Митохондрии – это постоянные мембранные орга-неллы округлой или палочковидной (нередко ветвящейся) формы. Толщин – 0,5 мкм, длина – 5–7 мкм. Количество митохондрий в большинстве животных клеток – 150—1500; в женских яйцеклетках – до нескольких сотен тысяч, в сперматозоидах – одна спиральная митохондрия, закрученная вокруг осевой части жгутика.

Основные функции митохондрий:

1) играют роль энергетических станций клеткок;

2) хранят наследственный материал в виде митохон-дриальной ДНК.

Побочные функции – участие в синтезе стероидных гормонов, некоторых аминокислот (например, глюта-миновой).

Строение митохондрий

Митохондрия имеет две мембраны: наружную (гладкую) и внутреннюю (образующую выросты – листовидные (кристы) и трубчатые (тубулы)).

У митохондрий внутренним содержимым является матрике – коллоидное вещество, в котором с помощью электронного микроскопа были обнаружены зерна диаметром 20–30 нм (они накапливают ионы кальция и магния, запасы питательных веществ, например, гликогена).


В матриксе размещается аппарат биосинтеза белка органеллы: 2–6 копий кольцевой ДНК, лишенной гистоновых белков, рибосомы, набор т-РНК, ферменты редупликации, транскрипции, трансляции наследственной информации.

Митохондрии размножаются путем перешнуровки, митохондриям свойственна относительная автономность внутри клетки.

Лизосомы – это пузырьки диаметром 200–400 мкм. (обычно). Имеют одномембранную оболочку, которая снаружи иногда бывает покрыта волокнистым белковым слоем. Основная функция – внутриклеточное переваривание различных химических соединений и клеточных структур.

Выделяют первичные (неактивные) и вторичные лизосомы (в них протекает процесс переваривания). Вторичные лизосомы образуются из первичных. Они подразделяются на гетеролизосомы и аутолизо-сомы.

В гетеролизосомах (или фаголизосомах) протекает процесс переваривания материала, который поступает в клетку извне путем активного транспорта (пино-цитоза и фагоцитоза).

В аутолизосомах (или цитолизосомах) подвергаются разрушению собственные клеточные структуры, которые завершили свою жизнь.

Вторичные лизосомы, которые уже перестали переваривать материал, называются остаточными тельцами. В них нет гидролаз, содержится непереваренный материал.

При нарушении целостности мембраны лизосом или при заболевании клетки гидролазы поступают внутрь клетки из лизосом и осуществляют ее самопереваривание (автолиз). Этот же процесс лежит в основе процесса естественной гибели всех клеток (апо-птоза).

Микротельца

Микротельца составляют сборную группу органелл. Они представляют собой пузырьки диаметром 100–150 нм, отграниченные одной мембраной. Содержат мелкозернистый матрикс и нередко белковые включения.


9. Строение и функции эндоплазматического ретикулума, комплекса Гольджи

Эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПС) – система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.


Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция. Комплекс Гольджи

Пластинчатый комплекс Гольджи – это упаковочный центр клетки. Представляет собой совокупность дик-тиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома – стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гли-копротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Источник: StudFiles.net

Особенности строения

iv>

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Строение митохондрии

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор. Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы. Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами. В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы. Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.


Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток. Размещение в цитоплазме также зависит от окружающих ее органелл и включений.  В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью. В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии. К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии. Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

>
  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.


Таблица: строение и функции митохондрий (кратко)
Структурные элементы
Строение
Функции
Наружная мембрана Гладкая оболочка, построена из липидов и белков Отграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространство Находятся ионы водорода, белки, микромолекулы Создает протонный градиент
Внутренняя мембрана Образует выпячивания – кристы, содержит белковые транспортные системы Перенос макромолекул, поддержание протонного градиента
Матрикс Место расположения ферментов цикла Кребса, ДНК, РНК, рибосом Аэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
Рибосомы Объединённые две субъединицы Синтез белка

Сходство митохондрий и хлоропластов

Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Источник: animals-world.ru

Общие сведения

Митохондрия: строение и функцииОсобенно много находится митохондрий в клетках с высоким энергопотреблением. К ним относятся мышечные, нервные, сенсорные клетки и ооциты. В клеточных структурах сердечной мышцы объемная доля этих органоидов достигает 36 %. Они имеют диаметр около 0.5-1.5 мкм и разнообразные формы, от сфер до сложных нитей. Их число корректируется с учетом энергетических потребностей клетки.

Эукариотические клетки, которые теряют свои митохондрии, не могут их восстановить. Существуют также эукариоты без них, например, некоторые простейшие. Количество данных органоидов на клеточную единицу обычно составляет от 1000 до 2000 при объемной доле в 25 %. Но эти значения могут сильно варьироваться в зависимости от типа клеточной структуры и организма. В зрелой клетке спермы их около четырех-пяти, в зрелой яйцеклетке – несколько сотен тысяч.


Митохондрии передаются через плазму яйцеклетки только от матери, что стало причиной исследования материнских линий. В настоящее время установлено, что также через сперму некоторые мужские органоиды импортируются в плазму оплодотворенной яйцеклетки (зиготы). Вероятно, они будут устранены довольно быстро. Однако есть несколько случаев, когда врачи смогли доказать, что митохондрии ребенка были отцовской линии. Заболевания, вызванные мутациями в митохондриальных генах, наследуются только от матери.

Схема строения митохондрии

Рассмотрим особенности строения этих важных структур. Они образованы в результате сочетания нескольких элементов. Оболочка этих органоидов складывается из внешней и внутренней мембраны, они в свою очередь состоят из фосфолипидных бислоев и белков. Обе оболочки отличаются по своим свойствам. Между ними расположено пять различных отсеков: наружная мембрана, межмембранное пространство (промежуток между двумя мембранами), внутренняя, криста и матрикс (пространство внутри внутренней мембраны), в целом – внутренние структуры органоида.

На иллюстрациях в учебниках митохондрия преимущественно выглядит как отдельная бобовидная органелла. Так ли это на самом деле? Нет, они образуют трубчатую митохондриальную сеть, которая может проходить и изменять всю клеточную единицу. Митохондрии в клетке способны сочетаться (путем слияния) и повторно делиться (делением).

Внешняя мембрана


Митохондрия: строение и функцииНаружная оболочка окружает всю органеллу и включает в себя каналы белковых комплексов, что позволяют обмен молекулами и ионами между митохондрией и цитозолем. Крупные молекулы не могут пройти через мембрану.

Внешняя, которая охватывает всю органеллу и не свернута, имеет весовое отношение фосфолипида к белку 1:1 и, таким образом, похожа на эукариотическую плазматическую мембрану. Она содержит множество интегральных белков, поринов. Порины образуют каналы, которые обеспечивают свободную диффузию молекул с массой до 5000 дальтон через оболочку. Более крупные белки могут вторгаться, когда сигнальная последовательность на N-конце связывается с большой субъединицей белка транслоксазы, из которой они затем активно перемещаются по мембранной оболочке.

Если трещины возникают во внешней оболочке, белки из межмембранного пространства могут выходить в цитозоль, что может привести к гибели клетки. Наружная мембрана может сливаться с оболочкой эндоплазматического ретикулума, а затем формировать структуру под названием MAM (ER, ассоциированную с митохондрией). Это важно для обмена сигналами между ER и митохондрией, что также необходимо для переноса липидов.

Межмембранное пространство

Участок представляет собой промежуток посреди внешней и внутренней мембраны. Поскольку внешняя обеспечивает свободное проникновение малых молекул, их концентрация, таких как ионы и сахар, в межмембранном пространстве идентична концентрациям в цитозоле. Однако для больших белков требуется передача специфической сигнальной последовательности, так что состав белков различается между межмембранным пространством и цитозолем. Таким образом, белок, который удерживается в межмембранном промежутке, является цитохромом.

Внутренняя мембрана

Внутренняя митохондриальная мембрана содержит белки с четырьмя видами функций:

  • Белки – проводят реакции оксидации респираторной цепочки.
  • Аденозинтрифосфатсинтаза, которая производит в матрице АТФ.
  • Специфические транспортные белки, которые регулируют проход метаболитов между матрицей и цитоплазмой.
  • Системы импорта белков.

Внутренняя имеет, в частности, двойной фосфолипид, кардиолипин, замещенный четырьмя жирными кислотами. Кардиолипин обычно характерен для митохондриальных мембран и бактериальных плазматических мембран. В организме человека он в основном присутствует в областях с высокой метаболической активностью или высокой энергетической активностью, таких как сократительные кардиомиоциты, в миокарде.

Митохондрия: строение и функцииРазделяется на многочисленные кристы, они расширяют внешнюю область внутренней митохондриальной оболочки, поднимая ее способность вырабатывать АТФ.

В типичной митохондрии печени, например, внешняя область, в частности кристы, примерно в пять раз превышает площадь наружной мембраны. Энергетические станции клеток, которые имеют более высокие потребности в АТФ, например, мышечные клетки, содержат больше крист, чем типичная митохондрия печени.

Внутренняя оболочка охватывает матрикс, внутреннюю жидкость митохондрии. Он соответствует цитозолю бактерий и содержит митохондриальную ДНК, ферменты цитратного цикла и их собственные митохондриальные рибосомы, которые отличаются от рибосом в цитозоле (но также и от бактерий). Межмембранное пространство содержит ферменты, которые могут фосфорилировать нуклеотиды под потреблением АТФ.

Функции

  • Важные пути деградации: цитратный цикл, для которого пируват вводится из цитозоля в матрикс. Затем пируват декарбоксилируют пируватдегидрогеназой до ацетилкофермента А. Другим источником ацетилкофермента А является деградация жирных кислот (β-окисление), которая происходит в клетках животных в митохондриях, но в растительных – только в глиоксисомах и пероксисомах. С этой целью ацилкофермент А переносят из цитозоля путем связывания с карнитином через внутреннюю митохондриальную мембрану и превращают в ацетилкофермента А. Из него большинство восстановительных эквивалентов в цикле Кребса (также известный как цикл Кребса или цикл трикарбоновой кислоты), которые затем превращаются в АТФ в окислительной цепи.
  • Окислительная цепь. Установлен электрохимический градиент между межмембранным пространством и митохондриальным матриксом, который служит для получения АТФ с помощью АТФ-синтазы, с помощью процессов переноса электронов и накопления протонов. Электроны и протоны, необходимые для создания градиента, получают путем окислительной деградации из питательных веществ (например, глюкозы), поглощаемых организмом. Первоначально гликолиз происходит в цитоплазме.
  • Апоптоз (запрограммированная гибель клеток)
  • Хранение кальция: благодаря способности абсорбировать ионы кальция и затем высвобождать их, митохондрии вмешиваются в гомеостаз кальция клетки.
  • Синтез кластеров железа-серы, требуемый, среди прочего, многими ферментами дыхательной цепи. Эта функция теперь считается существенной функцией митохондрий, т.е. как это причина, по которой почти все клетки эукариотов полагаются на энергетические станции для выживания.

Матрикс

Это пространство, включенное во внутреннюю митохондриальную мембрану. Содержит около двух третей общего белка. Играет решающую роль в производстве АТФ с помощью синтазы АТФ, включенной во внутреннюю мембрану. Содержит высококонцентрированную смесь сотен различных ферментов (главным образом, участвующих в деградации жирных кислот и пирувата), митохондриально-специфических рибосом, передаточной РНК и нескольких копий ДНК митохондриального генома.

Данные органоиды имеют свой собственный геном, а также ферментативное оборудование, необходимое для осуществления собственного биосинтеза белка.

Митохондрия Что такое Митохондрия и её функции

Строение и функционирование митохондрий

Вывод

Таким образом, митохондриями называются клеточные электростанции, которые производят энергию и занимают ведущее место в жизни и выживаемости отдельной клетки в частности и живого организма в целом. Митохондрии – это неотъемлемая часть живой клетки, в том числе растительной, которые до конца еще не изучены. Особенно много митохондрий в тех клетках, которым требуется больше энергии.

Источник: uchim.guru

Что такое митохондрии и их роль

Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.

Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

митохондрия

Примерно так выглядит митохондрия.

Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

Происхождение митохондрии

Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку. Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества. И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

Строение митохондрии

Митохондрии состоят из:

  • двух мембран, одна из них внутренняя, другая внешняя,
  • межмембранного пространства,
  • матрикса – внутреннего содержимого митохондрии,
  • криста – это часть мембраны, которая выросла в матриксе,
  • белок синтезирующей системы: ДНК, рибосом, РНК,
  • других белков и их комплексов, среди которых большое число всевозможных ферментов,
  • других молекул

Строение митохондрии

Так выглядит строение митохондрии.

Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.

На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

У митохондрий, как впрочем, у и хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

Функции митохондрии

Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

Ферменты митохондрий

Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

Источник: www.poznavayka.org

Общая характеристика

Митохондрии были обнаружены в 1850 году. Однако понять строение и функциональное назначение митохондрий стало возможно только в 1948 году.

За счёт своих довольно крупных размеров органеллы хорошо различимы в световом микроскопе. Максимальная длина – 10 мкм, диаметр не превышает 1 мкм.

Митохондрии присутствуют во всех эукариотических клетках. Это двумембранные органоиды обычно бобовидной формы. Также встречаются митохондрии сферической, нитевидной, спиралевидной формы.

Количество митохондрий может значительно варьировать. Например, в клетках печени их насчитывается около тысячи, а в ооцитах – 300 тысяч. Растительные клетки содержат меньше митохондрий, чем животные.

Нахождение митохондрий в клетке

Рис. 1. Нахождение митохондрий в клетке.

Строение

Каждая митохондрия отделена от цитоплазмы двумя мембранами. Наружная мембрана гладкая. Строение внутренней мембраны более сложное. Она образует многочисленные складки – кристы, которые увеличивают функциональную поверхность. Между двумя мембранами находится пространство в 10-20 нм, заполненное ферментами. Внутри органеллы располагается матрикс – гелеобразное вещество.

Внутреннее строение митохондрий

Рис. 2. Внутреннее строение митохондрий.

В таблице “Строение и функции митохондрии” подробно описаны компоненты органеллы.

Пластиды

Помимо митохондрий в клетках растений присутствуют дополнительные полуавтономные органеллы – пластиды.
В зависимости от функционального назначения различают три вида пластид:

  • хромопласты – накапливают и хранят пигменты (каротины) разных оттенков, придающих окраску цветков растений;
  • лейкопласты – запасают питательные вещества, например, крахмал, в виде зерён и гранул;
  • хлоропласты – наиболее важные органеллы, содержащие зелёный пигмент (хлорофилл), придающий окраску растениям, и осуществляющие фотосинтез.

Пластиды

Рис. 3. Пластиды.

Источник: obrazovaka.ru