Общая характеристика

Строго говоря, биологическая эволюция — процесс изменения с течением времени в наследственных характеристиках, или поведении популяции живых организмов. Наследственные вехи есть закодированные в генетическом материале организма (обычно ДНК). Эволюция согласно синтетической теории эволюции, прежде всего, является следствием трех процессов: случайных мутаций генетического материала, случайного генетического отклонения (англ. Genetic drift) и не случайного естественного отбора в пределах групп и видов.

Естественный отбор, один из процессов, который управляет эволюцией, является результатом различий в шансах на воспроизведение между особями популяции. Это обязательно следует из следующих фактов:

  • Естественная, наследственная вариация существует в пределах групп и среди видов
  • Организмы надродючи (количество потомков превышает предел гарантированного выживания)
  • Организмы в отличные по способности выжить и возродиться
  • В любом поколении, те, что воспроизводятся успешно обязательно передают свои наследственные цихи к следующему поколению, когда же неудачные воспроизводители этого не делают.

Если свойства увеличивают эволюционную пригодность индивидуумов, которые несут их, то те индивидуумы вероятнее выживают и воспроизводятся, чем другие организмы популяции. Так они передают больше копий удачных наследственных черт к следующему поколению. Соответствующее уменьшение пригодности из-за вредных цихи приводит к их зридшення. Со временем, это может приводить к приспособлению: постепенное накопление новых этих (и сохранение существующих, которые в целом приспосабливают популяцию живых организмов к их окружения и экологической ниши.

Хотя естественный отбор не случаен по своей форме действия, другие капризны силы имеют сильное влияние на процесс эволюции. В поло воспроизводимых организмах, случайное генетическое отклонение приводит к наследственным этих, которые становятся достаточно общими просто благодаря стечению обстоятельств и случайном спариванию. Этот бесцельный процесс может быть влиятельными от естественного отбора в определенных ситуациях (особенно в маленьких группах).

В разных окружениях, естественный отбор, случайные генетические отклонения и крошка случайности в мутациях, которые появляются и хранятся, могут заставить различные группы (или части группы) эволюционировать в разных направлениях. При достаточном разногласия, две группы поло воспроизводимых организмов могут стать достаточно отличными, чтобы образовать отдельные вид, особенно, если способность к межвидового скрещивания между двумя группами потеряно.


Опыты показывают, что все живые организмы на Земле имеют общего предка. Этот вывод был сделан, основываясь на общей наличии Л-аминовых кислот в белках, наличия общего генетического кода во всех живых существ, возможности классификации по наследству по категориям, вкладываемые, гомологии последовательностей ДНК и общности найпидставовиших биологических процессов.

Хотя первые упоминания об идее эволюции достигают давности, новейшей, современной формы она приобрела в трудах Альфреда Уоллеса и Чарльза Дарвина в их совместной статье в Линнеевського общества в Лондоне (Linnean Society of London) и позже в книге Дарвина «Происхождение видов» (1859 ). В 1930-х гг. Синтетическая теория эволюции объединила эволюционную теорию с генетикой Грегора Менделя.

Эволюция организмов происходит из-за изменений в наследственных признаках. Например, цвет глаз у человека есть наследственным признаком, которую индивид получает от своих родителей. Наследственные признаки контролируются генами. Совокупность генов одного организма является его генотипом.

Совокупность всех признаков, формирующих структуру и поведение организма называется фенотипом. Эти признаки возникают в результате взаимодействия генотипа этого организма с условиями внешней среды. То есть не каждый фенотипической признак организма наследуется. Например, загар обусловлена ​​взаимодействием генотипа человека с солнечным светом, таким образом загар не успадкуеться. В общем, люди загорают по-разному, что следует из их генотипа. Например, у некоторых людей присутствует такая наследственный признак как альбинзим. Альбиносы не загорают и очень чувствительны к солнечному излучению — они легко получают солнечные ожоги.

Причины эволюции


Матричное копирование с ошибками

В основе жизни на Земле лежит процесс копирования молекул нуклеиновых кислот — ДНК и РНК. Процесс копирования осуществляется матричным принципом комплементарности: одна молекулы нуклеиновой кислоты может образовать парную для себя, а с этой парной молекулы считывается молекула, идентична исходной. Таким образом, молекулы ДНК и РНК способны к неограниченному размножению.

При копировании непременно возникают ошибки из-за несовершенства системы репликации. Через эти ошибки копии ДНК и РНК содержат небольшие различия, которые, однако, нарастают с течением времени. Такой процесс самовитворення с изменениями называют конвариантною редупикациею.

К неограниченного воспроизведения с ошибками способны некоторые неодушевленные системы, например, кристаллы или некоторые химические циклы. Но живое отличается тем, что может передавать эти ошибки в неизменном виде следующим поколениям. Эти ошибки, или мутации, практически не меняют физико-химические свойства молекул нуклеиновых кислот, но влияют на информацию, считывается из них живыми организмами. Таким образом, живые организмы проявляют наследственность и изменчивость своих признаков, к которым приводят соответственно копирования и мутации в молекулах нуклеиновых кислот.

iv>

Гомеостаз и стабильность онтогенеза

Постоянное воспроизводство ДНК с ошибками приводит к тому, что имеется в каждой молекуле генетическая информация со временем сильно меняется. Современные живые организмы имеют системы защиты от избыточного изменения последовательности нуклеотидов молекулы ДНК. К ним относятся ферменты репарации, подавители мобильных элементов генома, противовирусные защитные механизмы и т.

Тем не менее, гены все равно передаются в следующее поколение с некоторыми изменениями, в результате чего популяция живых организмов одного вида обычно не содержит особей, в которых вся последовательность ДНК одинакова. При этом фенотипическая изменчивость зачастую меньше генетическую, поскольку взаимодействия между различными генами в онтогенезе подавляют влияние изменений в отдельных генах. Таким образом, многоклеточные организмы достигают стабильности индивидуального развития, приводит к сохранению видового нормы.

Выборочное выживания и размножения

Молекулы РНК и ДНК, а также живые организмы размножаются с разной эффективностью в зависимости от собственных свойств и условий окружающей среды. Организмы могут погибнуть, не дожив до времени размножения, а те, что выжили, оставляют разное количество потомков. Те организмы, выживших и эффективно размножились, смогли это сделать через две группы причин: соответствие их вариантов генов условиям среды или стечения обстоятельств, не связанные с «качеством» аллелей. Согласно влияние первой группы на распространение аллелей в популяции описывается понятием естественный отбор, а второй группы — понятием генетический дрейф.


Естественный отбор

Естественный отбор — это выборочное переживания (длительное выживание) и размножения наиболее приспособленных к условиям окружающей среды особей в популяции. Чем больше приспособлена растение или животное, тем больше вероятность ее дожития до репродуктивного периода, а также тем больше потомков она оставит. Приспособленность зависит от наличия в генотипе особи аллелей генов, способствующих переживанию и размножению. Поскольку все организмы в популяции имеют различные генотипы, то при стабильных условиях количество носителей более выгодных в этих условиях аллелей генов будет расти в поколениях.

Кроме того, условия среды создают конкуренцию за выживание и размножение между организмами. В связи с этим, организмы, обладающие аллелями, которые предоставляют им преимущество перед их конкурентами, передают эти аллели потомкам. Аллели, которые не предоставляют такого преимущества, не передаются следующим поколениям.

Генетический дрейф

Дрейф генов — это процесс изменений частоты аллелей, который вызывается причинами, которые не связаны с влиянием аллелей на приспособленность особей.

>
этому генетический дрейф относят к нейтральным механизмов эволюции генов и популяций. Соотношение между влиянием естественного отбора и дрейфа генов в популяции меняется в зависимости в силу отбора и эффективного размера популяции (число особей, способных к размножению). Естественный отбор обычно играет большую роль в больших популяциях, а дрейф генов преобладает в малых. Преобладание дрейфа генов в малых популяциях может даже приводить к фиксации вредных мутаций. Как результат, изменение численности популяции может значительно изменять ход эволюции. Эффект бутылочного горлышка, когда численность популяции резко снижается и в результате теряется генетическое разнообразие, приводит к большей однородности популяций.

Общий ход эволюции

Первые следы жизни на Земле датированы 3,5-3,8 млрд лет назад. Это остатки прокариотических жизни — строматолиты. Около 3 млрд лет назад появляются первые фотосинтетики, которыми были цианобактерии. Первые эукариот появились около 1,6-1,8 млрд лет назад. Это приводит к «кислородной катастрофы» — резкое повышение концентрации кислорода в атмосфере Земли. Многоклеточные эукариот возникали многократно в разных группах, однако первые надежные окаменелости имеют возраст около 750 млн лет назад (криогеновий период), а появление разнообразной океанической биоты связана с Вендский периодом (едиакарська биота, около 600 млн лет назад). Появление скелетных животных и их богатых остатков произошла в кембрийском периоде около 550-520 млн лет назад. Тогда появилось большинство современных типов животных.


В силурийском периоде растения впервые вышли на сушу. В девоне на суше поселились первые земноводные и членистоногие животные. В пермском периоде появились рептилии, которые доминировали на Земле на протяжении мезозойской эры. Несколько групп терапсидних рептилий дальше начало млекопитающим. В меловом периоде появились птицы и начался расцвет цветковых растений. В кайнозойскую эру доминировали млекопитающие, а также достигли расцвета насекомые. В антропогене одна из групп приматов, гоминиды дала начало эволюции человека. В плейстоцене-голоцении человек становится геологической силой, влияющей на эволюцию всей биосферы.

Свойства эволюции

Ход эволюции жизни обнаруживает несколько сквозных закономерностей, которые являются объективными и часто описаны математически. Эволюционная биология изучает дополнительные механизмы эволюции или новые возможности реализации исходных принципов, которые позволят коренным образом понять сущность этих закономерностей. Основные свойства эволюции таковы: появление адаптированных к среде организмов, морфо-функциональный прогресс, появление новых органов и структур (эмерджентность), переход к половому размножению, вымирание видов, рост биоразнообразия.

Адаптация

Современные виды выглядят хорошо приспособленными к условиям среды, в которой они существуют. При этом адаптации ограничены той средой, где они обычно используются: при перемещении организма в новую среду он часто становится полностью неприспособленным или по крайней мере менее приспособленным, чем «коренные» жители других условий.


появления эволюционной картины мира достаточно четкое соответствие свойств организма условиям его «родного» среды настолько поражала исследователей, они считали ее следствием действия сверхъестественных сил. Тем не менее, адаптация является почти обязательным следствием эволюции, поскольку менее адаптированы к условиям среды организмы делают все меньший вклад в генетическое разнообразие популяции благодаря естественному отбору. Вместе с тем, происхождение самых адаптаций необязательно зависит от отбора, а может быть побочным следствием других адаптаций или вообще стечению обстоятельств (следствием генетического дрейфа).

Прогресс и автономизация

В ходе эволюции безъядерные бактериальные клетки дают начало сложным клеткам эукариот. Эукариот в дальнейшем приобретают многоклеточности, образуют ткани и органы. Животные развивают нервную систему, имеют сложное поведение, которая позволяет им выживать во многих средах. Человек как верхушка эволюции животных достигла возможности жить в любых средах, в том числе и внеземных.

Эмерджентность

По ходу эволюции часто происходит перекомбинация частей организмов и генов, изменение функции старых структур. Однако некоторые процессы и части организмов возникали впервые. Фотосинтез у цианобактерий, белки репликации ДНК, аппарата трансляции, чешуя рыб и тому подобное.


Раздельнополость

Первые животные были гермафродитами, а среди высших гермафродитов почти нет.

Пол и рекомбинация

В бесполых организмов гены наследуются вместе (они привитыми) и не смешиваются с генами других индивидов во время размножения. Потомки же половых организмов содержат случайную смесь хромосом их родителей за счет независимого сортировки. В течение родственного процесса гомологичной рекомбинации половые организмы обмениваются ДНК между двумя гомологичными хромосомами. Рекомбинация и независимое сортировки не меняют частот аллелей, но меняют их ассоциативность друг с другом, производя потомков с новыми комбинациями аллелей. Пол обычно увеличивает генетическую изменчивость и может увеличить скорость эволюции. Однако, бесполость может иметь преимущества в определенных условиях, поскольку в некоторых организмов она эволюционировала повторно. Бесполость может позволить двум наборам аллелей генома дивергуваты и, как следствие, привести к возникновению новых функций. Рекомбинация позволяет равноправным аллелям, которые находятся вместе наследоваться независимо. Однако частота рекомбинаций низкая (примерно два случая в одну хромосому за одно поколение). Как результат, гены, размещаются рядом на одной хромосоме не всегда розтасовуються друг от друга в процессе генетической рекомбинации и имеют тенденцию наследоваться вместе. Этот феномен носит название сцепления генов.


епление генов оценивается путем измерения частоты появления двух аллелей на одной хромосоме (измерение неравновесного сцепления генов). Набор аллелей, которые обычно успадковуютсья вместе называется гаплотипом. Это имеет важное значение когда один из аллелей определенного гаплотипа предоставляет большое преимущество в борьбе за существование: положительный естественный отбор приведет селективное чистки (англ. Selective sweep), которое приведет к тому, что частота других аллелей этого гаплотипа тоже возрастет. Этот эффект называется генетическим автостопом (генетический хитчхайкинг). Когда аллели не могут быть разделены за счет рекомбинации (например в Y-хромосоме млекопитающих), тогда происходит аккумуляция вредных мутаций (см. Храповик Мюллера). Изменяя комбинации аллелей, половое размножение приводит изъятие вредных и распространение полезных мутаций в популяции. Кроме того рекомбинация и сортировки генов могут обеспечивать организмы новыми выгодными комобинациямы генов. Но этот положительный эффект балансуетсья тем, что пол снижает скорость размножения (см. Эволюция полового размножения) и может вызывать разрушение выгодных комбинаций генов. Причины эволюционирования полового размножения до сих пор остаются не совсем понятными и этот вопрос пока активной областью исследований в области эволюционной биологии. Оно стимулировало новые идеи о механизмах эволюции, например гипотезу Красной Королевы.

Вымирание

В истории Земли неоднократно происходили массовые вымирания живых организмов. Такими были вымирания на границе вендского и кембрийского периода, когда погибла едиакарська биота, пермского и триасового периодов, мелового и эоценового периодов. После массовой гибели старых групп организмов начинался расцвет тех групп, которые пережили вымирание. Вымирание меньших масштабов, такие как пост-ледниковое вымирания крупных млекопитающих после последнего ледникового периода, тоже приводят к изменению групп организмов. Человек привела к вымиранию видов, наиболее уязвимых к ее техногенной деятельности.

Рост биоразнообразия

Палеонтологические находки, несмотря на свою неполноту и ограниченность, демонстрируют наличие роста биоразнообразия как в океане, так и на суше.

Уровни эволюции

На разных уровнях организации живого свойства эволюции и ее механизмы играют разную роль.

  • генный
  • геномный
  • популяционный
  • видовой
  • таксонний
  • экосистемный
  • биосферный

Мутации

Генетическая вариация возникает за счет случайных мутаций, возникающих в геномах организмов. Мутации — это изменения в последовательности нуклеотидов ДНК, вызываемых радиоактивным излучением, вирусами, транспозонами, химическими мутагенами, а также ошибками копирования, которые возникают во время мейоза или репликации ДНК. Эти мутагены производят несколько различных типов изменений в последовательности нуклеотидов ДНК: они могут не вызвать никакого эффекта, изменять продукт гена, или вообще прекратить функционирование гена. Исследования на дрозофилах показали, что если мутации вызывают изменения белка, который кодируется определенным геном, то последствия скорее всего будут губительными. Примерно 70% таких мутаций приводят к определенным нарушениям, остальные являются нейтральными или полезными. Поскольку мутации часто вредно влияют на клетки, то в процессе эволюции у организмов возникли механизмы репарации ДНК, которые устраняют мутации. Таким образом, оптимальная частота мутаций это компромисс между платой за высокую частоту вредных мутаций и платой за метаболические затраты (например, синтез ферментов репарации) для уменьшения этой частоты. Некоторые организмы, например ретровирусы, имеют такую ​​высокую частоту мутаций, почти каждый их потомок будет владеть мутированным геном. Такая высокая частота мутаций может быть преимуществом, поскольку эти вирусы эволюционируют очень быстро, таким образом избегая ответов иммунной системы.

Мутации могут включать значительные участки ДНК, например дупликации генов, является сырым материалом для эволюции новых генов. У животных в среднем за каждый миллион лет происходят дупликации от десятков до сотней генов. Большинство генов, которые имеют общий предковый ген, принадлежат к одной генетической семьи. Новые гены образуются несколькими способами, в целом за счет дупликации предковых генов, либо за счет рекомбинации частей различных генов, в результате чего формируются новые комбинации нуклеотидов с новыми функциями. Новые гены формируют новые белки с новыми функциями. Например, для формирования структур глаза человека, которые ответственны за восприятие света используются четыре гена: трех для цветного зрения (колбочки) и один для ночного (палочки) все эти гены произошли от одного предкового гена. Другое преимущество дупликации гена, или даже целого генома состоит в том, что увеличивается избыточность (избыточность) генома; это позволяет одному гену приобретать новых функций, в то время как копия этого гена выполняет начальную функцию. Изменения в хромосомах могут проходить в результате крупных мутаций, когда сегменты ДНК внутри хромосомы отделяются, а затем снова встраиваются в другом месте хромосомы. Нариклад, две хромосомы рода Homo слились с образованием хромосомы 2 человека. Это слияние не состоялось в филогенетических рядах других обезьян, то есть они имеют эти хромосомы разделенными. Важнейшей ролью таких хромосомных перестроек в эволюции является ускорение дивергенции популяций с формированием новых видов за счет того, что происходит меньше межпопуляционных скрещиваний.

Последовательности ДНК, которые могут перемещаться по геному (Мобильные генетические элементы), такие как транспозонов, формируют большую часть генетического материала генетического материала растений и животных и имеют важное значение в эволюции геномов. Например, более миллиона последовательностей Alu представлены в геноме человека и сейчас эти последовательности служат для выполнения регуляции экспрессии генов. Другой эффект этих мобильных ДНК состоит в том, что они могут вызывать мутации существующих генов, или даже удалять их, увеличивая таким образом генетическое разнообразие.

Проблема происхождения жизни

Признание эволюции Католической церковью

Католическая церковь признала в энциклике папы Пия XII лат. Humani Generis, что теория эволюции может объяснять происхождение тела человека (но не его души), призвав, однако, к осторожности в суждениях и назвав теорию эволюции гипотезой. 1996 Папа Иоанн Павел II в послании к Папской академии наук подтвердил признание теистического эволюционизма как допустимой для католицизма позиции, заявив, что теория эволюции — это более чем гипотеза. Поэтому среди католиков буквальный, младоземельный, креационизм жидкий (в качестве одного из немногочисленных примеров можно привести Дж. Кина). Склоняясь к теистического эволюционизма и теории «разумного замысла», католицизм в лице своих высших иерархов, в том числе и выбранного 2005 папы Бенедикта XVI, тем не менее, безусловно отвергает эволюционизм материалистический.

Источник: info-farm.ru

Эволюция и коэволюция 

Эволюция — это фундаментальный научный тезис (постулат) о том, что всему сущему свойственно постепенно качественно изменяться под воздействием окружающей среды.

Эволюция. В наше время термин «эволюция» чаще всего упоминается в контексте теории биологической эволюции, объясняющей то великое разнообразие живого мира, которое мы наблюдаем в природе, а так же причины его возникновения.

«Биологическая эволюция» — это естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом.

Существует несколько биологических эволюционных теорий, объясняющих механизмы, лежащие в основе эволюционных процессов живой природы.

В данный момент общепринятой биологической эволюционной теорией является синтетическая теория эволюции (СТЭ), которая является, по сути, синтезом классического дарвинизма и популяционной генетики.

Синтетическая теория эволюции (СТЭ) позволяет объяснить связь материала эволюции (генетические мутации) и механизма эволюции (естественный отбор).

В рамках синтетической теории эволюции (СТЭ)  «эволюция» определяется как процесс изменения частот аллелей генов в популяциях организмов в течение времени, превышающего продолжительность жизни одного поколения.

Чарльз Дарвин был первым, кто сформулировал и предложил биологическую теорию эволюции на основе естественного отбора.

Эволюция путём естественного отбора — это процесс, который следует из трёх установленных фактов о популяциях:

1) рождается больше потомства, чем может выжить;

2) у разных организмов разные черты, что приводит к различиям в выживаемости и вероятности оставить потомство;

3) эти черты — наследуемые.

Вышеуказанные условия приводят к появлению внутривидовой конкуренции и избирательной элиминации наименее приспособленных к среде особей, что ведёт к увеличению в следующем поколении доли таких особей, черты которых способствуют выживанию и размножению в этой среде. Естественный отбор — единственная известная причина адаптаций, но не единственная причина эволюции.

К числу неадаптивных причин биологической эволюции относятся генетический дрейф, поток генов и мутации.

Несмотря на неоднозначное восприятие в обществе, биологическая эволюция как естественный процесс является твёрдо установленным научным фактом, имеет огромное количество доказательств и не вызывает сомнений в научном сообществе.

В то же время отдельные аспекты биологических эволюционных теорий, объясняющих механизмы эволюции, являются предметом научных дискуссий.

Биологическая эволюция.

Биологическая эволюционная теория как путь к новым горизонтам познания.

Биологические эволюционные теории.

Практическое значение биологических эволюционных теорий.

Открытия в эволюционной биологии оказали огромное влияние не только на традиционные области биологии, но и на многие другие академические дисциплины, например, антропологию, психологию.

Представления об эволюции стали основой современных научных концепций и прикладной науки во многих областях жизнедеятельности человека: сельском хозяйстве, охране окружающей среды, широко используются в медицине, биотехнологии и многих других, социально значимых областях.

 

Эволюция. Биологическая эволюция.

История развития научных взглядов и представлений о биологической эволюции.

Первые зафиксированные предположения о том, что живые организмы могут изменяться, впервые встречается у греческих философов-досократиков.

Так представитель милетской школы Анаксимандр считал, что все животные изначально произошли из воды, после чего вышли на сушу. Человек, по его представлениям, зародился в теле рыбы.

У Эмпедокла можно обнаружить идеи гомологии и выживания наиболее приспособленных.

Демокрит считал, что наземные животные произошли от земноводных, а те в свою очередь самозародились в илу.

В отличие от этих материалистических взглядов, Аристотель считал все природные вещи несовершенными проявлениями различных постоянных естественных возможностей, известных как «формы», «идеи» или (в латинской транскрипции) «виды». Это было частью его телеологического понимания природы, в рамках которого у каждой вещи есть своё предназначение в божественном космическом порядке. Вариации этой идеи стали основой средневекового миропонимания и были объединены с христианским учением. Однако Аристотель не постулировал того, что реальные типы животных являются точными копиями метафизических форм, и приводил примеры, как могут образовываться новые формы живых существ.

В 17-ом веке в исследованиях появился новый подход, который отклонял аристотелевские утверждения, и искал объяснения естественных явлений в законах природы, единых для всех видимых вещей и не нуждающихся в неизменяемых естественных типах или божественном космическом порядке.

Но этот новый подход с трудом проникал в биологические науки, которые стали последним оплотом понятия неизменного естественного типа. Так, Джон Рей использовал для животных и растений, и для определения неизменных природных типов, термин «вид», но в отличие от Аристотеля он строго определил каждый тип живого существа как вид и считал, что каждый вид может быть определён по чертам, которые воспроизводятся от поколения к поколению.

По мнению, Рею эти виды созданы Богом, но могут быть изменчивы в зависимости от местных условий. Другая биологическая классификация, по Линнею, также рассматривала виды неизменными и созданными по божественному плану.

Свое веское слово о природе изменения организмов внесли ученые натуралисты.

В 1751 году Мопертюи писал об естественных модификациях, происходящих во время воспроизводства, накапливающихся в течение многих поколений и приводящих к формированию новых видов.

Другой ученый натуралист, Бюффон, предположил, что виды могут дегенерировать и превращаться в другие организмы.

Эразм Дарвин считал, что все теплокровные организмы возможно происходят от одного микроорганизма (или «филамента»).

Первая полноценная эволюционная концепция была предложена Жаном Батистом Ламарком в 1809 году в труде «Философия зоологии».

Батист Ламарк считал, что простые организмы (инфузории и черви) постоянно самозарождаются. Затем эти формы изменяются и усложняют своё строение, приспосабливаясь к окружающей среде. Эти приспособления происходят за счёт прямого влияния окружающей среды путём упражнения или неупражнения органов и последующей передачи этих приобретённых признаков потомкам (позже эта теория получила название ламаркизм).

Идеи Жана Ламарка были отвергнуты натуралистами, поскольку не имели экспериментальных доказательств. Кроме того, всё ещё были сильны позиции учёных, считавших, что виды неизменны, а их сходство свидетельствует о божественном замысле. Одним из самых заметных и известных среди них был Жорж Кювье.

Биологическая эволюция. Теория биологической эволюции.

Биологическая эволюция и теория биологической эволюции как эволюционный качественный скачок в научном знании и биологических теориях.

Чарльз Дарвин, предложив научному миру и широкой публике свою теорию эволюции посредством естественного отбора, положил конец доминированию в биологии представлений о неизменности видов.

Первоначально, Чарльз Дарвин, изучая работу Томаса Мальтуса «Опыт закона о народонаселении», заметил,  что прирост населения ведёт к «борьбе за существование», в ходе которой начинают преобладать организмы с благоприятными признаками, поскольку те, у кого их нет, погибают.

Этот процесс начинается, если каждое поколение производит больше потомства, чем может выжить, что приводит к борьбе за ограниченные ресурсы.

Это могло объяснить происхождение живых существ от общего предка за счёт законов природы.

Дарвин развивал положения своей теории, начиная с 1838 года, пока Альфред Уоллес в 1858 году не прислал ему свою работу с такими же идеями.

Статья Альфреда Уоллеса была опубликована в том же, 1858, году в одном из томов трудов Линневского общества, в этом же томе была представлена краткая выдержка из работ Чарльза Дарвина.

В конце 1859 года Чарльз Дарвин публикует свое научное произведение, под названием «Происхождение видов», в котором детально объясняется концепция естественного отбора.

Книга Чарльза Дарвина «Происхождение видов»  привела к более широкому и стремительному распространению дарвиновской концепции эволюции.

Тем не менее, в то время точные механизмы наследственности и появления новых черт оставались неизвестными. С целью объяснения этих механизмов Дарвин развивал «временную теорию пангенезиса».

Биологическая эволюция. Развитие теории биологической эволюции.

Можно отметить, что уже в 1865 году Грегор Мендель открыл законы наследственности, однако его работы оставались практически неизвестными до 1900 года.

Август Вейсманн в своих исследованиях отметил важное различие между зародышевыми (половыми) и соматическими клетками, а также то, что наследственность обусловлена только зародышевой линией клеток.

Хуго де Фриз соединил дарвиновскую теорию пангенезиса с вейсманновскими представлениями о половых и соматических клетках и предположил, что пангены расположены в ядре клетки и могут перемещаться в цитоплазму и изменять структуру клетки.

Хуго Де Фриз был также одним из учёных, которые сделали работу Грегора Менделя известной. Он полагал, что менделевские наследственные черты соответствуют передаче наследственных изменений по зародышевому пути. Чтобы объяснить возникновение новых черт, Хуго де Фриз развивал теорию мутаций, которая стала одной из причин временного разногласия между зарождающейся генетикой и дарвинизмом.

Биологическая эволюция. Развитие теории биологической эволюции.

Работы первых пионеров популяционной генетики, таких как Дж. Б. С. Холдейн, Сьюэл Райт, Рональд Фишер, дополняют исследования эволюции статистическими методами и, таким образом, устраняют ложное  противопоставление генетики и эволюции путём естественного отбора.

В 1920-1930-х годах современный эволюционный синтез соединил естественный отбор, теорию мутаций и менделевское наследование в единую теорию, применимую к любому разделу биологии.

Открытая в 1953 году Уотсоном и Криком структура ДНК продемонстрировала материальную основу наследственности. Молекулярная биология улучшила наше понимание взаимосвязи генотипа и фенотипа.

Достижения произошли и в филогенетической систематике. Благодаря публикации и использованию филогенетических деревьев появилась возможность изучать и сравнивать изменения признаков в разных филогенетических группах.

В 1960 годах Мотоо Кимура в своих исследованиях показал, что подавляющее число мутаций на молекулярном уровне носит нейтральный по отношению к естественному отбору характер.

В 1972 году палеонтологи Нильс Элдридж и Стивен Гулд возродили дискуссию о возможном прерывистом характере эволюционного процесса.

В конце 20-го века эволюционная биология получила импульс от исследований в области индивидуального развития. Открытие hox-генов и более полное понимание генетического регулирования эмбриогенеза помогли установить роль онтогенеза в филогенетическом развитии и сформировали представление об эволюции новых форм на основе прежнего набора структурных генов и сохранения схожих программ развития у филогенетически далёких организмов.

Эволюция и коэволюция,Биологическая эволюция. Биологическая коэволюция 

Биологическая эволюция. Практическое значение теории биологической эволюции для современной науки.

В третьем тысячелетии, исследования и развитие знаний в сфере теорий биологической эволюции продолжается. Актуальность и важность теории биологической эволюции подтверждена временем и новыми открытиями.

А важность для биологии теории биологической эволюции, лучше других сформулировал еще в 1973 году, биолог исследователь Феодосий Добжанский:

 «Ничто в биологии не имеет смысл кроме как в свете эволюции», потому что эволюция объединила то, что сначала казалось бессвязными фактами, в непротиворечивую систему знаний, объясняющую и предсказывающую различные факты о жизни на Земле.»

 

 

Эволюция и коэволюция!

Эволюция и коэволюция в системе современных знаний!

Эволюция и коэволюция вселенной 

Коэволюция. Что такое коэволюция?

Коэволюция. Феномен коэволюции представляет собой соразвитие взаимодействующих систем, рядоположенных на одном уровне организации материи или включенных друг в друга в силу принадлежности к разным уровням ее организации.

Коэволюция. Синергетические признаки коэволюции позволяет сформулировать ряд конструктивных правил эволюционных объединений и взаимодействий. Например, коэволюция развивающихся в разном темпе видов и структур.

Коэволюция. Принципы коэволюции несут в себе основу законов природы и могут быть использованы в качестве методологии в исследованиях будущего.

 

 

Коэволюция. Биологическая коэволюция. Что такое биологическая коэволюция?

Коэволюция (биологическая коэволюция) – это понятие, означающее совместную эволюцию биологических видов, взаимодействующих в экосистеме.

Коэволюция (биологическая коэволюция). Первым идею концепции «коэволюции» в её бизиологическом смысле предложил Н. В. Тимофеев-Ресовский в 1968 году.

Коэволюция (биологическая коэволюция). Согласно взглядам Тимофеева-Ресовского, на «коэволюцию» — изменения, затрагивающие какие-либо признаки особей одного вида, приводят к изменениям у другого или других видов.

Коэволюция (биологическая коэволюция). Коэволюция происходит при различных типах биоценотических взаимосвязей между видами, которые реализуются при взаимодействии конкретных видов в отдельных биоценозах.

Коэволюция (биологическая коэволюция). Процесс коэволюции сопровождается формированием комплекса взаимных адаптаций (коадаптаций), оптимизирующих устойчивые взаимодействия популяций разных видов.

Коэволюция (биологическая коэволюция). Следует отметить, что так как экосистемы формируют сеть межвидового взаимодействия, то все виды, входящие в экосистему, должны коэволюционировать.

 

Коэволюция. Основные принципы коэволюции. Законы коэволюции.

Коэволюция. Законы коэволюции. В основе процессов коэволюции лежат принципы, имеющие следующую иерархическую систему (коэволюционно-стохастические принципы):

1.Бифуркационный принцип. Несмотря на то обстоятельство, что бифуркация является диалектической противоположностью коэволюции, бифуркационный принцип имеет фундаментальную значимость для коэволюционных взаимодействий систем, принадлежащих к микро-, макро- и мегауровням самоорганизации материи и Метагалактики в целом.

Если эволюционная часть траектории развития системы характеризуется постоянностью накопления изменений, то бифуркационная часть траектории — это неожиданное и нелинейное изменение, происходящее в том случае, когда в системе возникают сильные напряжения. В жизнеспособных системах бифуркации приводят к более высоким формам порядка.

Из бифуркационного принципа вытекают очень интересные и важные в методологическом, и философском, плане выводы. Если допустить возможность повторения биологической или социальной эволюции, то она привела бы к совершенно иным результатам, так как эволюционный процесс, проходя через точки бифуркации, приобретает свойства уникальности, невоспроизводимости, а также, если невоспроизводимость материальных систем есть процесс от причины к следствию, то правомерно считать, что причина может лежать и в будущем.

2.Принцип необходимого разнообразия заключается в постоянном поддержании системами необходимого множества и разнообразия элементов и их отношений для их устойчивого и динамичного развития. Поэтому принцип необходимого разнообразия постулирует обладание системами свойством макроскопичности как обязательного условия наличия устойчивых коэволюционных взаимодействий. Этот принцип приложим как к неживым, так и к живым, социальным и идеальным системам.

Принцип необходимого разнообразия во многом опосредован наличием положительных нелинейных обратных связей, которые повышают меру сложности, неопределенности, стохастичности системы, но именно это порождает множество возможностей развития системы. Таким образом, наличие нелинейной обратной связи является необходимым условием эволюции открытых систем, в частности человека, его биологической и социальной основ и общества.

Разнообразие представлений, диалог мировоззрений, культур и форм деятельности — необходимая основа успешного решения общепланетарных проблем.

3.Принцип коэволюционного невырождения систем реализуется в тех случаях, когда друг другу противостоят системы генетического разнообразия. Происходит процесс взаимно обусловленного, коэволюционного усложнения как отдельных пар генов, так и мультигенных комплексов и генома в целом.

В рамках принципа динамического коэволюционного невырождения систем возможно исследование процессов ненаправленной сопряженной изменчивости не только на молекулярном уровне. Стохастические процессы генетической изменчивости «стремятся» вывести экосистему из равновесия. В биосфере на различных трофических уровнях спонтанно возникают качественно новые организмы, наделенные большей логической мощностью в оценке окружающей среды. Но так как главным фактором экологического окружения для любого вида, в том числе и для человека, являются другие виды, принцип динамического коэволюционного невырождения систем приложим к характеристике социальных процессов, более того, он позволяет методологически правильно подходить к управлению ими.

4.Принцип информационного ускорения вытекает из энтропийно-информационных взаимодействий. Высокоорганизованные направленно развивающиеся системы, в том числе галактики, скопления звезд и галактик, вселенная, биосфера, человек, ноосфера, содержат в себе информационную модель будущего. Данный принцип основывается на представлении об изменении энтропии системы как результате информационного взаимодействия, взаимосвязи энтропии и информации, хаоса и порядка. Структурирование системы можно рассматривать как повышение ее информационной емкости.

В социальной эволюции принцип информационного ускорения проявляется как информационное ускорение самоорганизующейся системы, относящееся к значимой информации. Это полностью относится к формированию ноосферы, «как всегда актуального сейчас» процесса.

И каждая последующая ступень социальной эволюции характеризуется возрастающей интенсивностью информационных процессов.

Принцип информационного ускорения отражает реальность ускорения темпов эволюции. С появлением человека в биосфере Земли чрезвычайно повышается информационная емкость системы «биосфера», и, более того, создается социосфера — новый, более высокий структурный уровень существования материи.

5.Дендроидно-ретикулярный принцип коэволюции исключает возможность создания идентичных систем в пространственно-временном континууме. Схематично он напоминает бифуркационные ветвления вероятностей в границах одного аттрактора — древо ветвления. Разновременность ветвления вероятностей в границах любого структурного уровня объективно создает следующие условия: образовавшаяся ветвь отсекает возможность «реализации» другой в том же направлении. В целом, древо ветвления представляет систему, прошедшую исторический путь развития, с присущими ей качествами: сложность, дифференцированность звеньев, их иерархия, согласованность функций и так далее.

Ретикулярная составляющая данного принципа отражает возможность образования систем при схождении в одной точке различных ветвей эволюции, из которой вновь образуется целый веер систем. Однажды сформировавшаяся система, занявшая некогда свободную эволюционную нишу, устраняет всякую возможность повторения эволюционной ситуации (определенного упорядоченного материального образования), даже в случае полного исчезновения данной системы. Повторение системного образа невозможно ни одновременно в разных областях пространства, ни позднее — ситуация неповторима.

Дендроидно-ретикулярный принцип коэволюции имеет глубинные связи с аттрактивными закономерностями развития, более того, можно говорить, что из него вытекает аттрактор, притягивающий вероятные пути развития и определяющий направление, цель сопряженного развития различных систем.

Этот принцип тесно связан с бифуркационным принципом коэволюции и справедлив как для систем микроуровня, так и для более сложных систем — от элементарных частиц до живых организмов, биогеоценозов, человека и общества.

6. Принцип иерархических компенсаций предполагает возможность перехода на следующий иерархический уровень развития через формирование новых информационных связей между элементами прежнего уровня и необходимость энергетической платы за каждую вновь устанавливаемую межэлементную связь.

Принцип иерархических компенсаций распространяется на живую и неживую природу, язык, культуру, социальное управление и согласуется с дендроидно-ретикулярным принципом коэволюции, так как рост разнообразия на новом уровне обязательно ограничивает таковой на предыдущем.

Накопление информации внутри какой-либо системы всегда оплачивается возрастанием энтропии внешней среды. Вследствие этого в процессах перехода систем на новый иерархический уровень неизбежно возникает проблема ограниченности внешних ресурсов. Человек, используя предоставляемые природой ресурсы, заимствует не только энергию их внутренних связей, но и ту структурную информацию, которая содержалась в этих связях до их разрушения. Развитие социума не может не производить нарушений в экосистеме, возникающий дисбаланс вызывает изменение технологий жизнеобеспечения и форм социальной организации.

7.Принцип гетерометрии биологического и социального отражает стягивание воедино биологической и социокультурной сущностей человека, находящихся во взаимосвязях с экофакторами среды обитания человека. Данный принцип способствует разрешению чрезвычайно сложной задачи о возможности коэволюции природы и общества. Разноприродность биологического и социального компонентов единой системы, функционирующих по различным законам, дает основание для предположения, что в основе коэволюционного процесса общества и природы лежат дополнительные механизмы, определяющие направление и скорость соразвития этих систем, принадлежащих к разным уровням организации.

Принцип гетерометрии отражает иерархию природных целостностей, жизнь и разум человека перестраивают характер эволюции природы, создавая «новую» природу с новыми законами и механизмами функционирования, что и предопределяет явление коэволюции гетеромерных систем.

8.Принцип детерминации будущим имманентно связан с информационными взаимодействиями в биологических и социальных системах и деятельностной концепцией культуры и отражает объективность коэволюционных связей между разновременными объектами и формирование цели развития в процессе синергетических трансформаций материальных систем.

Так, в процессе мейотического деления клеток воедино сливаются два явления: прямое наследование родительских генов и их изменение. Происходит детерминация прошлых событий настоящими, протекает одновременный процесс детерминации прошлым и детерминации будущим в живых системах. С появлением у высших организмов психики опережение событий становится существенно более дальним и надежным.

Интеллектуально-духовная, познавательно-деятельностная сущность человека еще более актуализируют явление детерминации будущим и придают ему методологическое значение принципа коэволюции. Детерминация будущим выступает как человекоразмерность ноосферогенеза, в которой заключается его аксиологическая сущность.

9.Принцип эволюции эволюционных механизмов основывается на представлении ноосферы как сферы взаимодействия природы и общества, в которой главным (среди равных) фактором развития становится разумная человеческая деятельность, придающая характер интерсинергийности современному этапу становления ноосферы. Человеческий разум создает новые законы развития материи — законы интеллектики, которые «работают» под управлением человека. Человек создает новые материальные образования, вплетенные в общий поток коэволюционных связей глобального эволюционизма, которые никогда не создала бы природа без его определяющего участия.

Несмотря на то, что роль разума главенствующая и в ставшей ноосфере он должен обеспечивать успешность коэволюционного процесса, разум человека и природа являются равнозначными подсистемами, так как человек способен жить только в условиях биосферы с определенными параметрами. В связи с тем, что разумная деятельность становится главным фактором глобальных трансформаций, следует говорить о превращении биосферы в подсистему и объективности принципа эволюции эволюционных механизмов.

10.Антропно-социокультурный принцип коэволюции вытекает из самого факта существования человека в составе земной биосферы. Человек, человеческая мысль, сознание, духовный мир человека, его иррациональность и непредсказуемость — такая же принадлежность природы, как и все другие космические объекты.

Антропно-социокультурный принцип предполагает целокупность интеллектуальной, духовной и нравственной составляющих жизнедеятельности человека в природе и включает жесткие логические ограничения совместного развития. Человек должен соизмерять степень своего воздействия на природу с ее регенерационными возможностями. В этом заключается смысл основывания антропно-социокультурного принципа на экологическом императиве коэволюции человека и природы, как объективно обусловленном. Включенность человека в природные коэволюционные процессы определяет задачу сохранения всех существующих природных систем как необходимого условия успешного существования человека в биосфере и придает гуманистический смысл концепции коэволюции.

11.Принцип техно-гуманитарного баланса предполагает существование специфических механизмов селектогенеза, адаптации человечества к растущему инструментальному могуществу. Технологическая мощь современной цивилизации, способная уничтожить среду жизни человека, уравновешивается гуманитарной зрелостью культуры, вырабатывающей адекватные механизмы сдерживания агрессии. На разных стадиях общественного развития соблюдается закономерная зависимость трех переменных факторов: технологического потенциала, качества выработанных культурой средств регуляции поведения и устойчивости социума. Причем внутренняя устойчивость социума имеет прямопропорциональную зависимость от качества регуляторных механизмов культуры, а внешняя устойчивость — от технологического потенциала общества. Растущий технологический потенциал делает социальную систему более чувствительной к состояниям массового и индивидуального сознания.

12.Принцип ноосферного развития имманентно связан с вечным вопросом свободы воли. Возможность свободного выбора является составной частью наших понятий о нравственной ответственности и так же является сущностной основой человекоразмерности коэволюционных принципов ноосферности. Возникновение в процессе естественного развития Разума, обретение материей способности познавать самое себя, видеть себя «со стороны» привели к появлению и новых «алгоритмов эволюции», резко ускоривших все процессы развития на Земле. И не просто ускоривших, но и существенно раздвинувших рамки эволюции. Границы допустимой разумной деятельности определяются не только законами природы, не только объективными факторами, но и факторами субъективными, поскольку разум имеет своего носителя — человека.

Нынешний этап развития ноосферы представляет собой этап накопления знаний человека о самом себе, окружающем мире и путях успешного коэволюционирования общества и природы. Его можно определить как информационный этап ноосферогенеза, как способ перехода к экологически ориентированному обществу на основе гуманизации социосферы посредством разума в наиболее всестороннем содержании ноосферного гуманизма как «всегда актуального сейчас».

Коэволюция разума, техно- и биосферы выступает основанием ноосферных принципов: гетерометрии, детерминации будущим, эволюции эволюционных механизмов развития, антропно-социокультурного и техно-гуманитарного баланса. Ноосфера — сфера взаимодействия природы и общества, в которой главным фактором развития становится разумная человеческая деятельность.

 Эволюция и коэволюция,Биологическая эволюция и коэволюция

 

 

Эволюция и коэволюция. Эволюция и коэволюция в системе современных знаний. Принципы эволюции и коэволюции. Биологическая эволюция и коэволюция живой природы.

 

 Модный женский сайт Я самая красивая!

Источник: www.i-kiss.ru

В1960 г. академик И. И. Шмальгаузен сформулировал представление об эволюции, как об авторегуляторном процессе, основанном на обратной связи. Эта модель дает наиболее наглядное представление о механизме эволюции и ее факторах—движущих силах. Поэтому с нее удобно начать рассмотрение микроэволюции. Микроэволюция — это условно выделяемый раздел теории эволюции, рассматривающий процессы, протекающие на уровне популяций, начиная с механизмов формирования изменчивости, в первую очередь наследственной, до возникновения нового вида.
В любой авторегуляторной системе выделяются два блока: управляющий блок — регулятор и регулируемый блок — объект управления. В качестве регулируемого блока, элементарной единицы эволюции рассматривается

популяция’— группа гетерозиготных особей, принадлежащих к одному виду (Иогансен, 1908). Рассмотрение популяции, как элементарной единицы эволюции, обусловлено тем, что отбор — переживание и размножение наиболее приспособленных, может действовать только в группе особей (особь является единицей отбора). Поскольку эволюция адаптивна, регулятором является среда, в которой обитает данная популяция, и к условиям которой она вынуждена приспосабливаться. Среда, в которой происходят эволюционные преобразования популяции, — это биогеоценоз.
Популяция меняется от поколения к поколению на основе генетической изменчивости, передаваемой по каналу прямой связи. Этот канал действует на молекулярно-генетическом уровне: генетическая информация записана последовательностями нуклеотидов ДНЕ. Канал обратной связи действует на фенотипическом уровне. На основе информации, передаваемой по этому каналу, биогеоценоз «узнает» о том, насколько популяция соответствует условиям регулятора. Таким образом, в элементарном эволюционном авторегуляторном цикле происходят две перекодировки информации. Первая из них—превращение генетической информации в фенотипическую. Она происходит в процессе онтогенеза каждого следующего поколения популяции.
Особи этого следующего поколения, начиная с момента образования зиготы, прямо или опосредованно вступают во взаимодействие с окружающей средой. Если ранние стадии онтогенеза животного защищены материнским организмом (внутриутробное развитие), взаимодействия эмбриона с окружающей средой опосредованно физиологическим состоянием матери. Если яйца откладываются во внешнюю среду, то эмбрион защищен только яйцевыми оболочками и питательными веществами. У растений и грибов раннее развитие защищено обычно слабее, чем у животных. У протистов и прокариот дочерние клетки взаимодействуют с окружающей средой также, как родительские. В любом случае, с момента оплодотворения и до смерти организмы каждого поколения участвуют в борьбе за существование.
Борьба за существование — процесс взаимодействия организмов с окружающей средой, является каналом обратной связи. На основе успеха или неуспеха особей популяции в процессе их экологических взаимодействий с факторами среды, то есть гибели или устранения от размножения менее приспособленных, и выживания и размножения более приспособленных, биоценоз «узнает» о том, насколько приспособлена данная популяция, то есть насколько эффективна регуляция ее состава. Из сказанного следует, что естественный отбор — дифференциальное выживание и размножение и есть процесс регуляции.
Размножение организмов, прошедших естественный отбор—вторая перекодировка информации, перевод ее с языка фенотипов на язык нуклеотидных последовательностей ДНК (рис. I). Изложенная модель представляет
собой переизложение в понятиях кибернетики дарвиновской концепции движущих сил эволюции. Шмальгаузен добавил, по сути дела, только два, хотя и очень существенных момента. Первый из них — само прёдставление об авторегуляторности эволюционного процесса. Эволюция — не только са- модвижущийся, но и саморегулирующийся процесс. Второй — выраженное в неявной форме введение четвертого фактора эволюции — генетической изоляции. Для того, чтобы популяция могла участвовать в авторегулятор- ном цикле как самостоятельная единица, она должна быть обособлена от других популяций того же вида. В противном случае генетические изменения, происходящие в процессе естественного отбора, не будут эффективны. Эмиграция особей из данной популяции и иммиграция в нее особей из других популяций, в результате их скрещивания с особями данной популяции, приведет к разрушению сочетаний генов, адаптивных к тем условиям среды, в которых обитает данная популяция. Впрочем, само представление о популяции, подразумевает ее обособленность от других частей вида.
He останавливаясь на более детальном рассмотрении модели: количестве информации в каналах прямой и обратной связи и следствиях информационного подхода к анализу микроэволюции, надо отметить, что изложенная модель приложима к любому поколению любой популяции каждого вида. Различия конкретных ситуаций обусловлены только спецификой таксонов и их отношений с окружающей средой. Вместе с тем изложенная модель позволяет рассматривать каждый компонент авторегуляторного цикла, не упуская из виду то, что эти компоненты связаны в единую систему.
Кибернетическая схема регуляции эволюционного процесса

Контроль
Воздействие биогеоценоза на популяцию (элиминация)
Борьба за существование в биогеоценозе
Преобразование
Естественный отбор в популяции
Вход
Усиление
Наследственная информация
Размножение отобранных вариантов

Обратная связь через фенотипы

Общий механизм эволюцииОбщий механизм эволюцииОбщий механизм эволюции

Рис.1. Эволюция, как авторегуляторный процесс (из Шмальгаузена, 1968)

Источник: myzooplanet.ru