм (нанометров) в диаметре.
  • Микрофиламенты или актиновые нити представляют собой тонкие твердые стержни, которые активны при мышечном сокращении. Они особенно распространены в мышечных клетках. Подобно микротрубочкам, они обычно встречаются во всех эукариотических клетках. Микрофиламенты состоят в основном из сократительного белкового актина и имеют диаметр до 8 нм.
  • Промежуточные нити могут быть многочисленными во многих клетках и обеспечивать поддержку микрофиламентов и микротрубочек, удерживая их на месте. Эти нити образуют кератины, обнаруженные в эпителиальных клетках и нейрофиламентах в нейронах. Они имеют диаметр около 10 нм.

Источник: natworld.info

Гиалоплазма (от греч. хиалос — стекло, плазма — оформленный) — внутренняя среда клетки, в которой размещаются все внутриклеточные структуры и протекают разнообразные процессы обмена веществ. Гиалоплазма представляет собой густой бесцветный вязкий раствор, содержание воды в котором составляет 70—90 %. В гиалоплазме содержится много белков, присутствуют углеводы, липиды и различные неорганические соединения. Здесь же в растворенном виде находятся аминокислоты, нуклеотиды и другие «строительные блоки» биополимеров, а также промежуточные продукты, образующиеся в ходе обмена веществ.

Гиалоплазма объединяет все клеточные структуры и обеспечивает химическое взаимодействие между ними.

Цитоскелет (внутриклеточный цитоплазматический скелет) — составная часть цитоплазмы, ее механический каркас. Цитоскелет представляет собой сложную трехмерную сеть микрофиламентов и микротрубочек (рис. 33).

Микрофиламенты — тонкие белковые волокна (фибриллы), состоящие из двух спирально закрученных одна вокруг другой нитей. Каждая нить возникает в результате полимеризации молекул белка актина (рис. 34, а).

В клетке обнаруживаются также фибриллы другого важного белка — миозина. Миозиновые фибриллы вместе с актиновыми микрофиламентами образуют комплекс, способный сокращаться за счет использования энергии АТФ.

Динамичность цитоскелета

Микротрубочки содержатся во всех эукариотических клетках. Они представляют собой тонкие полые неразветвленные трубочки, образованные молекулами белка тубулина (рис. 34, б).

Цитоскелет выполняет различные функции. Например, он упорядочивает размещение всех структурных компонентов клетки. Микротрубочки цитоскеле

та поддерживают определенную форму клетки. Они располагаются таким образом, чтобы противодействовать растяжению и сжатию клетки. Кроме механических функций, микротрубочки обеспечивают внутриклеточный транспорт. Вдоль микротрубочек с помощью специальных белков перемещаются различные частицы, гранулы, вакуоли и другие клеточные компоненты. Во время деления клетки микротрубочки принимают непосредственное участие в образовании веретена деления и в растягивании хромосом к полюсам клетки.

Динамичность цитоскелета

Микрофиламенты взаимодействуют с микротрубочками поверхностного слоя цитоплазмы и с цитоплазматической мембраной, обеспечивая двигательную активность гиалоплазмы, процессы эндоцитоза и экзоцитоза. Взаимодействие элементов цитоскелета с плазмалеммой также лежит в основе амебоидного движения, характерного для некоторых клеток (например, амеб, лейкоцитов).

Элементы цитоскелета очень динамичны. В определенных участках клетки при изменении внешних и внутренних условий они могут распадаться и вновь собираться. Отдельные белковые молекулы, образующиеся при разборке микро-трубочек и микрофиламентов, переходят в раствор в составе гиалоплазмы. При сборке элементов цитоскелета наблюдается обратный процесс.

Источник: botana.biz

К структурам цитоскелета относят микротрубочки, тонкие микрофиламенты, промежуточные филаменты (микрофибриллы).

Они состоят из белков и не имеют мембран. Эти органеллы выполняют не только опорно-каркасную и формообразующую, но и множество других функций.

Микротрубочки. Они встречаются в цитоплазме практически всех клеток многоклеточных организмов, кроме прокариот. Микротрубочки исследуют при электронной микроскопии. Микротрубочки располагают отдельно в виде самостоятельной структуры или формируют сложные структуры центриолей, ресничек, жгутиков, веретена деления.

Органелла представляет собой прямую, не ветвящуюся, полую структуру. В цитоплазме большинства клеток микротрубочки постоянно подвергаются сборке и разборке. В результате этого динамического равновесия поддерживается вся система распределения органелл цитоплазмы, их положение в клетке, форма клетки, перемещение в ней веществ. Если вызвать в клетке деполимеризацию микротрубочек, введя колхицин или значительно снизив температуру, то форма клети сильно изменится и нарушится распределение в ней транспортных потоков. Следовательно, микротрубочки цитоплазмы формируют эластичный, но вполне устойчивый внутриклеточный скелет — цитоскелет.

При световой микроскопии скопления микротрубочек можно выявить с помощью специфических антител к тубулину. Они формируют скопление вблизи клеточного центра, участвуя в формировании центросферы.

Микротрубочки представляют собой полые цилиндры с общим диаметром 24 нм, внутренний просвет имеет ширину 15 нм, а толщина стенки — 5 нм. Микротрубочки состоят из глобулярных белков — тубулинов (13 на поперечном срезе). Глобулы тубулинов имеют диаметр около 5 нм, молекулярную массу 60 · 103 и коэффициент седиментации 3…4 S. Тубулины подразделяют на альфа — и бета-тубулины. Тубулины образуют димер — белок, состоящий из двух глобул тубулинов. Димеры соединяются в виде цепочки, которая формирует спираль. Тубулины могут быть в двух формах: глобулярной (диспергированной в матриксе) и фибриллярной (в виде микротрубочек). В составе тубулинов всегда обнаруживают значительное количество гуаниндифосфата (ГДФ).

Микротрубочки формируются в центрах организации микротрубочек, или микротрубочкоорганизующих центрах: центриолях, базальных тельцах ресничек и жгутиков, зонах кинетохоров митотических хромосом.

Образование микротрубочек происходит путем самосборки. Для этого необходимы: глобулы тубулинов, ГТФ (гуанинтрифосфат), белки, стимулирующие полимеризацию, высокое содержание ионов Mg2+ и отсутствие ионов Са2+. Если эти условия соблюдены, то образование новых микротрубочек происходит даже в пробирке (in vitro).

В начале полимеризации органеллы происходит нуклеация, формируется «затравка» из очень короткой цепи тубулинов в три ряда, затем к обоим концам начинают прикрепляться новые тубулины, и размер микротрубочки увеличивается.

Микротрубочки имеют положительный и отрицательный полюса. Со стороны отрицательного полюса, лежащего ближе к организатору микротрубочек, тубулины полимеризуются медленнее и легко распадаются до глобулярных частиц. Со стороны положительного полюса, направленного к периферии клетки, полимеризация идет быстрее.

Микротрубочки быстро распадаются на глобулярные частицы, взвешенные в гиалоплазме. Распад органеллы можно спровоцировать, увеличив внутри клетки содержание ионов кальция.

Микротрубочки формируют центриоли, несут опорно-каркасную функцию, контролируют транспортные потоки в цитоплазме, участвуя в циклозе, обеспечивают каркасную основу ресничек и жгутиков, формируют веретено деления в митозе и мейозе и др.

Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур.

При разрушении микротрубочек фибробластов в культуре форма клеток из вытянутой становилась округлой или многоугольной (полигональной), их движения стали хаотичными, то есть эти органеллы контролируют направление движения клетки.

Разрушение микротрубочек колхицином нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и т. д. По цитоплазматическим интерфазным микротрубочкам, как по рельсам, могут передвигаться различные мелкие вакуоли, например синаптические пузырьки, содержащие нейромедиаторы, в аксоне нервной клетки или митохондрии. Эти перемещения возможны из-за связи микротрубочек со специальными белками — транслокаторами (динеинами и кинезинами), которые, в свою очередь, связываются с транспортируемыми структурами.

С тубулинами микротрубочек связан белок кинезин, обладающий АТФазной активностью и обеспечивающий транспорт органелл и других структур от центра к периферии (от отрицательного к положительному полюсу микротрубочки). Подобную функцию, но в противоположном направлении, выполняет цитоплазматический динеин.

За счет этого микротрубочки могут контролировать транспортные потоки и распределение структур в клетке.

Если оба конца микротрубочки «закрыты» (копированы), то есть связаны, например, с клеточным центром и наружной мембраной, то микротрубочки не распадаются и могут метилироваться (присоединять метальные группы), приобретая устойчивую форму. Такие метилированные, стабильные микротрубочки могут выполнять специализированные функции: служить основой ресничек, жгутиков и клеточного центра. В нейроне они образуют органеллу специального назначения — нейротубулу.

Нейротубулы выполняют разнообразные функции: опорно-каркасную, обеспечивают транспорт веществ (аксоток), контролируют выделение медиаторов, регулируют процессы регенерации в поврежденном нервном волокне и др.

Копировать концы микротрубочек могут белки микротрубочкоорганизующих центров (МОТЦ), или центров организации микротрубочек (ЦОМТ).

По бокам к микротрубочкам могут прикрепляться низкомолекулярные т-белки и высокомолекулярные MAP (microtubule associated proteins). Эти белки формируют «шипы» на микротрубочках, связывают элементы цитоскелета между собой, стабилизируют микротрубочки, могут находиться на конце микротрубочки, прикрывать его (кэпировать) и этим предотвращать их распад (деполимеризацию).

Микротрубочки являются составной частью клеточного центра, ресничек и жгутиков. Система микротрубочек развивается вместе с центриолью, в которой происходит начальная полимеризация тубулинов и рост микротрубочек цитоскелета.

Промежуточный филамент. Это нити с поперечным диаметром 8…11 нм. Их скопления формируют более толстые структуры — микрофибриллы, которые в нейронах участвуют в образовании нейрофибрилл. Они обеспечивают опорно-каркасную функцию. Промежуточные филаменты лежат в центральных областях клеток в виде трехмерной сети. На периферии филаменты нередко объединяются в пучки, прикрепляются к внутренней поверхности десмосом и полудесмосом. Промежуточные филаменты придают клеткам упругость и жесткость. Присоединяясь с помощью десмосом к подобным участкам соседних клеток, они формируют обширную сеть — каркас, который соединяет клетки в механически прочную и в то же время гибкую и эластичную систему. Это особенно важно в эпителиальных тканях, часто подвергающихся механическим воздействиям.

Промежуточные филаменты — неветвящиеся, располагающиеся пупками нити (микрофибриллы). Эти фибриллярные структуры относительно стабильны по сравнению с микротрубочками и тонкими микрофиламентами. Они состоят из фибриллярных белков-мономеров. Эти фибриллярные белки в виде α-спирали переплетаются между собой и поэтому органелла напоминает канат. Особенно хорошо развиты промежуточные филаменты в клетках, которые испытывают значительные механические нагрузки (эпителиальные, мышечные ткани).

Микрофибриллы являются тканеспецифичными, так как их образуют фибриллярные белки, различные по составу в зависимости от происхождения клеток и тканей. Десмины образуют промежуточные филаменты мышечных тканей мезодермального происхождения; виментины — клеток мезенхимального происхождения (ткани внутренней среды); цитокератины — эпителиальных клеток; белки нейрофибриллярного триплета — нейронов; глиальный фибриллярный кислый белок — астроцитов.

Особенностью промежуточных филаментов является то, что образующие их фибриллярные белки комплементарно соединяются друг с другом: кислые цитокератины с цитокератинами, имеющими основные свойства. Три мономера цитокератинов объединяются между собой в виде α-спирали. Каждая такая нить имеет толщину около 2 нм. Эти тонкие нити соединяются в более толстые образования — полые трубки с поперечным сечением 8…11 нм. В некоторых участках филаменты разволокняются, что облегчает связь нитей в органелле. Нити в таком филаменте свернуты в слабо закрученную спираль. Промежуточные филаменты могут формировать крупные комплексы (микрофибриллы).

Промежуточные филаменты в эпителии называются тонофиламентами, а микрофибриллы — тонофибриллами.

В отличие от микротрубочек промежуточные филаменты не имеют полярности и являются стабильными компонентами цитоскелета. На внутренней поверхности ядерной оболочки имеются структуры, аналогичные промежуточным филаментам. Они образованы белками ламинами и участвуют в формировании ядерной пластинки. К ним прикрепляется хроматин.

При помощи иммуноморфологических методов определяют тканевое происхождение тех или иных опухолей именно по белкам их промежуточных филаментов, что очень важно для диагностики и правильного выбора типа химиотерапевтических противоопухолевых препаратов.

Химический состав и молекулярная масса белков промежуточных филаментов довольно разнообразны. Так, выявлено, что кислых цитокератинов около 15 видов. Примерно столько же и основных цитокератинов. Молекулярная масса основных цитокератинов колеблется от 50 000 до 70 000, кислых — от 40 000 до 60 000. Примерно 8 из цитокератинов входят в состав производных кожи (волосы, когти, рога, ногти и т. д.). Их распределение зависит от типа эпителия. В многослойном эпителии цитокератины различны в разных слоях эпителия и преобладание того или иного цитокератина является косвенным признаком степени дифференцировки кератиноцитов (клеток многослойного эпителия).

Промежуточные филаменты нервной клетки — нейрофиламенты у позвоночных сформированы белками NF-Z, NF-M, NF-H, которые значительно отличаются по молекулярной массе (от 57 до 150 кДа). Эти белки и промежуточные филаменты поддерживают форму тел и отростков клеток нервной ткани, а также фиксируют на поверхности белки ионных каналов.

Десминсодержащие промежуточные филаменты поперечнополосатых мышечных тканей присоединяются к телофрагмам (Z-дискам) миофибрилл. Они связывают Z-диски, а через них и миофибриллы между собой. Миофибриллы могут прикрепляться через промежуточные филаменты к наружной мембране, соединяться с полудесмосомами.

При значительном повреждении клетки промежуточные филаменты формируют клубок — подвергаются коллапсу. В такой клубок погружаются поврежденные органеллы и другие макромолекулярные образования. Вероятно, это облегчает их последующий гидролиз (самопереваривание).

При регенерации сети промежуточных филаментов восстанавливаются от центральных участков клетки, от клеточного центра, что позволяет предполагать его роль как центра формирования не только микротрубочек, но и промежуточных филаментов.

Тонкие микрофиламенты. Представляют собой тонкие нити с поперечным диаметром около 6 нм. Микрофиламенты находятся практически во всех клетках и являются универсальными элементами цитоскелета. Концентрируются на периферии клетки, формируя так называемую «кортикальную» периферическую область клетки, а в толще цитоплазмы лежат в виде сети, отдельных волокон или в виде пучков. В кортикальном слое цитоплазмы тонкие микрофиламенты образуют сгущения под плазмолеммой в виде плотных пучков или слоев. В апикальной зоне эпителия такие сгущения называют кутикулой.

Тонкие микрофиламенты видны как плотно упакованные пучки, направляющиеся в клеточные отростки, где служат основой для их формирования (микроворсинки и стереоцилии).

Наряду с опорой микрофиламенты — это внутриклеточный сократительный аппарат, обеспечивающий не только подвижность клеток при активном амебовидном перемещении, но и при перемещении цитоплазмы, движении вакуолей, митохондрий, делении клетки.

Кроме того, актиновые микрофиламенты выполняют и каркасную функцию, соединяясь с рядом стабилизирующих белков, они могут образовывать временные или постоянные пучки или сети.

В большинстве клеток актины (основные белки тонких микрофиламентов) составляют около 5 % общего содержания белка. Выделяют пять форм актина (изоформ). Все изоформы близки по аминокислотным последовательностям, но строение и состав концевых участков полипептидных цепочек различные. Это приводит к различию в скорости полимеризации актина, что необходимо для двигательной активности клетки и скорости формирования выпячиваний и впячиваний клеточной мембраны.

Молекулы актина в тонких микрофиламентах закручены по а-спирали, располагаясь в виде двух цепочек. Такой актин называется F-актином. Как и тубулины микротрубочек, актиновые нити легко полимеризуются и вновь распадаются на отдельные глобулы. Диспергированный в гиалоплазме актин называют G-актином.

Тонкие микрофиламенты имеют отрицательный и положительный полюса. Область положительного полюса легче полимеризуется, а отрицательный полюс легче распадается.

Образование тонкого микрофиламента, как и микротрубочки, начинается с формирования тримера (нуклеация). Это цепочка из трех актинов. Затем к этому тримеру начинают присоединяться новые актины (элонгация) и длина тонкого филамента увеличивается. Выявлены белки, контролирующие эти процессы. Так, профиллин блокирует нуклеацию. Он присоединяется к активной зоне мономера и формирует димер, который не может связаться с другими белками — актинами. Фрагмин подавляет нуклеацию и элонгацию, также связывая концевые элементы цепочки.

С помощью опорно-каркасных белков микрофиламенты могут соединяться с клеточной мембраной — это α-актинин, талин, винкулин, спектрин, фрагмин, анкирин, адцуцин. Разнообразие сцепляющих белков обусловлено разными способами прикрепления микрофиламентов: параллельно мембране, в виде пучков (по типу копирования) и др.

Микрофиламенты сцепляются между собой с помощью белков фасцина, α-актинина, фимбрина, филамина, виллина. Эти белки могут связывать тонкие микрофиламенты в виде плотных (фимбрин) или рыхлых (α-актинин) пучков, сетей (филамин). Так, белок филамин, являясь еще и белком-стабилизатором тонких микрофиламентов, формирует сшивки в местах пересечения органелл. В результате образуются сети из сцепленных нитей. Если оба конца микрофиламентов сцеплены с мембраной или с какой-либо иной структурой (копированы), они не распадаются и становятся стабильными. Последующее метилирование предотвращает распад микрофиламентов.

Стабильные тонкие микрофиламенты характерны для мышечных тканей, где они называются тонкими миофиламентами. Совместно с миозинами они формируют специализированную органеллу мышечной ткани — миофибриллу. Белок тропомиозин стабилизирует тонкий миофиламент.

Гельзолин, виллин и фрагмин копируют положительный полюс тонкого микрофиламента. Акументин выполняет подобную функцию со стороны отрицательного полюса.

Тонкие микрофиламенты обеспечивают опорно-каркасную функцию, контролируют циклоз, участвуют в формировании адгезивных контактов (пояска сцепления или ленточной десмосомы). В поясках сцепления тонкие микрофиламенты лежат параллельно цитомембране вдоль адгезивного контакта. Они укрепляют данный контакт, связываясь также с элементами внутриклеточного цитоскелета.

Наряду с микротрубочками микрофиламенты контролируют направление транспортных потоков и распределение макромолекулярных образований, органелл. В циклозе важное значение имеет полярность тонких микрофиламентов, противоположная к микротрубочкам.

Микрофиламенты участвуют в движении клетки. Одним из ведущих факторов, обеспечивающих движение, является взаимодействие актина с толстыми микрофиламентами, содержащими миозины. В присутствии ионов кальция в поперечнополосатых мышцах это взаимодействие ведет к сокращению симпласта. В гладких миоцитах и немышечных клетках подобную роль играет взаимодействие с минимиозинами, а также способность актинов к быстрому распаду и полимеризации.

В результате перераспределения тонких микрофиламентов в кортикальной зоне клетка может формировать впячивания (псевдоподии, ламеллоподии). Это позволяет обеспечивать локальные движения и перемещения целой клетки. Подобный процесс лежит в основе фагоцитоза и экзоцитоза.

Если клетка находится в состоянии покоя, в условиях жидкой среды и отсутствия контактов с другими клетками, она отличается округлой формой и равномерной сетью тонких филаментов в цитоплазме. В процессе исследования движения клетки в культурах тканей доказано, что перемещение клетки, например фибробласга, начинается с формирования филоподии — нитчатого выроста цитоплазмы диаметром 0,3…0,5 мкм и длиной до 20 мкм. Затем образуются плоские пластинчатые выросты — ламеллоподии или выросты, напоминающие оборки — «рафлы». Ламеллоподии затем сливаются так, что образуется особая зона — ламеллярная цитоплазма, в которой почти нет органелл и рибосом, но много микрофиламентов. Если клетка равномерно распластана, то она отличается концентрацией органелл вокруг ядра, лежащего в центре. К наружи от органелл тонкие микрофиламенты формируют кольцо.

В процессе формирования ламеллоподий может активироваться движение клетки. Движение обусловлено преобладанием в одном из направлений адгезивных или так называемых хемотаксических факторов.

Хемотаксические факторы — это вещества, стимулирующие перемещение клеток в направлении их наибольшей концентрации. Начало перемещения сопровождается перераспределением органелл и других структур (поляризацией) клетки. Такая активированная к движению клетка отличается тем, что псевдоподии и ламеллярная цитоплазма сохраняются на одной из сторон клетки. Именно эта сторона клетки и есть направление ее дальнейшего перемещения. Боковые поверхности клетки остаются неактивными. Перемещающаяся поверхность взаимодействует с внеклеточными структурами с помощью точечных (фокальных) контактов. Тонкие филаменты распределены в виде пучков вдоль оси перемещения. Область ламеллоподии содержит многочисленные тонкие микрофиламенты и микротрубочки. С их помощью происходит транспорт элементов клеточной мембраны от полюса с малым содержанием хемотаксинов в полюс с их высокой концентрацией. В результате клетка подтягивается в направлении перемещения. В последующем цикл перемещения повторяется.

В течение цикла тонкие микрофиламенты и микротрубочки непрерывно перераспределяются. Сеть микрофиламентов крайне неустойчива и все время перестраивается. В клетке, свободно плавающей в межклеточном веществе, тонкие микрофиламенты располагаются диффузно. В покое тонкие актиновые микрофиламенты концентрируются в виде кольца, а часть из них лежит в виде радиальных пучков. Во время перемещения тонкие микрофиламенты распределяются вдоль основного направления движения. По ламеллярному краю видны отдельные волокна или их пучки, которые лежат параллельно поверхности клетки.

Перемещения клеток необходимы для нормального функционирования и развития тканей и органов. Так, процессы миграции обеспечивают развитие зародышевых листков, внезародышевых клеток, формирование центральной и периферической нервных систем. Без активных перемещений невозможны иммунные реакции, функционирование эпителиальных тканей и фибробластов, многие другие процессы.

Тонкие микрофиламенты являются опорой (основой) для микроворсинок и стереоцилий. В структуре этих специализированных образований тонкие филаменты располагаются в виде тесно лежащих пучков.

Толстые микрофиламенты. Они образованы белками миозинами (меромиозинами). Толстые микрофиламенты в поперечном сечении имеют диаметр 10…12 нм. Эти структуры находятся в мышечной ткани, обеспечивают мышечное сокращение при взаимодействии с актиновыми филаментами.

Источник: www.activestudy.info